Skip to main content

Role of Phytohormones in Stress Tolerance of Plants

  • Chapter
  • First Online:
Plant, Soil and Microbes

Abstract

Environmental stresses, both biotic and abiotic, cause negative impact on plant growth and development, and plants need to adopt certain strategies for maintaining proper growth under stress conditions. These strategies include certain physiological, biochemical, and molecular mechanisms to cope with these stresses. These mechanisms include the production of hormones (phytohormones) and osmolytes. Phytohormones are organic molecules that affect various plant physiological processes like growth, development, and cell differentiation. Phytohormones regulate key physiological events under normal and stress conditions. They play a vital role for enhancing the ability of plants to adapt to the harsh environmental conditions by mediating a wide range of adaptive responses. These responses enable the plants to acclimatize to adverse soil conditions. Various types of phytohormones play an important function in plants individually or in coordination with each other. The nature and level of these hormones in plants are major factors that influence plant processes and functions. The present chapter describes the potential role of phytohormones for promoting plant growth and development under stress conditions. The major classes of plant hormones and their source of production have been described. Metabolism of phytohormones and their physiological responses with special reference to their concentration-dependent or negative impact on plant growth have been discussed in detail. The impact of these hormones on plant growth under stress conditions has been reviewed and discussed with selected examples. Also, the role of microbes in phytohormone production has been elaborated with examples. Future perspectives of the area have also been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdoli M, Saeidi M, Azhand M, Honarmand SJ, Esfandiari E, Shekari F (2013a) The effects of different levels of salinity and indole-3-acetic acid (IAA) on early growth and germination of wheat seedling. J Stress Physiol Biochem 9:329–338

    Google Scholar 

  • Abdoli M, Saeidi M, Jalali-Honarmand S, Azhand M (2013b) The effect of foliar application of indole-3-acetic acid (IAA) and roles of ear photosynthesis on grain yield production of two wheat cultivars (Triticum aestivum L.) under post anthesis water deficit. Int J Sci Basic Appl Res 4:1406–1413

    CAS  Google Scholar 

  • Abdullah Z, Ahmad R (1990) Effect of pre- and post-kinetin treatments on salt tolerance of different potato cultivars growing on saline soils. J Agron Crop Sci 165:94–102

    Article  CAS  Google Scholar 

  • Achard P, Cheng H, De Grauwe L, Decat J, Schoutteten H, Moritz T, Van Der Straeten D, Peng J, Harberd NP (2006) Integration of plant responses to environmentally activated phytohormonal signals. Science 311:91–94

    Article  CAS  PubMed  Google Scholar 

  • Adie BA, Perez-Perez J, Perez-Perez MM, Godoy M, Sánchez-Serrano J-J, Schmelz EA, Solano R (2007) ABA is an essential signal for plant resistance to pathogens affecting JA biosynthesis and the activation of defenses in Arabidopsis. Plant Cell 19:1665–1681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Afroz S, Mohammad F, Hayat S, Siddiqui MH (2005) Exogenous application of gibberellic acid counteracts the ill effect of sodium chloride in mustard. Turk J Bot 29:233–236

    CAS  Google Scholar 

  • Afzal I, Basra S, Iqbal A (2005) The effect of seed soaking with plant growth regulators on seedling vigor of wheat under salinity stress. J Stress Physiol Biochem 1:6–14

    Google Scholar 

  • Ahemad M, Kibret M (2014) Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. J King Saud Univ Sci 26:1–20

    Article  Google Scholar 

  • Ahmad M, Zahir ZA, Asghar HN, Asghar M (2011) Inducing salt tolerance in mung bean through co-inoculation with Rhizobium and PGPR containing ACC deaminase. Can J Microbiol 57:578–589

    Article  CAS  PubMed  Google Scholar 

  • Ahmad M, Zahir ZA, Khalid M, Nazli F, Arshad M (2013) Efficacy of Rhizobium and Pseudomonas strains to improve physiology, ionic balance and quality of mung bean under salt affected conditions on farmers fields. Plant Physiol Biochem 63:170–176

    Article  CAS  PubMed  Google Scholar 

  • Ahmad M, Zahir ZA, Jamil M, Nazli F, Latif M, Akhtar MF (2014) Integrated use of plant growth promoting rhizobacteria biogas slurry and chemical nitrogen for sustainable production of maize under salt affected conditions. Pak J Bot 46:375–382

    CAS  Google Scholar 

  • Akhtar M, Arshad M, Khalid A, Mahmood MH (2005) Substrate-dependent biosynthesis of ethylene by rhizosphere soil fungi and its influence on etiolated pea seedlings. Pedobiologia 49:211–219

    Article  CAS  Google Scholar 

  • Aleksandrova IF, Lebedeva AS, Petrunina NA (2007) Modulating influence of gibberellic acid in hyperthermia in wheat grains. 2nd International symposium on plant growth substances: intracellular hormonal signaling and applying in agriculture, 8–12 October, 2007, Kyiv, Ukraine

    Google Scholar 

  • Ali HM, Siddiqui MH, Basalah MO, Al-Whaibi MH, Sakran A, Al-Amri A (2012) Effects of gibberellic acid on growth and photosynthetic pigments of Hibiscus sabdariffa L. under salt stress. Afr J Biotechnol 11:800–804

    CAS  Google Scholar 

  • Arbona V, Marco AJ, Iglesias DJ, Lopez-Climent MF, Talon M, Gomez-Cadenas A (2005) Carbohydrate depletion in roots and leaves of salt-stressed potted Citrus clementina L. Plant Growth Regul 46:153–160

    Article  CAS  Google Scholar 

  • Arkhipchenko IA, Salkinoja-Salonen MS, Karyakina JN, Tsitko I (2005) Study of three fertilizers produced from farm waste. Appl Soil Ecol 30:126–132

    Article  Google Scholar 

  • Armstrong DJ, Firtel RA (1989) Cytokinin oxidase activity in the cellular slime mold Dictyostelium discoideum. Dev Biol 136:491–499

    Article  CAS  PubMed  Google Scholar 

  • Aroca R (2012) Plant responses to drought stress from morphological to molecular features. Springer, Berlin

    Book  Google Scholar 

  • Arshad M, Frankenberger WT (1998) Plant growth-regulating substances in the rhizosphere: microbial production and functions. Adv Agron 62:46–152

    Google Scholar 

  • Ashraf M (2004) Some important physiological selection criteria for salt tolerance in plants. Flora 199:361–376

    Article  Google Scholar 

  • Ashraf M (2009) Biotechnological approach of improving plant salt tolerance using antioxidants as markers. Biotechnol Adv 27:84–93

    Article  CAS  PubMed  Google Scholar 

  • Ashraf M, Foolad MR (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59:206–216

    Article  CAS  Google Scholar 

  • Asrar AWA, Elhindi KM (2011) Alleviation of drought stress of marigold (Tagetes erecta) plants by using arbuscular mycorrhizal fungi. J Biol Sci 18:93–98

    Google Scholar 

  • Atzorn R, Crozier A, Wheeler CT, Sandberg G (1988) Production of gibberellins and indole-3- acetic acid by Rhizobium phaseoli in relation to nodulation of Phaseolus vulgaris roots. Planta 175:532–538

    Article  CAS  PubMed  Google Scholar 

  • Ayvaz M, Koyuncu M, Guven A, Fagerstedt KV (2012) Does boron affect hormone levels of barley cultivars? Eurasian J Biosci 6:113–120

    Article  CAS  Google Scholar 

  • Azizullah A, Khattak MNK, Richter P, Hader D (2011) Water pollution in Pakistan and its impact on public health a review. Environ Int 37:479–497

    Article  CAS  PubMed  Google Scholar 

  • Babu MA, Singh D, Gothandam KM (2012) The effect of salinity on growth, hormones and mineral elements in leaf and fruit of tomato cultivar PKM1. J Anim Plant Sci 22:159–164

    CAS  Google Scholar 

  • Baca BE, Elmerich C (2003) Microbial production of plant hormones. In: Elmerich C, Newton WE (eds) Associative and endophytic nitrogen-fixing bacteria and cyanobacterial associations. Kluwer Academic Publishers, Netherlands

    Google Scholar 

  • Bailey TA, Xiangjun Z, Jianping C, Yinong Y (2009) Role of ethylene, abscisic acid and MAP kinase pathways in rice blast resistance. In: Yang Y (ed) Advances genetics genomics control rice blast disease. Springer, Berlin, pp 185–190

    Chapter  Google Scholar 

  • Bajguz A (2009) Isolation and characterization of brassinosteroids from algal cultures of Chlorella vulgaris Beijerinck (Trebouxiophyceae). J Plant Physiol 166:1946–1949

    Article  CAS  PubMed  Google Scholar 

  • Bajguz A, Piotrowska-Niczyporuk A (2013) Synergistic effect of auxins and brassinosteroids on the growth and regulation of metabolite content in the green alga Chlorella vulgaris (Trebouxiophyceae). Plant Physiol Biochem 71:290–297

    Article  CAS  PubMed  Google Scholar 

  • Bajguz A, Piotrowska-Niczyporuk A (2014) Interactive effect of brassinosteroids and cytokinins on growth, chlorophyll, monosaccharide and protein content in the green alga Chlorella vulgaris (Trebouxiophyceae). Plant Physiol Biochem 80:176–183

    Article  CAS  PubMed  Google Scholar 

  • Bano A, Yasmeen S (2010) Role of phytohormones under induced drought stress in wheat. Pak J Bot 42:2579–2587

    CAS  Google Scholar 

  • Barazani O, Friedman J (1999a) Is IAA the major root growth factor secreted from plant-growth-mediating bacteria. J Chem Ecol 25:2397–2406

    Article  CAS  Google Scholar 

  • Barazani OZ, Friedman J (1999b) Allelopathic bacteria and their impact on higher plants. Crit Rev Plant Sci 18:741–755

    Article  CAS  Google Scholar 

  • Barciszewski J, Siboska G, Rattan SIS, Clark BFC (2000) Occurrence, biosynthesis and properties of kinetin (N6-furfuryladenine). Plant Growth Regul 32:257–265

    Article  CAS  Google Scholar 

  • Bartling D, Seedorf M, Schmidt RC, Weiler EM (1994) Molecular characterization of two cloned nitrilases from Arabidopsis thaliana, key enzymes in biosynthesis of the plant hormone indole-3-acetic acid. Proc Natl Acad Sci U S A 91:6021–6025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Basalah MO, Mohammad S (1999) Effect of salinity and plant growth regulators on seed germination of Medicago sativa. Pak J Biol Sci 3:651–653

    Google Scholar 

  • Battal P, Erez ME, Turker M, Berber I (2008) Molecular and physiological changes in Maize (Zea mays) induced by exogenous NAA ABA and MeJa during cold stress. Ann Bot Fenn 45:173–185

    Article  Google Scholar 

  • Belimov AA, Safranova VI, Mimura T (2002) Response of spring rape (Brassica napus) to inoculation with PGPR containing ACC-deaminase depends on nutrient status of plant. Can J Microbiol 48:189–199

    Article  CAS  PubMed  Google Scholar 

  • Berg G (2009) Plant–microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Appl Microbiol Biotechnol 84:11–18

    Article  CAS  PubMed  Google Scholar 

  • Blackman PG, Davies WJ (1984) Modification of the CO2 responses of maize stomata by abscisic acid and by naturally occurring and synthetic cytokinins. J Exp Bot 35:174–179

    Article  CAS  Google Scholar 

  • Boiero L, Perrig D, Masciarelli O, Penna C, Cassán F, Luna V (2007) Phytohormone production by three strains of Bradyrhizobium japonicum and possible physiological and technological implications. Appl Microbiol Biotechnol 74:874–880

    Article  CAS  PubMed  Google Scholar 

  • Bont JD, Attwood M, Primrose S, Harder W (1979) Epoxidation of short chain alkenes in Mycobacterium E20: the involvement of a specific mono‐oxygenase. FEMS Microbiol Lett 6:183–188

    Article  Google Scholar 

  • Cabello-Conejo M, Prieto-Fernández A, Kidd P (2014) Exogenous treatments with phytohormones can improve growth and nickel yield of hyper accumulating plants. Sci Total Environ 494:1–8

    Article  PubMed  CAS  Google Scholar 

  • Carpentier R (1999) The effect of high temperature stress on photosynthetic apparatus. In: Pessarakli M (ed) Handbook of plant and crop stress. Marcel Dekker, New York, pp 337–348

    Chapter  Google Scholar 

  • Cassan F, Perrig D, Sgroy V, Masciarelli O, Penna C, Luna V (2009) Azospirillum brasilense Az39 and Bradyrhizobium japonicum E109, inoculated singly or in combination, promote seed germination and early seedling growth in corn (Zea mays L.) and soybean (Glycine max L.). Eur J Soil Biol 45:28–35

    Article  CAS  Google Scholar 

  • Chatrath A, Mandal PK, Anuradha M (2000) Effect of secondary salinity on photosynthesis in fodders oat genotypes. J Agron Crop Sci 184:13–16

    Article  CAS  Google Scholar 

  • Chen GP, Ma WS, Huang ZJ, Xu T, Xue YB, Shen YZ (2003) Isolation and characterization of TaGSK1 involved in wheat salt tolerance. Plant Sci 165:1369–1375

    Article  CAS  Google Scholar 

  • Chen C, Zou J, Zhang S, Zaitlin D, Zhu L (2009a) Strigolactones are a new-defined class of plant hormones which inhibit shoot branching and mediate the interaction of plant-AM fungi and plant-parasitic weeds. Sci China Series C Life Sci 52:693–700

    Article  CAS  Google Scholar 

  • Chen Z, Zheng Z, Huang J, Lai Z, Fan B (2009b) Biosynthesis of salicylic acid in plants. Plant Signal Behav 4:493–496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng Z, Park E, Glick BR (2007) 1-Aminocyclopropane-1-carboxylate deaminase from Pseudomonas putida UW4 facilitates the growth of canola in the presence of salt. Can J Microbiol 53:912–918

    Article  CAS  PubMed  Google Scholar 

  • Cohen AC, Travaglia CN, Bottini R, Piccoli PN (2009) Participation of abscisic acid and gibberellins produced by endophytic Azospirillum in the alleviation of drought effects in maize. Botany 87:455–462

    Article  CAS  Google Scholar 

  • Coquoz JL, Buchala A, Metraux J-P (1998) The biosynthesis of salicylic acid in potato plants. Plant Physiol 117:1095–1101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Correa REP, Castro NMC, Jaramillo AMM, Gonzalez-Marino GE (2011) Production of indole-3-acetic acid in the culture medium of Microalga Scenedesmus obliquus (UTEX 393). J Braz Chem Soc 22:2355–2361

    Article  Google Scholar 

  • Cowan AK, Rose PD (1991) Abscisic acid metabolism in salt-stressed cells of Dunaliella salina. Plant Physiol 97:798–803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Creelman RA, Rao MV (2002) The oxylipin pathway in Arabidopsis. In: Somervile CR, Meyerowitz EM (eds) The Arabidopsis book. American Society of Plant Biologists, Rockville, MD

    Google Scholar 

  • Datta KS, Varma SK, Angrish R, Kumar B, Kumari P (1998) Alleviation of salt stress by plant growth regulators in Triticum aestivum L. Biol Plant 40:269–275

    Article  Google Scholar 

  • Davies PJ (2004) Plant hormones: biosynthesis, signal transduction, action. Kluwer Academic Press, Dordrecht

    Google Scholar 

  • Davies WJ, Zhang J (1991) Root signals and the regulation of growth and development of plants in drying soil. Annu Rev Plant Physiol Plant Mol Biol 42:55–76

    Article  CAS  Google Scholar 

  • Dazzo FB, Yanni YG, Rizk R, De Bruijn F, Rademaker J, Squartini A, Corich V, Mateos P, Martinez-Molina E, Velazquez E, Biswas J, Hernandez R, Ladha JK, Hill J, Weinman J, Rolfe B, Vega-Hernandez M, Bradford JJ, Hollingsworth RI, Ostrom P, Marshall E, Jain T, Orgambide G, Philip-Hollingsworth S, Triplett E, Malik K, Maya-Flores J, Hartmann A, Umali-Garcia M, Izaguirre-Mayoral ML (2000) Progress in multi-national collaborative studies on the beneficial association between Rhizobium leguminosarum bv. trifolii and rice. In: Ladha JK, Reddy PM (eds) The quest for nitrogen fixation in rice. International Rice Research Institute, Manila, The Philippines, pp 167–189

    Google Scholar 

  • Debez A, Chaibi W, Bouzid S (2001) Effect du NaCl et de regulatoeurs de croissance sur la germination d’ Atriplex halimus L. Cah Agric 10:135–138

    Google Scholar 

  • Dhingra BR, Varghese TM (1985) Effect of growth regulators on the in vitro germination and tube growth of maize (Zea Mays L.) pollen from plants raised under sodium chloride salinity. New Phytol 100:563–569

    Article  CAS  Google Scholar 

  • Ditengou FA, Lapeyrie F (2000) Hypaphorine from the ectomycorrhizal fungus Pisolithus tinctorius counteracts activities of indole-3-acetic acid and ethylene but not synthetic auxins in Eucalyptus seedlings. Mol Plant-Microbe Interact 13:151–158

    Article  CAS  PubMed  Google Scholar 

  • Egamberdieva D (2009) Alleviation of salt stress by plant growth regulators and IAA producing bacteria in wheat. Acta Physiol Plant 31:861–864

    Article  CAS  Google Scholar 

  • Egamberdieva D, Berg G, Lindstrom K, Rasanen L (2010) Co-inoculation of Pseudomonas spp. with Rhizobium improves growth and symbiotic performance of fodder galega (Galega orientalis Lam.). Eur J Soil Biol 46:269–272

    Article  CAS  Google Scholar 

  • Egamberdiyeva D (2005) Plant growth promoting rhizobacteria isolated from a calcisol in semi-arid region of Uzbekistan biochemical characterization and effectiveness. J Plant Nutr Soil Sci 168:94–99

    Article  CAS  Google Scholar 

  • Egli DB, TeKrony DM, Heitholt JJ, Rupe J (2005) Air temperature during seed filling and soybean seed germination and vigor. Crop Sci 45:1329–1335

    Article  Google Scholar 

  • Etesami H, Alikhani HA, Akbari AA (2009) Evaluation of plant growth hormones production (IAA) ability by Iranian soils rhizobial strains and effects of superior strains application on wheat growth indexes. World Appl Sci J 6:1576–1584

    CAS  Google Scholar 

  • Falkowaska M, Pietryczuk A, Piotrowska A, Bajguz A, Grygoruk A, Czerpak R (2010) The effect of GA3 on growth metal biosorption and metabolism of green algae Chlorella vulgaris Beijerinck exposed to cadmium and lead stress. Pol J Environ Stud 20:52–59

    Google Scholar 

  • Fan Y, Zhu M, Shabala S, Li CD, Johnson P, Zhou MX (2014) Antioxidant activity in salt-stressed barley leaves evaluating time- and age-dependence and suitability for the use as a biochemical marker in breeding programs. J Agron Crop Sci 200:261–272

    Article  CAS  Google Scholar 

  • Farooq H, Asghar HN, Muhammad YK, Saleem M, Zahir ZA (2015) Auxin-mediated growth of rice in cadmium-contaminated soil. Turk J Agric For. doi:10.3906/tar-1405-54

    Google Scholar 

  • Fassler E, Evangelou MW, Robinson BH, Schulin R (2010) Effects of indole-3-acetic acid (IAA) on sunflower growth and heavy metal uptake in combination with ethylene diamine disuccinic acid (EDDS). Chemosphere 80:901–907

    Article  PubMed  CAS  Google Scholar 

  • Fleet CM, Sun TP (2005) A delicate balance the role of gibberellin in plant morphogenesis. Curr Opin Plant Biol 8:77–85

    Article  CAS  PubMed  Google Scholar 

  • Flora SJS, Mittal M, Mehta A (2008) Heavy metal induced oxidative stress and its possible reversal by chelation therapy. Indian J Med Res 128:501–523

    CAS  PubMed  Google Scholar 

  • Forde BG (2002) Local and long-range signaling pathways regulating plant responses to nitrate. Annu Rev Plant Physiol Plant Mol Biol 53:203–224

    Article  CAS  Google Scholar 

  • Frankenberger WT Jr, Poth M (1987) Biosynthesis of indole-3-acetic acid by the pine ectomycorrhizal fungus Pisolithus tinctorius. Appl Environ Microbiol 53:2908–2913

    CAS  PubMed  PubMed Central  Google Scholar 

  • Frebortova J, Fraajie MW, Galuszka P, Sebela M, Pec P, Hrbac J, Novak O, Bilyeu KD, English JT, Frebort I (2004) Catalytic reaction of cytokinin dehydrogenase: preference for quinones as electron acceptors. Biochem J 380:121–130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gadallah MAA (1994) The combined effects of acidification stress and kinetin on chlorophyll content, dry matter accumulation and transpiration coefficient in Sorghum bicolor plants. Biol Plan 36:149–153

    Article  CAS  Google Scholar 

  • Gadallah MAA (1995) Effect of waterlogging and kinetin on the stability of leaf membranes leaf osmotic potential soluble carbon and nitrogen compounds and chlorophyll contents of Ricinus plant. Phyton 35:199–208

    CAS  Google Scholar 

  • Gadallah MAA (1999) Effects of proline and glycinebetaine on Vicia faba responses to salt stress. Biol Plant 42:249–257

    Article  CAS  Google Scholar 

  • Galuszka P, Frebort I, Sebela M, Sauer P, Jacobsen S, Pec P (2001) Cytokinin oxidase or dehydrogenase? Mechanism of cytokinin degradation in cereals. Eur J Biochem 268:450–461

    Article  CAS  PubMed  Google Scholar 

  • Gangwar S, Singh VP (2011) Indole acetic acid differently changes growth and nitrogen metabolism in Pisum sativum L. seedlings under chromium (VI) phytotoxicity: implication of oxidative stress. Sci Hortic 129:321–328

    Article  CAS  Google Scholar 

  • Gangwar S, Singh VP, Tripathi DK, Chauhan DK, Prasad SM, Maurya JN (2014) Plant responses to metal stress the emerging role of plant growth hormones in toxicity alleviation. In: Ahmad P (ed) Emerging technologies and management of crop stress tolerance. Elsevier Inc., Amsterdam, pp 215–248

    Chapter  Google Scholar 

  • Gerhauser D, Bopp M (1990) Cytokinin oxidases in mosses. 2. Metabolism of kinetin and benzyladenine in vivo. J Plant Physiol 135:714–718

    Article  Google Scholar 

  • Glick BR, Penrose DM, Li JP (1998) A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria. J Theor Biol 190:63–68

    Article  CAS  PubMed  Google Scholar 

  • Glick BR, Todorovic B, Czarny J, Cheng Z, Duan J, McConkey B (2007) Promotion of plant growth by bacterial ACC deaminase. Crit Rev Plant Sci 26:227–242

    Article  CAS  Google Scholar 

  • Gomes FP, Oliva MA, Mielke MS, Almeida A-AF, Aquino LA (2010) Osmotic adjustment proline accumulation and cell membrane stability in leaves of Cocos nucifera submitted to drought stress. Sci Hortic 126:379–384

    Article  CAS  Google Scholar 

  • Gravel V, Antoun H, Tweddell RJ (2007) Growth stimulation and fruit yield improvement of greenhouse tomato plants by inoculation with Pseudomonas putida or Trichoderma atroviride: possible role of indole acetic acid (IAA). Soil Biol Biochem 39:1968–1977

    Article  CAS  Google Scholar 

  • Guinel FC, Sloetjes LL (2000) Ethylene is involved in the nodulation phenotype of Pisum sativum R50 (sym 16), a pleiotropicmutant that nodulates poorly and has pale green leaves. J Exp Bot 51:885–894

    Article  CAS  PubMed  Google Scholar 

  • Gupta NK, Gupta S, Shukla DS, Deshmukh PS (2003) Differential response of BA injection on yield and specific grain weight in wheat genotypes recommenced for normal and late sown conditions. Plant Growth Regul 40:201–205

    Article  CAS  Google Scholar 

  • Guru Devi R, Pandiyarajan V, Gurusaravanan P (2012) Alleviating effect of IAA on salt stressed Phaseolus mungo (L.) with reference to growth and biochemical characteristics. Recent Res Sci Technol 4:22–24

    CAS  Google Scholar 

  • Gutiérrez‐Mañero FJ, Ramos‐Solano B, Probanza A, Mehouachi J, Tadeo FR, Talon M (2001) The plant‐growth‐promoting rhizobacteria Bacillus pumilus and Bacillus licheniformis produce high amounts of physiologically active gibberellins. Physiol Plant 111:206–211

    Article  Google Scholar 

  • Ha S, Vankova R, Yamaguchi-Shinozaki K, Shinozaki K, Tran L-SP (2012) Cytokinins: metabolism and function in plant adaptation to environmental stresses. Trends Plant Sci 17:172–179

    Article  CAS  PubMed  Google Scholar 

  • Hadi MR, Balali GR (2010) The effect of salicylic acid on the reduction of Rizoctonia solani damage in the tubers of Marfona Potato Cultivar. Am Eurasian J Agric Environ Sci 7:492–496

    CAS  Google Scholar 

  • Hadi F, Bano A, Fuller MP (2010) The improved phytoextraction of lead (Pb) and the growth of maize (Zeamays L.): the role of plant growth regulators (GA3 and IAA) and EDTA alone and in combinations. Chemosphere 80:457–462

    Article  CAS  PubMed  Google Scholar 

  • Hamayun M, Khan SA, Khan MA, Khan AL, Kang S-M, Kim S-K, Joo G-J, Lee I-J (2009) Gibberellin production by pure cultures of a new strain of Aspergillus fumigatus. World J Microbiol Biotechnol 25:1785–1792

    Article  CAS  Google Scholar 

  • Hamayun M, Khan SA, Khan AL, Rehman G, Kim Y-H, Iqbal I, Hussain J, Sohn E-Y, Lee I-J (2010a) Gibberellin production and plant growth promotion from pure cultures of Cladosporium sp. MH-6 isolated from cucumber (Cucumis sativus L.). Mycologia 102:989–995

    Article  CAS  PubMed  Google Scholar 

  • Hamayun M, Khan SA, Khan AL, Shin JH, Ahmad B, Shin DH, Lee IJ (2010b) Exogenous gibberellic acid reprograms soybean to higher growth and salt stress tolerance. J Agric Food Chem 58:7226–7232

    Article  CAS  PubMed  Google Scholar 

  • Hara M, Furukawa J, Sato A, Mizoguchi T, Miura K (2012) Abiotic stress and role of salicylic acid in plants. In: Ahmad P, Prasad MNV (eds) Abiotic stress responses in plants: metabolism, productivity and sustainability. Springer, Berlin, pp 235–251

    Chapter  Google Scholar 

  • Hasan H (2002) Gibberellin and auxin production by plant root-fungi and their biosynthesis under salinity-calcium interaction. Rostl Vyroba 48:101–106

    CAS  Google Scholar 

  • Heinrich M, Hettenhausen C, Lange T, Wunsche H, Fang J, Baldwin IT, Wu J (2013) High levels of jasmonic acid antagonize the biosynthesis of gibberellins and inhibit the growth of Nicotiana attenuata stems. Plant J 73:591–606

    Article  CAS  PubMed  Google Scholar 

  • Helliwell CA, Chandler PM, Poole A, Dennis ES, Peacock WJ (2001) The CYP88A cytochrome P450, ent-kaurenoic acid oxidase, catalyzes three steps of the gibberellin biosynthesis pathway. Proc Natl Acad Sci U S A 98:2065–2070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heuer B (2003) Influence of exogenous application of proline and glycinebetaine on growth of salt-stressed tomato plants. Plant Sci 165:693–699

    Article  CAS  Google Scholar 

  • Hisamatsu T, Koshioka M, Kubota S, Fujime Y, King RW, Mander LN (2000) The role of gibberellin in the control of growth and flowering in Matthiola incana. Physiol Planta 109:97–105

    Article  CAS  Google Scholar 

  • Hjortenkrans D, Bergbäck B, Häggerud A (2006) New metal emission patterns in road traffic environments. Environ Monit Assess 117:85–98

    Article  CAS  PubMed  Google Scholar 

  • Hopkins WG, Huner NPA (2008) Introduction to plant physiology, 4th edn. John Wiley and Sons, New York

    Google Scholar 

  • Hussain A, Iqbal A (2015) Effect of IAA on in vitro growth and colonization of Nostoc on plant roots. Front Plant Sci 6:46

    Article  PubMed  PubMed Central  Google Scholar 

  • Hussain A, Shah ST, Rahman H, Irshad M, Iqbal A (2015) Effect of IAA on in vitro growth and colonization of Nostoc in plant roots. Front Plant Sci 6:1–9

    Article  CAS  Google Scholar 

  • Ibrahim M, Anjum A, Khaliq N, Iqbal M, Athar H (2006) Four foliar applications of glycinebetaine did not alleviate adverse effects of salt stress on growth of sunflower. Pak J Bot 38:1561–1570

    Google Scholar 

  • Iqbal M, Ashraf M (2013) Gibberellic acid mediated induction of salt tolerance in wheat plants growth ionic partitioning photosynthesis yield and hormonal homeostasis. Environ Exp Bot 86:76–85

    Article  CAS  Google Scholar 

  • Iqbal M, Ashraf M, Jamil A (2006) Seed enhancement with cytokinins changes in growth and grain yield in salt stressed wheat plants. Plant Growth Regul 50:29–39

    Article  CAS  Google Scholar 

  • Javid MG, Sorooshzadeh A, Moradi F, Sanavy SAMM, Allahdadi I (2011) The role of phytohormones in alleviating salt stress in crop plants. Aust J Crop Sci 5:726–734

    CAS  Google Scholar 

  • Jensen JB, Egsgaard H, Van Onckelen H, Jochimsen BU (1995) Catabolism of indole-3-acetic acid and 4-and 5-chloroindole-3-acetic acid in Bradyrhizobium japonicum. J Bacteriol 177:5762–5766

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jimenez-Delgadillo MR (2004) Peptidos Secretados por Bacillus subtilis que Codifican la Arquitectura de la Raiz de Arabidopsis thaliana. PhD Dissertation. CINVESTAV, Unidad Irapuato, MX

    Google Scholar 

  • Kang S-M, Hamayun M, Joo G-J, Khan AL, Kim Y-H, Kim S-K, Jeong H-J, Lee I-J (2010) Effect of Burkholderia sp. KCTC 11096BP on some physiochemical attributes of cucumber. Eur J Soil Biol 46:264–268

    Article  CAS  Google Scholar 

  • Kavroulakis N, Ntougias S, Zervakis GI, Ehaliotis C, Haralampidis K, Papadopoulou KK (2007) Role of ethylene in the protection of tomato plants against soil-borne fungal pathogens conferred by an endophytic Fusarium solani strain. J Exp Bot 58:3853–3864

    Article  CAS  PubMed  Google Scholar 

  • Kaya MD, Okçu G, Atak M, Cikili Y, Kolsarici O (2006) Seed treatments to overcome salt and drought stress during germination in sunflower (Helianthus annuus L.). Eur J Agron 24:291–295

    Article  CAS  Google Scholar 

  • Kaya C, Tuna AL, Yokas I (2009) The role of plant hormones in plants under salinity stress. Book Salinity Water Stress 44:45–50

    Article  Google Scholar 

  • Kazan K (2015) Diverse roles of jasmonates and ethylene in abiotic stress tolerance. Trends Plant Sci 20:219–229

    Article  CAS  PubMed  Google Scholar 

  • Keshtehgar A, Khashayar R, Vazirimehr MR (2013) Effects of salt stress in crop plants. Int J Agric Crop Sci 5:2863–2867

    Google Scholar 

  • Ketabchi S, Shahrtash M (2011) Effects of methyl jasmonate and cytokinin on biochemical responses of maize seedlings infected by Fusarium moniliforme. Asian J Exp Biol Sci 2:299–305

    CAS  Google Scholar 

  • Khalid A, Arshad M, Zahir ZA. (2004). Screening plant growth promoting rhizobacteria for improving growth and yield of wheat. J App Microbiol 96:473-480

    Google Scholar 

  • Khalid A, Arshad M, Arshad Zahir ZA (2006) Phytohormones: microbial production and applications. In: Uphoff N, Ball AS, Fernandes E, Herren H, Husson O, Laing M, Palm C, Pretty J, Sanchez P, Sanginga N, Thies J (eds) Biological approaches to sustainable soil systems. CRS Press, Boca Raton, pp 207–220

    Chapter  Google Scholar 

  • Khalid S, Parvaiz M, Nawaz K, Hussain K, Arshad A, Shawakat S, Sarfaraz ZN, Waheed T (2013) Effect of indole acetic acid (IAA) on morphological biochemical and chemical attributes of two varieties of maize (Zea mays L.) under salt stress. World Appl Sci J 26:1150–1159

    CAS  Google Scholar 

  • Khan MIR, Khan NA (2013) Salicylic acid and jasmonates: approaches in abiotic stress tolerance. J Plant Biochem Physiol 1(4)

    Google Scholar 

  • Khan MA, Gul B, Weber DJ (2004) Action of plant growth regulators and salinity on seed germination of Ceratoides lanata. Can J Bot 82:37–42

    Article  CAS  Google Scholar 

  • Khan SA, Hamayun M, Yoon H, Kim H-Y, Suh S-J, Hwang S-K, Kim J-M, Lee I-J, Choo Y-S, Yoon U-H (2008a) Plant growth promotion and Penicillium citrinum. BMC Microbiol 8:231–237

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Khan SA, Hamayun M, Yoon H, Kim H-Y, Suh S-J, Hwang S-K, Kim J-M, Lee I-J, Choo Y-S, Yoon U-H (2008b) Plant growth promotion and Penicillium citrinum. BMC Microbiol 8:1–10

    Article  CAS  Google Scholar 

  • Khan AL, Hamayun M, Kim Y-H, Kang S-M, Lee I-J (2011a) Ameliorative symbiosis of endophyte (Penicillium funiculosum LHL06) under salt stress elevated plant growth of Glycine max L. Plant Physiol Biochem 49:852–861

    Article  CAS  PubMed  Google Scholar 

  • Khan AL, Hamayun M, Kim Y-H, Kang S-M, Lee J-H, Lee I-J (2011b) Gibberellins producing endophytic Aspergillus fumigatus sp. LH02 influenced endogenous phytohormonal levels, isoflavonoids production and plant growth in salinity stress. Process Biochem 46:440–447

    Article  CAS  Google Scholar 

  • Khan A, Bakht J, Bano A, Malik NJ (2012a) Response of groundnut (Arachis hypogaea L.) genotypes to plant growth regulators and drought stress. Pak J Bot 44:861–865

    CAS  Google Scholar 

  • Khan AL, Hamayun M, Kang S-M, Kim Y-H, Jung H-Y, Lee J-H, Lee I-J (2012b) Endophytic fungal association via gibberellins and indole acetic acid can improve plant growth under abiotic stress: an example of Paecilomyces formosus LHL10. BMC Microbiol 12:3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim T-W, Hwang J-Y, Kim Y-S, Joo S-H, Chang S-C, Lee J-S, Takatsuto S, Kim S-K (2005) Arabidopsis CYP85A2, a cytochrome P450, mediates the baeyer-villiger oxidation of castasterone to brassinolide in brassinosteroid biosynthesis. Plant Cell 17:2397–2412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kimura PH, Okamoto G, Hirano K (1996) Effects of gibberellic acid and streptomycin on pollen germination and ovule and seed development in Muscat Bailey A. Am J Enol Viticult 47:152–156

    CAS  Google Scholar 

  • Kobayashi M, Gaskin P, Spray CR, Phinney BO, MacMillan J (1994) The metabolism of gibberellin A20 to gibberellin A1 by tall and dwarf mutants of Oryza sativa and Arabidopsis thaliana. Plant Physiol 106:1367–1372

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kobayashi M, Hirai N, Kurimura Y, Ohigashi H, Tsuji Y (1997) Abscisic acid-dependent algal morphogenesis in the unicellular green alga Haematococcus pluvialis. Plant Growth Regul 22:79–85

    Article  CAS  Google Scholar 

  • Kolaksazov M, Laporte F, Ananieva K, Dobrev P, Herzog M, Ananiev E (2013) Effect of chilling and freezing stresses on jasmonate content in arabis alpina. Bulg J Agric Sci 19:15–17

    Google Scholar 

  • Kolb W, Martin P (1985) Response of plant roots to inoculation with Azospirillum brasilense and the application of indole acetic acid. In: Klingmuller W (ed) Azospirillum III: genetics, physiology, ecology. Springer, Berlin, pp 215–221

    Chapter  Google Scholar 

  • Kosova K, Prasil IT, Vitamvas P, Dobrev P, Motyka V, Flokova K, Novak O, Tureckova V, Rolcik J, Pesek B (2012) Complex phytohormone responses during the cold acclimation of two wheat cultivars differing in cold tolerance, winter Samanta and spring Sandra. J Plant Physiol 169:567–576

    Article  CAS  PubMed  Google Scholar 

  • Kovaleva LV, Voronkov AS, Zakharova EV (2015) Role of auxin and cytokinin in the regulation of the actin cytoskeleton in the in vitro germinating male gametophyte of petunia. Russ J Plant Physiol 62:179–186

    Article  CAS  Google Scholar 

  • Kudoyarova GR, Melentiev AI, Martynenko EV, Timergalina LN, Arkhipova TN, Shendel GV, Kuz’mina LY, Dodd IC, Veselov SY (2014) Cytokinin producing bacteria stimulate amino acid deposition by wheat roots. Plant Physiol Biochem 83:285–291

    Article  CAS  PubMed  Google Scholar 

  • Kudryakova NV, Efimova MV, Danilova MN, Zubkova NK, Khripach VA, Kusnetsov VV, Kulaeva ON (2013) Exogenous brassinosteroids activate cytokinin signalling pathway gene expression in transgenic Arabidopsis thaliana. Plant Growth Regul 70:61–69

    Article  CAS  Google Scholar 

  • Kuiper D (1993) Sink strength established and regulated by plant growth regulators. Plant Cell Environ 16:1025–1026

    Article  CAS  Google Scholar 

  • Kukavica B, Mitrovic A, Mojovic M, Veljovic-Jovanovic S (2007) Effect of indole-3-acetic acid on pea root growth, peroxidase profiles and hydroxyl radical formation. Arch Biol Sci 59:319–326

    Article  Google Scholar 

  • Kukreja S, Nandwal A, Kumarn N, Sharma S, Unvi V, Sharma P (2005) Plant water status, H2O2 scavenging enzymes, ethylene evolution and membrane integrity of Cicer arietinum roots as affected by salinity. Biol Plant 49:305–308

    Article  CAS  Google Scholar 

  • Kumar B, Singh B (1996) Effect of plant hormones on growth and yield of wheat irrigated with saline water. Ann Agric Res 17:209–212

    Google Scholar 

  • Kumar CS, Singh A, Sagar RK, Negi MPS, Maurya JN (2012a) Study of indole acetic acid and antioxidant defense system of wheat grown under sewage water. Int J Environ Sci 3(2):821–832

    CAS  Google Scholar 

  • Kumar M, Bijo AJ, Baghel RS, Reddy CRK, Jha B (2012b) Selenium and spermine alleviate cadmium induced toxicity in the red seaweed Gracilaria dura by regulating antioxidants and DNA methylation. Plant Physiol Biochem 5:129–138

    Article  CAS  Google Scholar 

  • Kumar M, Agnihotri R, Vamil R, Bhagat V, Sharma R (2014) Influencing of phytohormones on root development and some biochemical parameters of Coriandrum sativum L. Acad J Agric Res 2:154–158

    CAS  Google Scholar 

  • Kumaran S, Elango R (2013) Production of indole acetic acid (IAA) and gibberellic acid (GA) by Azospirillum brasilense under temperature and salt stress condition. Int J Curr Life Sci 3:356–359

    Google Scholar 

  • Kuppu S, Mishra N, Hu R, Sun L, Zhu X, Shen G, Blumwald E, Payton P, Zhang H (2013) Water-deficit inducible expression of a cytokinin biosynthetic gene IPT improves drought tolerance in cotton. PLoS One 8, e64190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leinhos V, Bergmann H (1995) Changes in yield, lignin content and protein pattern of barley (Hordeum vulgare cv. Alexis) induced by drought stress. J Appl Bot 69:206–210

    CAS  Google Scholar 

  • LeNoble ME, Spollen WG, Sharp RE (2004) Maintenance of shoot growth by endogenous ABA: genetic assessment of the involvement of ethylene suppression. J Exp Bot 55:237–245

    Article  CAS  PubMed  Google Scholar 

  • Liu D, Li T, Yang X, Islam E, Jin X, Mahmood Q (2007) Enhancement of lead uptake by hyper accumulator plant species Sedum alfredii Hance using EDTA and IAA. Bull Environ Contam Toxicol 78:280–283

    Article  CAS  PubMed  Google Scholar 

  • Los DA, Murata N (2004) Membrane fluidity and its roles in the perception of environmental signals. Biochim Biophy Acta 1666:142–157

    Article  CAS  Google Scholar 

  • Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 63:541–555

    Article  CAS  PubMed  Google Scholar 

  • Maggio A, Barbieri G, Raimondi G, De Pascale S (2010) Contrasting effects of GA3 treatments on tomato plants exposed to increasing salinity. J Plant Growth Regul 29:63–72

    Article  CAS  Google Scholar 

  • Makela P, Jokinen K, Kontturi M, Peltonen-Sainio P, Pehu E, Somersalo S (1998a) Foliar application of glycine betaine a novel product from sugar beet as an approach to increase tomato yield. Ind Crops Prod 7:139–148

    Article  CAS  Google Scholar 

  • Makela P, Munns R, Colmer TD, Condon AG, Peltonen-Sainio P (1998b) Effect of foliar applications of glycinebetaine on stomatal conductance abscisic acid and solute concentrations in leaves of salt- or drought-stressed tomato. Aust J Plant Physiol 25:655–663

    Article  CAS  Google Scholar 

  • Malik DK, Sindhu SS (2011) Production of indole acetic acid by Pseudomonas sp.: effect of coinoculation with Mesorhizobium sp. Cicer on nodulation and plant growth of chickpea (Cicer arietinum). Physiol Mol Biol Plants 17:25–32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manivannan P, Jaleel CA, Somasundaram R, Panneerselvam R (2008) Osmoregulation and antioxidant metabolism in drought-stressed Helianthus annuus under triadimefon drenching. C R Biol 331:418–425

    Article  CAS  PubMed  Google Scholar 

  • Mattoo AK, Suttle CS (1991) The plant hormone ethylene. CRS Press, Boca Raton, FL

    Google Scholar 

  • Mayak S, Tirosh T, Glick BR (1999) Effect of wild type and mutant plant growth promoting rhizobacteria on the rooting of mung bean cuttings. J Plant Growth Regul 18:49–53

    Article  CAS  PubMed  Google Scholar 

  • Mayak S, Tirosh T, Glick BR (2004) Plant growth-promoting bacteria confer resistance in tomato plants to salt stress. Plant Physiol Biochem 42:565–572

    Article  CAS  PubMed  Google Scholar 

  • McWilliams D (2003) Drought strategies for cotton, cooperative extension service circular 582. College of Agriculture and Home Economics, New Mexico State University, Las Cruces, NM

    Google Scholar 

  • Minamisawa K, Fukai K (1991) Production of indole-3-acetic acid by Bradyrhizobium japonicum: a correlation with genotype grouping and rhizobitoxine production. Plant Cell Physiol 32:1–9

    CAS  Google Scholar 

  • Misra N, Saxena P (2009) Effect of salicylic acid on proline metabolism in lentil grown under salinity stress. Plant Sci 177:181–189

    Article  CAS  Google Scholar 

  • Mok MC, Martin RC, Mok DWS (2000) Cytokinins: biosynthesis, metabolism and perception. In Vitro Cell Dev Biol Plant 36:102–107

    Article  CAS  Google Scholar 

  • Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250

    Article  CAS  PubMed  Google Scholar 

  • Munns R (2005) Genes and salt tolerance: bringing them together. New Phytol 167:645–663

    Article  CAS  PubMed  Google Scholar 

  • Munns R, James RA, Lauchli A (2006) Approaches to increasing the salt tolerance of wheat and other cereals. J Exp Bot 57:1025–1043

    Article  CAS  PubMed  Google Scholar 

  • Mussig C (2005) Brassinosteroid-promoted growth. Plant Biol 7:110–117

    Article  CAS  PubMed  Google Scholar 

  • Nada E, Ferjani BA, Ali R, Bechir BR, Imed M, Makki B (2007) Cadmium induced growth inhibition and alteration of biochemical parameters in almond seedlings grown in solution culture. Acta Physiol Plant 29:57–62

    Article  CAS  Google Scholar 

  • Nadeem SM, Zahir ZA, Naveed M, Arshad M (2007) Preliminary investigations on inducing salt tolerance in maize through inoculation with rhizobacteria containing ACC deaminase activity. Can J Microbiol 53:1141–1149

    Article  CAS  PubMed  Google Scholar 

  • Nadeem SM, Zahir ZA, Naveed M, Asghar HN, Arshad M (2010a) Rhizobacteria capable of producing ACC– deaminase may mitigate salt stress in wheat. Soil Sci Soc Am J 74:533–542

    Article  CAS  Google Scholar 

  • Nadeem SM, Zahir ZA, Naveed M, Ashraf M (2010b) Microbial ACC-deaminase: prospects and applications for inducing salt tolerance in plants. Crit Rev Plant Sci 29:360–393

    Article  CAS  Google Scholar 

  • Naqvi SSM, Ansari R, Kuawada AN (1982) Responses of salt stressed wheat seedlings to kinetin. Plant Sci Lett 26:279–283

    Article  CAS  Google Scholar 

  • Nawaz K, Ashraf M (2010) Exogenous application of glycinebetaine modulates activities of antioxidants in maize plants subjected to salt stress. J Agron Crop Sci 196:28–37

    Article  CAS  Google Scholar 

  • Nawaz K, Talat A, Iqra I, Hussain K, Majeed A (2010) Induction of salt tolerance in two cultivars of sorghum by exogenous application of proline at seedling stage. World Appl Sci J 10:93–99

    CAS  Google Scholar 

  • Naz I, Bano A (2012) Assessment of phytohormones producing capacity of Stenotrophomonas maltophilia SSA and its interaction with Zea mays L. Pak J Bot 44:465–469

    CAS  Google Scholar 

  • Ogweno JO, Hu WH, Song XS, Shi K, Mao WH, Zhou YH, Yu JQ (2010) Photoinhibition-induced reduction in photosynthesis is alleviated by abscisic acid, cytokinin and brassinosteroid in detached tomato leaves. Plant Growth Regul 60:175–182

    Article  CAS  Google Scholar 

  • Olszewski N, Sun TP, Gubler F (2002) Gibberellin signaling biosynthesis catabolism and response pathways. Plant Cell 14:561–580

    Google Scholar 

  • Ordog V, Stirk WA, Van Staden J, Novák O, Strnad M (2004) endogenous cytokinins in three genera of microalgae from the chlorophyta1. J Phycol 40:88–95

    Article  CAS  Google Scholar 

  • Paces V, Werstiuk E, Hall RH (1971) Conversion of N6-(D2-isopentenyl)adenosine to adenosine by enzyme activity in tobacco tissue. Plant Physiol 48:775–778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parasher A, Varma SK (1988) Effect of pre-sowing seed soaking in gibberellic acid on growth of wheat (Triticum aestivum L.) under different saline conditions. Ind J Biol Sci 26:473–475

    CAS  Google Scholar 

  • Pati BR, Sengupta S, Chandra AK (1995) Impact of selected phyllospheric diazotrophs on the growth of wheat seedlings and assay of the growth substances produced by the diazotrophs. Microbiol Res 150:121–127

    Article  CAS  Google Scholar 

  • Patten CL, Glick BR (2002) Role of Pseudomonas putida indoleacetic acid in development of the host plant root system. Appl Environ Microbiol 68:3795–3801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peleg Z, Blumwald E (2011) Hormone balance and abiotic stress tolerance in crop plants. Curr Opin Plant Biol 14:290–295

    Article  CAS  PubMed  Google Scholar 

  • Penmetsa RV, Cook DR (1997) A legume ethylene-insensitive mutant hyperinfected by its rhizobial symbiont. Science 275:527–530

    Article  CAS  PubMed  Google Scholar 

  • Petrasek J, Friml J (2009) Auxin transport routes in plant development. Development 136:2675–2688

    Article  CAS  PubMed  Google Scholar 

  • Pharis RP, King RW (1985) Gibberellins and reproductive development in seed plants. Annu Rev Plant Physiol 36:517–568

    Article  CAS  Google Scholar 

  • Prasanna R, Joshi M, Rana A, Nain L (2010) Modulation of IAA production in cyanobacteria by tryptophan and light. Pol J Microbiol 59:99–105

    CAS  PubMed  Google Scholar 

  • Qin H, Gu Q, Zhang J, Sun L, Kuppu S, Zhang Y, Burow M, Payton P, Blumwald E, Zhang H (2011) Regulated expression of an isopentenyl transferase gene (IPT) in peanut significantly improves drought tolerance and increases yield under field conditions. Plant Cell Physiol 52:1904–1914

    Article  CAS  PubMed  Google Scholar 

  • Qiu Z, Guo J, Zhu A, Zhang L, Zhang M (2014) Exogenous jasmonic acid can enhance tolerance of wheat seedlings to salt stress. Ecotoxicol Environ Saf 104:202–208

    Article  CAS  PubMed  Google Scholar 

  • Qureshi KM, Chughtai S, Qureshi US, Abbasi NA (2013) Impact of exogenous application of salt and growth regulators on growth and yield of strawberry. Pak J Bot 45(4):1179–1185

    CAS  Google Scholar 

  • Rajkumar M, Freitas H (2008) Effects of inoculation of plant-growth promoting bacteria on Ni uptake by Indian mustard. Bioresour Technol 99:3491–3498

    Article  CAS  PubMed  Google Scholar 

  • Rao SSR, Vardhini BV, Sujatha E, Anuradha S (2002) Brassionsteroids-a new class of phytohormones. Curr Sci 82:1239–1245

    Google Scholar 

  • Reguera M, Peleg Z, Abdel-Tawab YM, Tumimbang EB, Delatorre CA, Blumwald E (2013) Stress induced cytokinin synthesis increases drought tolerance through the coordinated regulation of carbon and nitrogen assimilation in rice. Plant Physiol 163:1609–1622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ren C, Bilyeu KD, Beuselinck PR (2009) Composition vigor and proteome of mature soybean seeds developed under high temperature. Crop Sci 49:1010–1022

    Article  CAS  Google Scholar 

  • Ribaut JM, Pilet PE (1991) Effect of water stress on growth, osmotic potential and abscisic acid content of maize roots. Physiol Plant 81:156–162

    Article  CAS  Google Scholar 

  • Rivero RM, Kojima M, Gepstein A, Sakakibara H, Mittler R, Gepstein S, Blumwald E (2007) Delayed leaf senescence induces extreme drought tolerance in a flowering plant. Proc Natl Acad Sci U S A 104:19631–19636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rivero RM, Shulaev V, Blumwald E (2009) Cytokinin-dependent photorespiration and the protection of photosynthesis during water deficit. Plant Physiol 150:1530–1540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rivero RM, Gimeno J, Van DA, Walia H, Blumwald E (2010) Enhanced cytokinin synthesis in tobacco plants expressing PSARK:IPT prevents the degradation of photosynthetic protein complexes during drought. Plant Cell Physiol 51:1929–1941

    Article  CAS  PubMed  Google Scholar 

  • Roitsch T (1999) Source-sink regulation by sugar and stress. Curr Opin Plant Biol 2:198–206

    Article  CAS  PubMed  Google Scholar 

  • Ronzhina ES, Mokronosov AT (1994) Source-sink relations and the role of cytokinins in the regulation of transport and partitioning of organic substances in plants. Russ J Plant Physiol 41:396–406

    Google Scholar 

  • Rubio-Wilhelmia MM, Sanchez-Rodrigueza E, Rosalesa MA, Begonaa B, Riosa JJ, Romeroa Romeroa L, Blumwaldb E, Ruiza JM (2011) Effect of cytokinins on oxidative stress in tobacco plants under nitrogen deficiency. Environ Exp Bot 72:167–173

    Article  CAS  Google Scholar 

  • Sadiq M, Jamil M, Mehdi SM, Sarfraz M, Hassan G (2002) Comparative performance of Brassica varieties/lines under saline sodic condition. Asian J Plant Sci 2:77–78

    Google Scholar 

  • Saeedipour S (2013) Effects of phytohormones seed priming on germination and seedling growth of cowpea (Vigna sinensis L.) under different duration of treatments. Int J Biosci 3:187–192

    Google Scholar 

  • Sakakibara H, Takei K, Hirose N (2006) Interactions between nitrogen and cytokinin in the regulation of metabolism and development. Trends Plant Sci 11:440–448

    Article  CAS  PubMed  Google Scholar 

  • Salama FM, Awadalla AA (1987) The effects of different kinetin application methods on some chlorophyll parameters of two crop plants grown under salinity stress. Phyton 21:181–193

    Google Scholar 

  • San-Francisco S, Houdusse F, Zamarreno AM, Garnica M, Casanova E, García-Mina JM (2005) Effects of IAA and IAA precursors on the development, mineral nutrition, IAA content and free polyamine content of pepper plants cultivated in hydroponic conditions. Sci Hortic 106:38–52

    Article  CAS  Google Scholar 

  • Santner A, Calderon-Villalobos LIA, Estelle M (2009) Plant hormones are versatile chemical regulators of plant growth. Nat Chem Biol 5:301–307

    Article  CAS  PubMed  Google Scholar 

  • Sasse JM (2003) Physiological actions of brassinosteroids: an update. J Plant Growth Regul 22:276–288

    Article  CAS  PubMed  Google Scholar 

  • Savitsky PA, Gazaryan IG, Tishkov VI, Lagrimini LM, RuzGas T, Gorton L (1999) Oxidation of indole-3-acetic acid by dioxygen catalyzed by plant peroxidases: specificity for the enzyme structure. Biochem J 340:579–583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schumacher K, Chory J (2000) Brassinosteroid signal transduction: still casting the actors. Curr Opin Plant Biol 3:79–84

    Article  CAS  PubMed  Google Scholar 

  • Schulz CE, Rutter R, Sage JT, Debrunner PG, Hager LP (1984) Mossbauer and electron paramagnetic resonance studies of horseradish peroxidase and its catalytic intermediates. Biochem 23: 4743-4754

    Google Scholar 

  • Sergeeva Prasanna E, Liaimer A, Bergman B (2002) Evidence for production of the phytohormone indole-3-acetic acid by cyanobacteria. Planta 215:229–238

    Article  CAS  Google Scholar 

  • Sexton R, Roberts JA (1982) Cell biology of abscission. Annu Rev Plant Physiol 33:133–162

    Article  CAS  Google Scholar 

  • Shaddad MAK, Abd El-Samad HM, Mostafa D (2013) Role of gibberellic acid (GA3) in improving salt stress tolerance of two wheat cultivars. Int J Plant Physiol Biochem 5:50–57

    CAS  Google Scholar 

  • Shani E, Weinstain R, Zhanga Y, Castillejo C, Kaiserli E, Chory J, Tsienb RY, Estelle M (2013) Gibberellins accumulate in the elongating endodermal cells of Arabidopsis root. PNAS 110:4834–4839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi YH, Zhu SW, Mao XZ, Feng JX, Qin YM, Zhang L, Cheng J, Wei LP, Wang ZY, Zhu YX (2006) Transcriptome profiling, molecular biological, and physiological studies reveal a major role for ethylene in cotton fiber cell elongation. Plant Cell 18:651–664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shibli RA, Kushad M, Yousef GG, Lina MA (2007) Physiological and biochemical responses of tomato microshoots to induced salinity stress with associated ethylene accumulation. Plant Growth Regul 51:159–169

    Article  CAS  Google Scholar 

  • Singh DP, Jermakow AM, Swain SM (2002) Gibberellins are required for seed development and pollen tube growth in Arabidopsis. Plant Cell 14:3133–3147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sokolnik AZ (2012) Temperature stress and responses of plants. In: Aroca R (ed) Plant responses to drought stress from morphological to molecular features. Springer, Berlin, pp 113–134

    Google Scholar 

  • Song JQ, Mei XR, Fujiyama H (2006) Adequate internal water status of NaCl salinized rice shoots enhanced selective calcium and potassium absorption. Soil Sci Plant Nutr 52:300–304

    Article  CAS  Google Scholar 

  • Spray CR, Kobayashi M, Suzuki Y, Phinney BO, Gaskin P, MacMillan J (1996) The dwarf-1 (dt) Mutant of Zea mays L. blocks three steps in the gibberellin-biosynthetic pathway. Proc Natl Acad Sci U S A 93:10515–10518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stirk W, Ördög V, Van Staden J, Jager K (2002) Cytokinin-and auxin-like activity in Cyanophyta and microalgae. J Appl Phycol 14:215–221

    Article  CAS  Google Scholar 

  • Stirk WA, Bálint P, Tarkowská D, Novák O, Strnad M, Ördög V, van Staden J (2013) Hormone profiles in microalgae: gibberellins and brassinosteroids. Plant Physiol Biochem 70:348–353

    Article  CAS  PubMed  Google Scholar 

  • Subbarao GV, Wheeler RM, Levine LH, Stutte GW (2001) Glycine betaine accumulation, ionic and water relations of red-beet at contrasting levels of sodium supply. J Plant Physiol 158:767–776

    Article  CAS  PubMed  Google Scholar 

  • Subramanian KS, Santhanakrishnan P, Balasubramanian P (2006) Responses of field grown tomato plants to arbuscular mycorrhizal fungal colonization under varying intensities of drought stress. Sci Hortic 107:245–253

    Article  Google Scholar 

  • Sun Y, Veerabomma S, Abdel-Mageed HA, Fokar M, Asami T, Yoshida S, Allen RD (2005) Brassinosteroid regulates fiber development on cultured cotton ovules. Plant Cell Physiol 46:1384–1391

    Article  CAS  PubMed  Google Scholar 

  • Sun WH, Duan M, Li F, Shu D-F, Yang S, Meng QW (2010) Overexpression of tomato tAPX gene in tobacco improves tolerance to high or low temperature stress. Biol Plant 54:614–620

    Article  CAS  Google Scholar 

  • Suttle JC, Hultstrand JF (1993) Involvement of abscisic acid in ethylene-induced cotyledon abscission in cotton seedlings. Plant Physiol 101:641–646

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sykorova B, Kurešova G, Daskalova S, Trckova M, Hoyerova K, Raimanova I, Motyka V, Travnickova A, Elliott MC, Kaminek M (2008) Senescence-induced ectopic expression of the A. tumefaciens ipt gene in wheat delays leaf senescence, increases cytokinin content, nitrate influx, and nitrate reductase activity, but does not affect grain yield. J Exp Bot 59:377–387

    Article  CAS  PubMed  Google Scholar 

  • Taiz L, Zeiger E (2000) Plant physiology, 2nd edn. Benjamin Cumings Publishing Company, Redwood City

    Google Scholar 

  • Taiz L, Zeiger E (2010) Plant physiology, 5th edn. Sinauer Associates Inc Publishers, Sunderland, MA

    Google Scholar 

  • Takahashi H (2013) Auxin biology in roots. Plant Root 7:49–64

    Article  CAS  Google Scholar 

  • Takei K, Sakakibara H, Sugiyama T (2001) Identification of genes encoding adenylate isopentenyltransferase, a cytokinin biosynthesis enzyme, in Arabidopsis thaliana. J Biol Chem 76:26405–26410

    Article  Google Scholar 

  • Tan BC, Schwartz SH, Zeevaart JA, McCarty DR (1997) Genetic control of abscisic acid biosynthesis in maize. Proc Natl Acad Sci 94:12235–12240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tassi E, Pouget J, Petruzzelli G, Barbafieri M (2008) The effects of exogenous plant growth regulators in the phytoextraction of heavy metals. Chemosphere 71:66–73

    Article  CAS  PubMed  Google Scholar 

  • Thomas TH (1992) Some reflections on the relationship between endogenous hormones and light-mediated seed dormancy. Plant Growth Regul 11:239–248

    Article  CAS  Google Scholar 

  • Tian Q, Chen F, Liu J, Zhang F, Mi G (2008) Inhibition of maize root growth by high nitrate supply is correlated with reduced IAA levels in roots. J Plant Physiol 165:942–951

    Article  CAS  PubMed  Google Scholar 

  • Tian S, Wang Y, Du G, Li Y (2011) Changes in contents and antioxidant activity of phenolic compounds during gibberellin-induced development in Vitis vinifera. p. L. ‘Muscat’. Acta Physiol Plant 33:2467–2475

    Article  CAS  Google Scholar 

  • Tominaga N, Takahata M, Tominaga H (1993) Effects of NaCl and KNO3 concentrations on the abscisic acid content of Dunaliella sp. (Chlorophyta). Hydrobiologia 267:163–168

    Article  CAS  Google Scholar 

  • Ton J, Flors V, Mauch-Mani B (2009) The multifaceted role of ABA in disease resistance. Trends Plant Sci 14:310–317

    Article  CAS  PubMed  Google Scholar 

  • Torres-Garcia JR, Estradaa JAE, Gonzбlez MTR (2009) Exogenous application of growth regulators in snap bean under water and salinity stress. J Stress Physiol Biochem 5:13–21

    Google Scholar 

  • Turkyilmaz B (2012) Effects of salicylic and gibberellic acids on wheat (Triticum aestivum L.) under salinity stress. Bangladesh J Bot 41(1):29–34

    Article  Google Scholar 

  • Tuteja N, Sopory SK (2008) Plant signaling in stress: G-protein coupled receptors, heterotrimeric G-proteins and signal coupling via phospholipases. Plant Signal Behav 3(2):79–86

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Kast CA, Laten H (1987) Cytokinin utilization by adenine requiring mutants of the yeast Saccharomyces cerevisiae. Plant Physiol 83:726–727

    Article  PubMed  PubMed Central  Google Scholar 

  • Varalakshmi P, Malliga P (2012) Evidence for production of Indole-3-acetic acid from a fresh water cyanobacteria (Oscillatoria annae) on the growth of H. annus. Int J Sci Res Pub 2:1–15

    Google Scholar 

  • Wahid A, Farooq M, Hussain I, Rasheed R, Galani S (2012) Responses and management of heat stress in plants. In: Aroca R (ed) Plant responses to drought stress from morphological to molecular features. Springer, Berlin, pp 135–157

    Google Scholar 

  • Wang Y, Mopper S, Hasentein KH (2001) Effects of salinity on endogenous ABA, IAA, JA, and SA in Iris hexagona. J Chem Ecol 27:327–342

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Zhao F, Zhao X, Ge H, Chai L, Chen S, Perl A, Ma H (2012) Proteomic analysis of berry‐sizing effect of GA3 on seedless Vitis vinifera L. Proteomics 12:86–94

    Article  PubMed  CAS  Google Scholar 

  • Wang B, Chu J, Yu T, Xu Q, Sun X, Yuan J, Xiong G, Wang G, Wang Y, Li J (2015) Tryptophan-independent auxin biosynthesis contributes to early embryogenesis in Arabidopsis. Proc Natl Acad Sci 112:4821–4826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waqas M, Khan AL, Kamran M, Hamayun M, Kang SM, Kim YH, Lee IJ (2012) Endophytic fungi produce gibberellins and indole acetic acid and promotes host-plant growth during stress. Molecules 17:754–773

    Article  CAS  Google Scholar 

  • Wasilewska A, Vlad F, Sirichandra C, Redko Y, Jammes F, Valon C, Frey NFD, Leung J (2008) An update on abscisic acid signaling in plants and more. Mol Plant 1:198–217

    Article  CAS  PubMed  Google Scholar 

  • Wasternack C (2007) Jasmonates: an update on biosynthesis, signal transduction and action in plant stress response, growth and development. Ann Bot 100:681–697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wasternack C, Hause B (2002) Jasmonates and octadecanoids: signals in plant stress responses and development. Prog Nucleic Acid Res Mol Biol 72:165–221

    Article  CAS  PubMed  Google Scholar 

  • Wasternack C, Hause B (2013) Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in Annals of Botany. Ann Bot 111:1021–1058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watanabe T, Yokota T, Shibata K, Nomura T, Seto H, Takatsuto S (2000) Cryptolide, a new brassinolide catabolite with a 23- oxo group from Japanese cedar pollen/anther and its synthesis. J Chem Res 2000:18–19

    Article  Google Scholar 

  • Wei B, Yang L (2010) A review of heavy metal contaminations in urban soils, urban road dusts and agricultural soils from China. Microchem J 94:99–107

    Article  CAS  Google Scholar 

  • Weyers JDB, Paterson NW (2001) Plant hormones and the control of physiological processes. New Phytol 152:375–407

    Article  CAS  Google Scholar 

  • Whitty CD, Hall RH (1974) A cytokinin oxidase in Zea mays. Can J Biochem 52:787–799

    Article  Google Scholar 

  • Wiegant WM, DE Bont AMJ (1980) A new route for ethylene glycol metabolism in Mycobacterium E44. J Gen Microbiol 120:325–331

    CAS  Google Scholar 

  • Wilkinson S, Kudoyarova GR, Veselov DS, Arkhipova TN, Davies WJ (2012) Plant hormone interactions innovative targets for crop breeding and management. J Exp Bot 63:3499–3509

    Article  CAS  PubMed  Google Scholar 

  • Williams ME (2010) Introduction to phytohormones. Plant Cell 22:1–9

    Article  CAS  Google Scholar 

  • Wilmowicz E, Kesy J, Kopcewicz J (2008) Ethylene and ABA interactions in the regulation of flower induction in Pharbitis nil. J Plant Physiol 165:1917–1928

    Article  CAS  PubMed  Google Scholar 

  • Wittenmayer L, Deubel A, Merbach W (2008) Phytohormonal effects on rhizosphere processes of maize (Zea mays L.) under phosphorus deficiency. J Appl Bot Food Qual 82:35–40

    CAS  Google Scholar 

  • Wolters H, Jurgens G (2009) Survival of the flexible: hormonal growth control and adaptation in plant development. Nat Rev Genet 10:305–317

    Article  CAS  PubMed  Google Scholar 

  • Wyn Jones RG, Storey R (1981) Betaines. In: Paleg LG, Aspinall D (eds) The physiology and biochemistry of drought resistance in plants. Academic, Sydney, pp 171–204

    Google Scholar 

  • Xie Z, Jiang D, Cao W, Dai T, Jing Q (2003) Relationships of endogenous plant hormones to accumulation of grain protein and starch in winter wheat under different post-anthesis soil water statusses. Plant Growth Regul 41:117–127

    Article  CAS  Google Scholar 

  • Xiong L, Gong Z, Rock C, Subramanian S, Guo Y, Xu W, Galbraith D, Zhu JK (2001) Modulation of abscisic acid signal transduction and biosynthesis by an Sm-like protein in Arabidopsis. Dev Cell 1:771–781

    Article  CAS  PubMed  Google Scholar 

  • Xoconostle-Cazares B, Ramirez-Ortega FA, Flores-Elenes L, Ruiz-Medrano R (2010) Drought tolerance in crop plants. Am J Plant Physiol 5:241–256

    Article  Google Scholar 

  • Yamaguchi S, Kamiya Y (2000) Gibberellin biosynthesis, its regulation by endogenous and environmental signals. Plant Cell Physiol 41:251–257

    Article  CAS  PubMed  Google Scholar 

  • Yamance K, Hayakawa K, Kawasaki M (2003) Bundle sheath chloroplasts of rice are more sensitive to drought stress than mesophyll chloroplasts. J Plant Physiol 160:1319–1327

    Article  Google Scholar 

  • Yancey PH (1994) Compatible and counteracting solutes. In: Strange K (ed) Cellular and molecular physiology of cell volume regulation. CRC Press, Boca Raton, pp 81–109

    Google Scholar 

  • Yang X, Lu C (2005) Photosynthesis is improved by exogenous glycinebetaine in salt-stressed maize plants. Physiol Plant 124:343–352

    Article  CAS  Google Scholar 

  • Yang S, Yu H, Xu Y, Goh CJ (2003) Investigation of cytokinin-deficient phenotypes in Arabidopsis by ectopic expression of orchid DSCKX1. FEBS Lett 555:291–296

    Article  CAS  PubMed  Google Scholar 

  • Yang S, Zhang X, Cao Z, Zhao K, Wang S, Chen M, Hu X (2014) Growth‐promoting Sphingomonas paucimobilis ZJSH1 associated with Dendrobium officinale through phytohormone production and nitrogen fixation. Microbiol Biotechnol 7:611–620

    Article  CAS  Google Scholar 

  • Yokota T, Takahashi N (1986) Chemistry, physiology and agricultural application of brassinolide and related steroids. In: Bopp M (ed) Plant growth substances. Springer, Berlin, pp 129–138

    Google Scholar 

  • Yokota T, Kim SK, Fukui Y, Takahashi N, Takeuchi Y, Takematsu T (1987) Brassinosteroids and sterols from a green alga, Hydrodictyon reticulatum: configuration at C-24. Phytochemistry 26:503–506

    Article  CAS  Google Scholar 

  • Yokota T, Sato T, Takeuchi Y, Nomura T, Uno K, Watanabe T, Takatsuto S (2001) Roots and shoots of tomato produce 6-deoxo-28-cathasterone, 6-deoxo-28-nortyphasterol and 6 deoxo- 28-norcastasterone, possible precursors of 28-norcastasterone. Phytochemistry 58:233–238

    Article  CAS  PubMed  Google Scholar 

  • Yuhashi KI, Ichikawa N, Ezuura H, Akao S, Minakawa Y, Nukui T, Minamisawa K (2000) Rhizobitoxine production by Bradyrhizobium elkanii enhances nodulation and competitiveness on Macroptilium atropurpureum. Appl Environ Microbiol 66:2658–2663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zahir ZA, Asghar HN, Akhtar MJ, Arshad M (2010) Precursor (L-tryptophan)-inoculum (Azotobacter) interaction for improving yields and nitrogen uptake of maize. J Plant Nutr 28:805–817

    Article  CAS  Google Scholar 

  • Zhang J, Jia W, Yang J, Ismail AM (2006) Role of ABA in integrating plant responses to drought and salt stresses. Field Crop Res 97:111–119

    Article  Google Scholar 

  • Zhang S, Cai Z, Wang X (2009) The primary signaling outputs of brassinosteroids are regulated by abscisic acid signaling. Proc Natl Acad Sci 06:4543–4548

    Article  CAS  Google Scholar 

  • Zhao Z, Chen G, Zhang C (2001) Interaction between reactive oxygen species and nitric oxide in drought-induced abscisic acid synthesis in root tips of wheat seedlings. Aus J Plant Physiol 28:1055–1061

    CAS  Google Scholar 

  • Zhu JK (2007) Plant salt stress. Wiley, New York

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zahir Ahmad Zahir .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Nadeem, S.M., Ahmad, M., Zahir, Z.A., Kharal, M.A. (2016). Role of Phytohormones in Stress Tolerance of Plants. In: Hakeem, K., Akhtar, M. (eds) Plant, Soil and Microbes. Springer, Cham. https://doi.org/10.1007/978-3-319-29573-2_17

Download citation

Publish with us

Policies and ethics