Skip to main content
Log in

Tunable optofluidic microlens through active pressure control of an air–liquid interface

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

We demonstrate a tunable in-plane optofluidic microlens with a 9× light intensity enhancement at the focal point. The microlens is formed by a combination of a tunable divergent air–liquid interface and a static polydimethylsiloxane lens, and is fabricated using standard soft lithography procedures. When liquid flows through a straight channel with a side opening (air reservoir) on the sidewall, the sealed air in the side opening bends into the liquid, forming an air–liquid interface. The curvature of this air–liquid interface can be conveniently and predictably controlled by adjusting the flow rate of the liquid stream in the straight channel. This change in the interface curvature generates a tunable divergence in the incident light beam, in turn tuning the overall focal length of the microlens. The tunability and performance of the lens are experimentally examined, and the experimental data match well with the results from a ray-tracing simulation. Our method features simple fabrication, easy operation, continuous and rapid tuning, and a large tunable range, making it an attractive option for use in lab-on-a-chip devices, particularly in microscopic imaging, cell sorting, and optical trapping/manipulating of microparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahmed D, Mao X, Shi J, Juluri BK, Huang TJ (2009a) A millisecond micromixer via single-bubble-based acoustic streaming. Lab Chip 9:2738–2741

    Article  Google Scholar 

  • Ahmed D, Mao X, Juluri BK, Huang TJ (2009b) A fast microfluidic mixer based on acoustically driven sidewall-trapped microbubbles. Microfluid Nanofluid 7:727–731

    Article  Google Scholar 

  • Baird E, Young P, Mohseni K (2007) Electrostatic force calculation for an EWOD-actuated droplet. Microfluid Nanofluid 3:635–644

    Article  Google Scholar 

  • Blakely JT, Gordon R, Sinton D (2008) Flow-dependent optofluidic particle trapping and circulation. Lab Chip 8:1350–1356

    Article  Google Scholar 

  • Chiou PY, Ohta AT, Wu MC (2005) Massively parallel manipulation of single cells and microparticles using optical images. Nature 436:370–372

    Article  Google Scholar 

  • Chronis N, Liu GL, Jeong KH, Lee LP (2003) Tunable microdoublet lens array. Opt Express 11:2370–2378

    Article  Google Scholar 

  • Cui X, Lee LM, Heng X, Zhong W, Sternberg PW, Psaltis D, Yang C (2008) Lensless high-resolution on-chip optofluidic microscopes for Caenorhabditis elegans and cell imaging. Proc Natl Acad Sci USA 105:10670–10675

    Article  Google Scholar 

  • Domachuk P, Cronin-Golomb M, Eggleton B, Mutzenich S, Rosengarten G, Mitchell A (2005) Application of optical trapping to beam manipulation in optofluidics. Opt Express 13:7265–7275

    Article  Google Scholar 

  • Dong L, Jiang H (2007) Tunable and movable liquid microlens in situ fabricated within microfluidic channels. Appl Phys Lett 91:041109

    Article  Google Scholar 

  • Dong L, Agarwal AK, Beebe DJ, Jiang H (2006) Adaptive liquid microlenses activated by stimuli-responsive hydrogels. Nature 442:551–554

    Article  Google Scholar 

  • Erickson D, Mandal S, Yang AHJ, Cordovez B (2008) Nanobiosensors: optofluidic, electrical and mechanical approaches to biomolecular detection at the nanoscale. Microfluid Nanofluid 4:33–52

    Article  Google Scholar 

  • Godin J, Lien V, Lo YH (2006) Demonstration of two-dimensional fluidic lens for integration into microfluidic flow cytometers. Appl Phys Lett 89:061106

    Google Scholar 

  • Grilli S, Miccio L, Vespini V, Finizio A, Nicola SD, Ferraro P (2008) Liquid micro-lens array activated by selective electrowetting on lithium niobate substrates. Opt Express 16:8084–8093

    Article  Google Scholar 

  • Groisman A, Zamek S, Campbell K, Pang L, Levy U, Fainman Y (2008) Optofluidic 1 × 4 Switch. Opt Express 16:13499–13508

    Article  Google Scholar 

  • Hecht E (2001) Optics, Pearson Education, pp 159–161

  • Heng X, Erickson D, Baugh LR, Yaqoob Z, Sternberg PW, Psaltis D, Yang C (2006) Optofluidic microscopy—a method for implementing a high resolution optical microscope on a chip. Lab Chip 6:1274–1276

    Article  Google Scholar 

  • Horowitz VR, Awschalom DD, Pennathur S (2008) Optofluidics: field or technique? Lab Chip 8:1856–1863

    Article  Google Scholar 

  • Hunt HC, Wilkinson JS (2008) Optofluidic integration for microanalysis. Microfluid Nanofluid 4:53–79

    Article  Google Scholar 

  • Kuiper S, Hendriks BHW (2004) Variable-focus liquid lens for miniature cameras. Appl Phys Lett 85:1128–1130

    Article  Google Scholar 

  • Lapsley MI, Lin SCS, Mao X, Huang TJ (2009) An in-plane, variable optical attenuator using a fluid-based tunable reflective interface. Appl Phys Lett 95:083507

    Article  Google Scholar 

  • Lee SW, Lee SS (2007) Focal tunable liquid lens integrated with an electromagnetic actuator. Appl Phys Lett 90:121129

    Google Scholar 

  • Levy U, Shamai R (2007) Tunable optofluidic devices. Microfluid Nanofluid 4:97–105

    Article  Google Scholar 

  • Li ZY, Zhang ZY, Emery T, Scherer A, Psaltis D (2006) Single mode optofluidic distributed feedback dye laser. Opt Express 14:696–701

    Article  Google Scholar 

  • Lim JM, Kim SH, Choi JH, Yang SM (2008) Fluorescent liquid-core/aircladding waveguides towards integrated optofluidic light sources. Lab Chip 8:1580–1585

    Article  Google Scholar 

  • Lopez CA, Lee CC, Hirsa AH (2005) Electrochemically activated adaptive liquid lens. Appl Phys Lett 87:134102

    Article  Google Scholar 

  • Mao X, Waldeisen JR, Juluri BK, Huang TJ (2007) Hydrodynamically tunable optofluidic cylindrical microlens. Lab Chip 7:1303–1308

    Article  Google Scholar 

  • Mao X, Lin SCS, Dong C, Huang TJ (2009a) Single-layer planar on-chip flow cytometer using microfluidic drifting based three-dimensional (3D) hydrodynamic focusing. Lab Chip 9:1583–1589

    Article  Google Scholar 

  • Mao X, Lin SCS, Lapsley MI, Shi J, Juluri BK, Huang TJ (2009b) Tunable liquid gradient refractive index (L-GRIN) lens with two degrees of freedom. Lab Chip 9:2050–2058

    Article  Google Scholar 

  • Miccio L, Finizio A, Grilli S, Vespini V, Paturzo M, Nicola DS, Ferraro P (2009a) Tunable liquid microlens arrays in electrode-less configuration and their accurate characterization by interference microscopy. Opt Express 17:2487–2499

    Article  Google Scholar 

  • Miccio L, Paturzo M, Grilli S, Vespini V, Ferraro P (2009b) Hemicylindrical and toroidal liquid microlens formed by pyro-electro-wetting. Opt Lett 34:1075–1077

    Article  Google Scholar 

  • Monneret S, Belloni F, Soppera O (2007) Combining fluidic reservoirs and optical tweezers to control beads/living cells contacts. Microfluid Nanofluid 3:645–652

    Article  Google Scholar 

  • Pang L, Levy U, Campbell K, Groisman A, Fainman Y (2004) Set of two orthogonal adaptive cylindrical lenses in a monolith elastomer device. Opt Express 13:9003–9013

    Article  Google Scholar 

  • Psaltis D, Quake SR, Yang C (2006) Developing optofluidic technology through the fusion of microfluidics and optics. Nature 442:381–386

    Article  Google Scholar 

  • Ren H, Wu ST (2007) Variable-focus liquid lens. Opt Express 15:5931–5936

    Article  Google Scholar 

  • Rosenauer M, Vellekoop MJ (2009) 3D fluidic lens shaping—a multiconvex hydrodynamically adjustable optofluidic microlens. Lab Chip 9:1040–1042

    Article  Google Scholar 

  • Schmidt H, Hawkins AR (2008) Optofluidic waveguides: I. Concepts and implementations. Microfluid Nanofluid 4:3–16

    Article  Google Scholar 

  • Seow YC, Liu AQ, Chin LK, Li XC, Huang HJ, Cheng TH, Zhou XQ (2008) Different curvature of tunable liquid microlens via the control of laminar flow rate. Appl Phys Lett 93:084101

    Google Scholar 

  • Shi J, Hsiao VKS, Huang TJ (2007) Nanoporous polymeric transmission gratings for high-speed humidity sensing. Nanotechnology 18:465501

    Google Scholar 

  • Shi J, Hsiao VKS, Walker TR, Huang TJ (2008a) Humidity sensing based on nanoporous polymeric photonic crystals. Sens Actuators B Chem 129:391–396

    Article  Google Scholar 

  • Shi J, Mao X, Ahmed D, Colletti A, Huang TJ (2008b) Focusing microparticles in a microfluidic channel with standing surface acoustic waves (SSAW). Lab Chip 8:221–223

    Article  Google Scholar 

  • Shi J, Ahmed D, Mao X, Lin SCS, Huang TJ (2009a) Acoustic tweezers: patterning cells and microparticles using standing surface acoustic waves (SSAW). Lab Chip 9:2890–2895

    Article  Google Scholar 

  • Shi J, Huang H, Stratton Z, Lawit A, Huang Y, Huang TJ (2009b) Continuous particle separation in a microfluidic channel via standing surface acoustic waves (SSAW). Lab Chip 9:3354–3359

    Google Scholar 

  • Shopova SI, Zhou H, Fan X, Zhang P (2007) Optofluidic ring resonator based dye laser. Appl Phys Lett 90:221101

    Google Scholar 

  • Sinton D, Erickson D, Li D (2003) Micro-bubble lensing induced photobleaching (m-BLIP) with application to microflow visualization. Exp Fluids 35:178–187

    Article  Google Scholar 

  • Song C, Nguyen NT, Tan SH, Asundi AK (2009) Modelling and optimization of micro optofluidic lenses. Lab Chip 9:1178–1184

    Article  Google Scholar 

  • Tang SKY, Stan CA, Whitesides GM (2008) Dynamically reconfigurable liquidcore liquid-cladding lens in a microfluidic channel. Lab Chip 8:395–401

    Article  Google Scholar 

  • Tovar AR, Lee AP (2009) Lateral cavity acoustic transducer. Lab Chip 9:41–43

    Article  Google Scholar 

  • Wang MM, Tu E, Raymond DE, Yang JM, Zhang H, Hagen N, Dees B, Mercer EM, Forster AH, Kariv I, Marchand PJ, Butler WF (2005) Microfluidic sorting of mammalian cells by optical force switching. Nat Biotechnol 23:83–87

    Article  Google Scholar 

  • Wolfe DB, Conroy RS, Garstecki P, Mayers BT, Fischbach MA, Paul KE, Prentiss M, Whitesides GM (2004) Dynamic control of liquid-core/liquid-cladding optical waveguides. Proc Natl Acad Sci USA 34:12434–12438

    Article  Google Scholar 

  • Wu J, Cui X, Lee LM, Yang C (2008) The application of Fresnel zone plate based projection in optofluidic microscopy. Opt Express 16:15595–15602

    Article  Google Scholar 

  • Xia YN, Whitesides GM (1998) Soft lithography. Ann Rev Mater Sci 28:153–184

    Article  Google Scholar 

  • Yang AHJ, Moore SD, Schmidt BS, Klug M, Lipson M, Erickson D (2009) Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides. Nature 457:71–75

    Article  Google Scholar 

  • Yin D, Lunt EJ, Rudenko MI, Deamer DW, Hawkins AR, Schmidt H (2007) Planar optofluidic chip for single particle detection, manipulation, and analysis. Lab Chip 7:1171–1175

    Article  Google Scholar 

  • Zhang DY, Lien V, Berdichevsky Y, Choi J, Lo YH (2003) Fluidic adaptive lens with high focal length tenability. Appl Phys Lett 82:3171–3172

    Article  Google Scholar 

  • Zourob M, Mohr S, Brown BJT, Fielden PR, McDonnell MB, Goddard NJ (2005) An integrated optical leaky waveguide sensor with electrically induced concentration system for the detection of bacteria. Lab Chip 5:1360–1365

    Article  Google Scholar 

Download references

Acknowledgments

We thank Xiaole Mao and Aitan Lawit for helpful discussion. This research was supported by National Science Foundation (ECCS-0824183, ECCS-0801922, and ECCS-0609128) and the Penn State Center for Nanoscale Science (MRSEC). Components of this work were conducted at the Penn State node of the NSF-funded National Nanotechnology Infrastructure Network.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tony Jun Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, J., Stratton, Z., Lin, SC.S. et al. Tunable optofluidic microlens through active pressure control of an air–liquid interface. Microfluid Nanofluid 9, 313–318 (2010). https://doi.org/10.1007/s10404-009-0548-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-009-0548-9

Keywords

Navigation