Skip to main content

Abiotic Stress and Role of Salicylic Acid in Plants

  • Chapter
  • First Online:
Abiotic Stress Responses in Plants

Abstract

Salicylic acid (SA), is an important phytohormones that plays a role in response to biotic stresses and pathogenesis. Apart from this role, recent studies have demonstrated that SA also participates in the signaling of abiotic stress responses, such as drought, high and low temperature, salinity, ozone, UV radiation, and heavy metals. In addition, abiotic stresses also induce endogenous SA accumulation. The appropriate application of SA could provide protection against several types of environmental stresses. SA may cause oxidative stress, partially through accumulation of hydrogen peroxide. A low concentration of hydrogen peroxide also improves the antioxidative capacity of plants and stimulates the synthesis of protective compounds, leading to enhanced tolerance to abiotic stresses. The effect of SA application depends on numerous factors such as the species and developmental stage of the plant, the mode of application, and the concentration of applied and endogenous SA levels. This chapter reviews the effects of SA on different abiotic stresses, and possible mechanisms for abiotic stress responses controlled by SA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acharya BR, Assmann SM (2009) Hormone interactions in stomatal function. Plant Mol Biol 69:451–462

    Article  PubMed  CAS  Google Scholar 

  • Agarwal S, Sairam RK, Srivastava GC, Tyagi A, Meen RC (2005) Role of ABA, salicylic acid, calcium and hydrogen peroxide on antioxidant enzymes induction in wheat seedlings. Plant Sci 169:559–570

    Article  CAS  Google Scholar 

  • Ahmad P, Jaleel CA, Salem MA, Nabi G, Sharma S (2010) Roles of enzymatic and non-enzymatic antioxidants in plants during abiotic stress. Crit Riv Biotechnol 30:161–175

    Article  CAS  Google Scholar 

  • Anchorodoguy TJ, Rudolph AS, Carpenter JF, Crowe JH (1987) Modes of interaction of cryoprotectants with membrane phospholipids during freezing. Cryobiology 24:324–331

    Article  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  PubMed  CAS  Google Scholar 

  • Arfan M, Athar HR, Ashraf M (2007) Does exogenous application of salicylic acid through the rooting medium modulate growth and photosynthetic capacity in differently adapted spring wheat cultivated under salt stress? J Plant Physiol 6:685–694

    Article  CAS  Google Scholar 

  • Asai T, Tena G, Plotnikova J, Willmann MR, Chiu WL, Gomez-Gomez L, Boller T, Ausubel FM, Sheen J (2002) MAP kinase signaling cascade in Arabidopsis innate immunity. Nature 415:977–983

    Article  PubMed  CAS  Google Scholar 

  • Asselbergh B, Vleesschauwer D, Höfte M (2008) Global switches and fine-tuning – ABA modulates plant pathogen defense. Mol Plant Microb Int 21:709–719

    Article  CAS  Google Scholar 

  • Athar HR, Khan A, Ashraf A (2008) Exogenously applied ascorbic acid alleviates salt-induced oxidative stress in wheat. Environ Exp Bot 63:224–231

    Article  CAS  Google Scholar 

  • Azevedo H, Lino-Neto T, Tavares RM (2004) Salicylic acid up-regulates the expression of chloroplastic Cu, Zn-superoxide dismutase in needles of maritime pine (Pinus pinasterAit.). Ann For Sci 61:847–850

    Article  CAS  Google Scholar 

  • Bandurska H, Stroinski A (2005) The effect of salicylic acid on barley response to water deficit. Acta Physiol Plant 27:379–386

    Article  CAS  Google Scholar 

  • Blum A (2005) Drought resistance, water-use deficiency, and yield potential – are they compatible, dissonant, or mutually exclusive? Aust J Agric Res 56:1159–1168

    Article  Google Scholar 

  • Borsani O, Valpuesta V, Botella MA (2001) Evidence for a role of salicylic acid in the oxidative damage generated by NaCl and osmotic stress in Arabidopsis seedlings. Plant Physiol 126:1024–1030

    Article  PubMed  CAS  Google Scholar 

  • Cao Y, Zhang Z-W, Xue L-W, Du J-B, Shang J, Xu F, Yuan S, Lin HH (2009) Lack of salicylic acid in Arabidopsis protects plants against moderate salt stress. Z Naturforsch C 64:231–238

    PubMed  CAS  Google Scholar 

  • Castagna A, Ranieri A (2009) Detoxification and repair process of ozone injury: From O3 uptake to gene expression adjustment. Environ Pollut 157:1461–1469

    Article  PubMed  CAS  Google Scholar 

  • Catinot J, Buchala A, Abou-Mansour E, Métraux JP (2008) Salicylic acid production in response to biotic and abiotic stress depends on isochorismate in Nicotiana benthamiana. FEBS Lett 582:473–478

    Article  PubMed  CAS  Google Scholar 

  • Chen Z, Ricigliano JR, Klessig DF (1993) Purification and characterization of a soluble salicylic acid binding protein from tobacco. Proc Natl Acad Sci USA 90: 9533–9537

    Article  PubMed  CAS  Google Scholar 

  • Chini A, Grant JJ, Seki M, Shinozaki K, Loake GJ (2004) Drought tolerance established by enhanced expression of the CC-NBS-LRR gene, ADR1 requires salicylic acid, EDS1 and ABI1. Plant J 38:810–822

    Article  PubMed  CAS  Google Scholar 

  • Chinnusamy V, Ohta M, Kanrar S, Lee BH, Hong X, Agarwal M, Zhu JK (2003) ICE1: A regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis. Genes Dev 17:1043–1054

    Article  PubMed  CAS  Google Scholar 

  • Clarke SM, Mur LA, Wood JE, Scott IM (2004) Salicylic acid dependent signaling promotes basal thermotolerance but is not essential for acquired thermotolerance in Arabidopsis thaliana. Plant J 38:432–447

    Article  PubMed  CAS  Google Scholar 

  • Cleland CF (1974) Isolation of flower-inducing and flower-inhibitory factors from aphid honeydew. Plant Physiol 54:899–903

    Article  PubMed  CAS  Google Scholar 

  • Cleland CF, Ajami A (1974) Identification of the flower-inducing factor isolated from aphid honeydew as being salicylic acid. Plant Physiol 54:904–906

    Article  PubMed  CAS  Google Scholar 

  • Cleland CF, Tanaka O (1979) Effect of daylenght on the ability of salicylic acid to induce flowering in the Long day plant Lemna gibba G3 and the short-day plant Lemna paucicosta 6746. Plant Physiol 64:421–424

    Article  PubMed  CAS  Google Scholar 

  • Conrath U, Chen Z, Ricigliano JR, Klessig DF (1995) Two inducers of plant defense responses, 2,6-dichloroisonicotininc acid and salicylic acid, inhibit catalase activity in tobacco. Proc Natl Acad Sci USA 92:7143–7147

    Article  PubMed  CAS  Google Scholar 

  • Dat JF, Lopez-Delgado H, Foyer CH, Scott IM (1998) Parallel changes in H2O2 and catalase during thermotolerance induced by salicylic acid or heat acclimation in mustard seedlings. Plant Physiol 116:1351–1357

    Article  PubMed  CAS  Google Scholar 

  • Dat JF, Lopez-Delgado H, Foyer CH, Scott IM (2000) Effects of salicylic acid on oxidative stress and thermotolerance in tobacco. J Plant Physiol 156:659–665

    CAS  Google Scholar 

  • DeKock PC, Grabowsky FB, Innes AM (1974) The effect of salicylic acid on the growth of Lemma gibba. Ann Bot 38:903–908

    CAS  Google Scholar 

  • Dempsey DA, Klessig DF (1995) Signals in plant disease resistance. Bull Inst Pasteur 93:167–186

    CAS  Google Scholar 

  • Doherty CJ, van Buskirk HA, Myers SJ, Thomasho MF (2009) Roles for Arabidopsis CAMTA transcription factors in cold-regulated gene expression and freezing tolerance. Plant Cell 21:972–984

    Article  PubMed  CAS  Google Scholar 

  • Dong F-C, Wang PT, Song CP (2001) The role of hydrogen peroxide in salicylic acid-induced stomatal closure in Vicia faba guard cells. Acta Phytophysiol Sinica 27:296–302

    CAS  Google Scholar 

  • Du L, Ali GS, Simons KA, Hou J, Yang T, Reddy ASN, Poovaiah BW (2009) Ca2+/calmodulin regulates salicylic-acid-mediated plant immunity. Nature 457:1154–1158

    Article  PubMed  CAS  Google Scholar 

  • Durner J, Klessig DF (1996) Salicylic acid is a modulator of tobacco and mammalian catalases. J Biol Chem 271:28492–28501

    Article  PubMed  CAS  Google Scholar 

  • El Tayeb MA (2005) Response of barley grains to the interactive effect of salinity and salicylic acid. Plant Growth Regul 45:215–224

    Article  CAS  Google Scholar 

  • Enyedi AJ, Yalpani N, Silverman P, Raskin I (1992) Localization, conjugation, and function of salicylic acid in tobacco during the hypersensitive reaction to tobacco mosaic virus. Proc Natl Acad Sci USA 89: 2480–2484

    Article  PubMed  CAS  Google Scholar 

  • Ervin EH, Zhang X-Z, Fike JH (2004) Ultraviolet-B radiation damage on Kentucky Bluegrass II: Hormone supplement effects. Hort Sci 39:1471–1474

    CAS  Google Scholar 

  • Evans NH, McAinsh MR, Hetherington AM, Knight MR (2005) ROS perception in Arabidopsis thaliana: the ozone-induced calcium response. Plant J 41:615–626

    Article  PubMed  CAS  Google Scholar 

  • Freeman JL, Garcia D, Kim D, Hopf A, Salt DE (2005) Constitutively elevated salicylic acid signals glutathione-mediated nickel tolerance in Thlaspi nickel hyperaccumulators. Plant Physiol 137:1082–1091

    Article  PubMed  CAS  Google Scholar 

  • Fujita M, Fujita Y, Noutoshi Y, Takahashi F, Narusaka Y, Yamaguchi-Shinozaki K, Shinozaki K (2006) Crosstalk between abiotic and biotic stress responses: a current view from the points of convergence in the stress signaling networks. Curr Opin Plant Biol 9: 436–442

    Article  PubMed  Google Scholar 

  • Fung RWM, Wang C-Y, Smith DL, Gross KC, Tian MS (2004) MeSA and MeJA increase steady-state transcript levels of alternative oxidase and resistance against chilling injury in sweet peppers (Capsicum annum L.). Plant Sci 166:711–719

    Article  CAS  Google Scholar 

  • Gaffney T, Friedrich L, Vernooij B, Negrotto D, Nye G, Uknes S, Ward E, Kessmann H, Ryals J (1993) Requirement of salicylic acid for the induction of systemic acquired resistance. Science 261:754–756

    Article  PubMed  CAS  Google Scholar 

  • Garcion C, Métraux JP (2006) Salicylic acid. In: Plant hormone signaling. 24: Oxford: Blackwell Publishing Ltd, pp 229–255

    Google Scholar 

  • Garcion C, Lohmann A, Lamodière E, Catinot J, Buchala A, Doermann P, Métraux JP (2008) Characterization and biological function of the ISOCHORIMATE SYNTHASE 2 gene of Arabidopsis. Plant Physiol 147:1279–1287

    Article  PubMed  CAS  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    Article  PubMed  CAS  Google Scholar 

  • Grant JJ, Chini A, Basu D, Loake GJ (2003) Targeted activation tagging of the Arabidopsis NBS LRR gene, ADR1, conveys resistance against virulent pathogens. Mol Plant Microbe Interact 16:669–680

    Article  PubMed  CAS  Google Scholar 

  • Gudesblat GE, Torres PS, Vojnov AV (2009) Stomata and pathogens. Plant Signal Behav 4:1114–1116

    Article  PubMed  CAS  Google Scholar 

  • Gunes A, Inal A, Alpaslan M, Eraslan F, Bagci EG, Cicek N (2007) Salicylic acid induced changes on some physiological parameters symptomatic for oxidative stress and mineral nutrition in maize (Zea mays L.) grown under salinity. J Plant Physiol 164:728–736

    Article  PubMed  CAS  Google Scholar 

  • Guo B, Liang Y, Zhue Y (2009) Does salicylic acid regulate antioxidant defense system, cell death, cadmium uptake and partitioning to acquire cadmium tolerance in rice? J Plant Physiol 166:20–31

    Article  PubMed  CAS  Google Scholar 

  • Guy CL (1990) Cold acclimation and freezing stress tolerance: role of protein metabolism. Annu Rev Plant Physiol Plant Mol Biol 41:187–223

    Article  CAS  Google Scholar 

  • Hamada AM, Al-Hakimi AMA (2001) Salicylic acid versus salinity-drought-induced stress on wheat seedlings. Rostl Vyr 47:444–450

    CAS  Google Scholar 

  • Harfouche AL, Rugini E, Mencarelli F, Botondi R, Mulco R (2008) Salicylic acid induces H2O2 production and endochitinase gene expression but not ethylene biosynthesis in Castanea sativa in vitro model system. J Plant Physiol 165:734–744

    Article  PubMed  CAS  Google Scholar 

  • Hatayama T, Takeno K (2003) The metabolic pathway of salicylic acid rather than of chlorogenic acid is involved in the stress-induced flowering of Pharbitis nil. J Plant Physiol 160:461–467

    Article  PubMed  CAS  Google Scholar 

  • Hirai N, Kojima Y, Koshimizu K, Shinozaki M, Takimoto A (1993) Accumulation of phenylpropanoids in cotyledons of morning glory (Pharbitis nil) seedlings during the induction of flowering by poor nutrition. Plant Cell Physiol 34:1039–1044

    CAS  Google Scholar 

  • Hirai N, Kuwano Y, Kojima Y, Koshimizu K, Shinozaki M, Takimoto A (1995) Increase in the activity of phenylalanine ammonia-lyase during the non photoperiodic induction of flowering in seedlings of Morning glory (Pharbitis nil). Plant Cell Physiol 36:291–297

    CAS  Google Scholar 

  • Horváth E, Janda T, Szalai G, Páldi E (2002) In vitro salicylic acid inhibition of catalase activity in maize: differences between the isozymes and a possible role in the induction of chilling tolerance. Plant Sci 163: 1129–1135

    Article  Google Scholar 

  • Horváth E, Pál M, Szalai G, Páldi E, Janda T (2007b) Exogenous 4-hydroxybenzoic acid and salicylic acid modulate the effect of short-term drought and freezing stress on wheat plants. Biol Plant 51:480–487

    Article  Google Scholar 

  • Hua J, Grisafi P, Cheng SH, Fink GR (2001) Plant growth homeostasis is controlled by the Arabidopsis BON1 and BAP1 genes. Genes Dev 15:2263–2272

    Article  PubMed  CAS  Google Scholar 

  • Iba K (2002) Acclimative response to temperature stress in higher plants: approaches of gene engineering for temperature tolerance. Annu Rev Plant Biol 53: 225–245

    Article  PubMed  CAS  Google Scholar 

  • Ichimura K, Mizoguchi T, Yoshida R, Yuasa T, Shinozaki K (2000) Various abiotic stresses rapidly activate Arabidopsis MAP kinases ATMPK4 and ATMPK6. Plant J 24:655–665

    Article  PubMed  CAS  Google Scholar 

  • Jambunathan N, Siani JM, McNellis TW (2001) A humidity-sensitive Arabidopsis copine mutant exhibits precocious cell death and increased disease resistance. Plant Cell 13:2225–2240

    Article  PubMed  CAS  Google Scholar 

  • Jammes F, Song C, Shin D, Munemasa S, Takeda K, Gu D, Cho D, Lee S, Giordo R, Sritubtim S, Leonhardt N, Ellis BE, Murata Y, Kwak JM (2009) MAP kinases MPK9 and MPK12 are preferentially expressed in guard cells and positively regulate ROS-mediated ABA signaling. Proc Natl Acad Sci USA 106:20520–20525

    Article  PubMed  CAS  Google Scholar 

  • Janda T, Szalai G, Tari I, Páldi E (1999) Hydroponic treatment with salicylic acid decreases the effect of chilling injury in maize (Zea mays L.) plants. Planta 208: 175–180

    Article  CAS  Google Scholar 

  • Janda T, Szalai G, Rios-Gonzalez K, Veisz O, Páldi E (2003) Comparative study of frost tolerance and antioxidant activity in cereals. Plant Sci 164:301–306

    Article  CAS  Google Scholar 

  • Janda T, Szalai G, Leskó K, Yordanova R, Apostol S, Popova LP (2007) Factors contributing to enhanced freezing tolerance in wheat during frost hardening in the light. Phytochemistry 68:1674–1682

    Article  PubMed  CAS  Google Scholar 

  • Kang HM, Saltveit ME (2002) Chilling tolerance of maize, cucumber and rice seedling leaves and roots are differentially affected by salicylic acid. Physiol Plant 115:571–576

    Article  PubMed  CAS  Google Scholar 

  • Kang GZ, Wang CH, Sun GC, Wang ZX (2003) Salicylic acid changes activities of H2O2-metabolizing enzymes and increases the chilling tolerance of banana seedlings. Environ Exp Bot 50:9–15

    Article  CAS  Google Scholar 

  • Kanna M, Tamaoki M, Kubo A, Nakajima N, Rakwal R, Agrawal GK, Tamogami S, Ioki M, Ogawa D, Saji H, Aono M (2003) Isolation of an ozone-sensitive and jasmonate-semi-insensitive Arabidopsis mutant (oji1). Plant Cell Physiol 44:1301–1310

    Article  PubMed  CAS  Google Scholar 

  • Kanofsky JR, Sima P (1991) Singlet oxygen production from the reactions of ozone with biological molecules. J Biol Chem 266:9039–9042

    PubMed  CAS  Google Scholar 

  • Kawano T (2003) Roles of the reactive oxygen species-generating peroxidase reactions in plant defense and growth induction. Plant Cell Rep 21:829–837

    PubMed  CAS  Google Scholar 

  • Khokon A, Okuma E, Hossain M, Munemasa S, Uraji M, Nakamura Y, Mori IC, Murata Y (2011) Involvement of extracellular oxidative burst in salicylic acid-induced stomatal closure in Arabidopsis. Plant Cell Environ 34:434–443

    Article  PubMed  CAS  Google Scholar 

  • Kirik V, Bouyer D, Schöbinger U, Bechtold N, Herzogm M, Bonneville JM, Hülskamp M (2001) CPR5 is involved in cell proliferation and cell death control and encodes a novel transmembrane protein. Curr Biol 11:1891–1895

    Article  PubMed  CAS  Google Scholar 

  • Kolář J, Seňková J (2008) Reduction of mineral nutrient availability accelerates flowering of Arabidopsis thaliana. J Plant Physiol 165:1601–1609

    Article  PubMed  CAS  Google Scholar 

  • Korkmaz A (2005) Inclusion of acetyl salicylic acid and methyl jasmonate into the priming solution improves low temperature germination and emergence of sweet pepper. Hort Sci 40:197–200

    CAS  Google Scholar 

  • Korkmaz A, Uzunlu M, Demirkiran AR (2007) Treatment with acetyl salicylic acid protects muskmelon seedlings against drought stress. Acta Physiol Plant 29:503–508

    Article  CAS  Google Scholar 

  • Kotak S, Larkindale J, Lee U, von Koskull-Döring P, Vierling E, Scharf KD (2007) Complexity of the heat stress response in plants. Curr Opin Plant Biol 10: 310–316

    Article  PubMed  CAS  Google Scholar 

  • Krantev A, Yordanova R, Janda T, Szalai G, Popova L (2008) Treatment with salicylic acid decreases the effect of cadmium on photosynthesis in maize plants. J Plant Physiol 165:920–931

    Article  PubMed  CAS  Google Scholar 

  • Larkindale J, Huang BR (2005) Effects of abscisic acid, salicylic acid, ethylene and hydrogen peroxide in thermotolerance and recovery for creeping bentgrass. Plant Growth Regul 47:17–28

    Article  CAS  Google Scholar 

  • Larkindale J, Hall JD, Knight MR, Verling E (2005) Heat stress phenotypes of Arabidopsis mutants implicate multiple signaling pathways in the acquisition of thermotolerance. Plant Physiol 138:882–897

    Article  PubMed  CAS  Google Scholar 

  • Lee H, León J, Raskin I (1995) Biosynthesis and metabolism of salicylic acid. Proc Natl Acad Sci USA 92: 4076–4079

    Article  PubMed  CAS  Google Scholar 

  • Lee SC, Kim SH, An SH, Yi SY, Hwang BK (2006) Identification and functional expression of the pepper pathogen-induced gene, CAPIP2 involved in disease resistance and drought and salt stress tolerance. Plant Mol Biol 62:151–164

    Article  PubMed  CAS  Google Scholar 

  • Lee J, Nam J, Park HC, Na G, Miura K, Jin JB, Yoo CY, Baek D, Kim DH, Jeong JC, Kim D, Lee SY, Salt DE, Mengiste T, Gong Q, Ma S, Bohnert HJ, Kwak SS, Bressan RA, Hasegawa PM, Yun DJ (2007) Salicylic acid-mediated innate immunity in Arabidopsis is regulated by SIZ1 SUMO E3 ligase. Plant J 49:79–90

    Article  PubMed  CAS  Google Scholar 

  • Lissarre M, Ohta M, Sato A, Miura K (2010) Cold-responsive gene regulation during cold acclimation in plants. Plant Signal Behav 5:948–952

    Article  PubMed  CAS  Google Scholar 

  • Liu H, Liu Y, Pan Q, Yang H, Zhan J, Huang W (2006) Novel interrelationship between salicylic acid, abscisic acid, and PIP2-specific phospholipase C in heat acclimation-induced thermotolerance in pea leaves. J Exp Bot 57:3337–3347

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Liu H, Pan Q, Yang H, Zhan J, Huang W (2009) The plasma membrane H+-ATPase is related to the development of salicylic acid-induced thermotolerance in pea leaves. Planta 229:1087–1098

    Article  PubMed  CAS  Google Scholar 

  • Liu XH, Kim KE, Kim KC, Nguyen XC, Han HJ, Jung MS, Kim HS, Kim SH, Park HC, Yun DJ, Chung WS (2010) Cadmium activates Arabidopsis MPK3 and MPK6 via accumulation of reactive oxygen species. Phytochemistry 71:614–618

    Article  PubMed  CAS  Google Scholar 

  • Los DA, Murata N (2000) Regulation of enzymatic activity and gene expression by membrane fluidity. Sci. STKE 2000

    Google Scholar 

  • Love AJ, Milner JJ, Sadanandom A (2008) Timing is everything: regulatory overlap in plant cell death. Trends Plant Sci 13:589–595

    Article  PubMed  CAS  Google Scholar 

  • Mahajan S, Tuteja N (2005) Cold, salinity and drought stresses: an overview. Arch Biochem Biophys 444:139–158

    Article  PubMed  CAS  Google Scholar 

  • Mahdavian K, Ghorbanli M, Kalantari KM (2008) Role of salicylic acid in regulating ultraviolet radiation-induced oxidative stress in pepper leaves. Russ J Plant Physiol 55:560–563

    Article  CAS  Google Scholar 

  • Martinez C, Pons E, Prats G, Leon J (2004) Salicylic acid regulates flowering time and links defence responses and reproductive development. Plant J 37:209–217

    Article  PubMed  CAS  Google Scholar 

  • Mauch-Mani B, Mauch F (2005) The role of abscisic acid in plant-pathogen interactions. Curr Opin Plant Biol 8:409–414

    Article  PubMed  CAS  Google Scholar 

  • Mauzerall DL, Busconi L (2001) Protecting agricultural crops from the effects of tropospheric ozone exposure: reconciling science and standard setting in the United states. Europe and Asia. Annu Rev Energy Environ 26:237–268

    Article  Google Scholar 

  • Maxewll DP, Nickels R, McIntosh L (2002) Evidence of mitochondrial involvement in the transduction of signals required for the induction of genes associated with pathogen attack and senescence. Plant J 29:269–279

    Article  Google Scholar 

  • Melotto M, Underwood W, Koczan J, Nomura K, He SY (2006) Plant stomata function in innate immunity against bacterial invasion. Cell 126:969–980

    Article  PubMed  CAS  Google Scholar 

  • Melotto M, Underwood W, He SY (2008) Role of stomata in plant innate immunity and foliar bacterial diseases. Annu Rev Phytopathol 46:101–122

    Article  PubMed  CAS  Google Scholar 

  • Metwally A, Finkemeier I, Georgi M, Dietz KJ (2003) Salicylic acid alleviates the cadmium toxicity in barley seedlings. Plant Physiol 132:272–281

    Article  PubMed  CAS  Google Scholar 

  • Milla MAR, Mauer A, Huete AR, Gustafson JP (2003) Glutathione peroxidase genes in Arabidopsis are ubiquitous and regulated by abiotic stresses through diverse signaling pathways. Plant J 36:602–615

    Article  CAS  Google Scholar 

  • Millenaar FF, Benschop JJ, Wagner AM, Lambers H (1998) The role of the alternative oxidase in stabilizing the in vivo reduction state of the ubiquinone pool and the activation state of the alternative oxidase. Plant Physiol 118:599–607

    Article  PubMed  CAS  Google Scholar 

  • Mishra A, Choudhuri MA (1997) Ameliorating effects of salicylic acid on lead and mercury-induced inhibition of germination and early seedling growth of two rice cultivars. Seed Sci Technol 25:263–270

    Google Scholar 

  • Miura K, Ohta M (2010) SIZ1, a small ubiquitin-related modifier ligase, controls cold signaling through regulation of salicylic acid accumulation. J Plant Physiol 167:555–560

    Article  PubMed  CAS  Google Scholar 

  • Miura K, Rus A, Sharkhuu A, Yokoi S, Karthikeyan AS, Raghothama KG, Baek D, Koo Y D, Jin J B, Bressan RA, Yun D J, Hasegawa PM (2005) The Arabidopsis SUMO E3 ligase SIZ1 controls phosphate deficiency responses. Proc Natl Acad Sci USA 102:7760–7765

    Article  PubMed  CAS  Google Scholar 

  • Miura K, Lee J, Jin JB, Yoo CY, Miura T, Hasegawa PM (2009) Sumoylation of ABI5 by the Arabidopsis SUMO E3 ligase SIZ1 negatively regulates abscisic acid signaling. Proc Natl Acad Sci USA 106: 5418–5423

    Article  PubMed  CAS  Google Scholar 

  • Miura K, Lee J, Miura T, Hasegawa PM (2010) SIZ1 controls cell growth and plant development in Arabidopsis through salicylic acid. Plant Cell Physiol 51:103–113

    Article  PubMed  CAS  Google Scholar 

  • Mizoguchi T, Irie K, Hirayama T, Hayashida N, Yamaguchi-Shinozaki K, Matsumoto K, Shinozaki K (1996) A gene encoding a mitogen-activated protein kinase kinasekinase is induced simultaneously with genes for a mitogen-activated protein kinase and an S6 ribosomal protein kinase by touch, cold and water stress in Arabidopsis thaliana. Proc Natl Acad Sci USA 93:765–769

    Article  PubMed  CAS  Google Scholar 

  • Mora-Herrera ME, Lopez-Delgado H, Castillo-Morales A, Foyer CH (2005) Salicylic acid and H2O2 function by independent pathways in the induction of freezing tolerance in potato. Physiol Plant 125:430–440

    CAS  Google Scholar 

  • Mori IC, Pinontoan R, Kawano T, Muto S (2001) Involvement of superoxide generation in salicylic acid-induced stomatal closure in Vicia faba. Plant Cell Physiol 42:1383–1388

    Article  PubMed  CAS  Google Scholar 

  • Mouradov A, Cremer F, Coupland G (2002) Control of flowering time: interacting pathways as a basis for diversity. Plant Cell 14:111–130

    Google Scholar 

  • Munne-Bosch S, Penuelas J (2003) Photo- and antioxidative protection, and a role for salicylic acid during drought and recovery in field-grown Phillyrea angustifolia plants. Planta 217:758–766

    Article  PubMed  CAS  Google Scholar 

  • Munns R (2007) Prophylactively parking sodium in the plant. New Phytol 176:501–504

    Article  PubMed  CAS  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  PubMed  CAS  Google Scholar 

  • Nakagami H, Soukupová H, Schikora A, Zárský V, Hirt H (2006) A mitogen-activated protein kinase kinasekinase mediates reactive oxygen species homeostasis in Arabidopsis. J Biol Chem 281:38697–38704

    Article  PubMed  CAS  Google Scholar 

  • Nazar R, Iqbal N, Syeed S, Khan NA (2011) Salicylic acid alleviates decreases in photosynthesis under salt stress by enhancing nitrogen and sulfur assimilation and antioxidant metabolism differentially in two mungbean cultivars. J Plant Physiol 168:807–815

    Article  PubMed  CAS  Google Scholar 

  • Németh M, Janda T, Horváth E, Páldi E, Szalai G (2002) Exogenous salicylic acid increases polyamine content but may decrease drought tolerance in maize. Plant Sci 162:569–574

    Article  Google Scholar 

  • Nishimura N, Kitahata N, Seki M, Narusaka Y, Narusaka M, Kuromori T, Asami T, Shinozaki K, Hirayama T (2005) Analysis of ABA hypersensitive germination2 revealed the pivotal functions of PARN in stress response in Arabidopsis. Plant J 44:972–984

    Article  PubMed  CAS  Google Scholar 

  • Noreen S, Ashraf M (2010) Modulation of salt (NaCl)-induced effects on oil composition and fatty acid profile of sunflower (Helianthus annuus L.) by exogenous application of salicylic acid. J Sci Food Agric 90: 2608–2616

    Article  PubMed  CAS  Google Scholar 

  • Noreen S, Ashraf M, Hussain M, Jamil A (2009) Exogenous application of salicylic acid enhances antioxidative capacity in salt stressed sunflower (Helianthus annuus L.) plants. Pak J Bot 41:473–479

    CAS  Google Scholar 

  • Norman C, Howell KA, Millar AH, Whelan JM, Day DA (2004) Salicylic acid is an uncoupler and inhibitor of mitochondrial electron transport. Plant Physiol 134: 492–501

    Article  PubMed  CAS  Google Scholar 

  • Noutoshi Y, Ito T, Seki M, Nakashita H, Yoshida S, Marco Y, Shirasu K, Shinozaki K (2005) A single amino acid insertion in the WRKY domain of the Arabidopsis TIR-NBS-LRR-WRKY-type disease resistance protein SLH1 (senseitive to low humidity 1) causes activation of defense responses and hypersensitive cell death. Plant J 43:873–888

    Article  PubMed  CAS  Google Scholar 

  • Ogawa D, Nakajima N, Sano T, Tamaoki M, Aono M, Kubo A, Kanna M, Ioki M, Kamada H, Saji H (2005) Salicylic acid accumulation under O3 exposure is regulated by ethylene in tobacco plants. Plant Cell Physiol 46:1062–1072

    Article  PubMed  CAS  Google Scholar 

  • Oltmans DJ, Lefohn AS, Scheel HE, Harris JM, Levy H II, Galbally IE, Brunke EG, Meyer CP, Lathrop JA, Johnson BJ, Shadwick DS, Cuevas E, Schmidlin FJ, Tarasick DW, Claude H, Kerr JB, Uchino O, Mohnen V (1998) Trends of ozone in the troposphere. Geophys Res Lett 25:139–142

    Article  CAS  Google Scholar 

  • Overmyer K, Tuominen H, Kettunen R, Betz C, Langebartels C, Sandermann H Jr, Kangasjärvi J (2000) The ozone-sensitive Arabidopsis rcd1 mutant reveals opposite roles for ethylene and jasmonate signaling pathways in regulating superoxide-dependent cell death. Plant Cell 12:1849–1862

    Article  PubMed  CAS  Google Scholar 

  • Overmyer K, Brosch M, Kangasjärvi J (2003) Reactive oxygen species and hormonal control of cell death. Trends Plant Sci 8:335–342

    Article  PubMed  CAS  Google Scholar 

  • Overmyer K, Brosché M, Pellinen R, Kuittinen T, Tuominen H, Ahlfors R, Keinänen M, Saarma M, Scheel D, Kangasjärvi J (2005) Ozone-induced programmed cell death in the Arabidopsis radical-induced cell death1 mutant. Plant Physiol 137:1092–1104

    Article  PubMed  CAS  Google Scholar 

  • Pál M, Szalai G, Horváth E, Janda T, Páldi E (2002) Effect of salicylic acid during heavy metal stress. Acta Biol Szegediensis 46:119–120

    Google Scholar 

  • Pál M, Horváth E, Janda T, Páldi E, Szalai G (2005) Cadmium stimulates the accumulation of salicylic acid and its putative precursors in maize (Zea mays) plants. Physiol Plant 125:356–364

    Article  CAS  Google Scholar 

  • Pan Q, Zhan J, Liu H, Zhang J, Chen J, Wen P, Huang W (2006) Salicylic acid synthesized by benzoic acid 2-hydroxylase participate in the development of thermotolerance in pea plants. Plant Sci 171:226–233

    Article  CAS  Google Scholar 

  • Pasqualini S, Torre GD, Ferranti F, Ederli L, Piccioni C, Reale L, Antonielli M (2002) Salicylic acid modulates ozone-induced hypersensitive cell death in tobacco plants. Physiol Plant 115:204–212

    Article  PubMed  CAS  Google Scholar 

  • Petersen M, Brodersen P, Naested H, Andreasson E, Lindhart U, Johansen B, Nielsen HB, Lacy M, Austin MJ, Parker JE, Sharma SB, Klessig DF, Martienssen R, Mattsson O, Jensen AB, Mundy J (2000) Arabidopsis MAP kinase 4 negatively regulates systemic acquired resistance. Cell 103:1111–1120

    Article  PubMed  CAS  Google Scholar 

  • Poór P, Gémes K, Horváth F, Szepesi A, Simon ML, Tari I (2011) Salicylic acid treatment via the rooting medium interferes with stomatal response, CO2 fixation rate and carbohydrate metabolism in tomato, and decreases harmful effects of subsequent salt stress. Plant Biol 13:105–114

    Article  PubMed  CAS  Google Scholar 

  • Popova LP, Maslenkova LT, Yordanova RY, Ivanova AP, Krantev AP, Szalai G, Janda T (2009) Exogenous treatment with salicylic acid attenuates cadmium toxicity in pea seedlings. Plant Physiol Biochem 47:224–231

    Article  PubMed  CAS  Google Scholar 

  • Qiu D, Xiao J, Xie W, Liu H, Li X, Xiong L, Wang S (2008) Rice gene network inferred from expression profiling of plants overexpressing OsWRKY13, a positive regulator of disease resistance. Mol Plant 3:538–551

    Article  Google Scholar 

  • Quan LJ, Zhang B, Shi WW, Li HY (2008) Hydrogen peroxide in plants: a versatile molecule of the reactive oxygen species network. J Integr Plant Biol 50: 2–18

    Article  PubMed  CAS  Google Scholar 

  • Rao MV, Davis KR (2001) The physiology of ozone-induced cell death. Planta 213:682–690

    Article  PubMed  CAS  Google Scholar 

  • Rao MV, Lee H, Creelman RA, Mullet JE, Davis KR (2000) Jasmonic acid signaling modulates ozone-induced hypersensitive cell death. Plant Cell 12:1633–1646

    Article  PubMed  CAS  Google Scholar 

  • Rao MV, Lee H, Davis KR (2002) Ozone-induced ethylene production is dependent on salicylic acid, and both salicylic acid and ethylene act in concert to regulate ozone-induced cell death. Plant J 32:447–456

    Article  PubMed  CAS  Google Scholar 

  • Raskin I (1992) Role of salicylic acid in plants. Annu Rev Plant Physiol 43:439–463

    Article  CAS  Google Scholar 

  • Raskin I, Skubatz H, Tang W, Meeuse BJD (1990) Salicylic acid levels in thermogenic and non-thermogenic plants. Ann Bot 66:369–373

    CAS  Google Scholar 

  • Rate DN, Greenberg JT (2001) The Arabidopsis aberrant growth and death 2 mutant show resistance to Pseudomonas syringae and reveals a role for NPR1 in suppressing hypersensitive cell death. Plant J 27: 203–211

    Article  PubMed  CAS  Google Scholar 

  • Rate DN, Cuenca JV, Bowman GR, Guttman DS, Greenberg JT (1999) The gain-of-function Arabidopsis acd6 mutant reveals novel regulation and function of the salicylic acid signaling pathway in controlling cell death, defense, and cell growth. Plant Cell 11: 1695–1708

    Article  PubMed  CAS  Google Scholar 

  • Sánchez-Casas P, Klessig DF (1994) A salicylic acid-binding activity and a salicylic acid-inhibitable catalase activity are present in a variety of plant species. Plant Physiol 106:1675–1679

    PubMed  Google Scholar 

  • Sauerbrunn N, Schlaich NL (2004) PCC1: a merging point for pathogen defence and circadian signalling in Arabidopsis. Planta 218:552–561

    Article  PubMed  CAS  Google Scholar 

  • Sawada H, Shim IS, Usui K (2006) Induction of benzoic acid 2-hydroxylase and salicylic acid biosynthesis-Modulation by salt stress in rice seedlings. Plant Sci 171:263–270

    Article  CAS  Google Scholar 

  • Scott IM, Clarke SM, Wood JE, Mur LAJ (2004) Salicylate accumulation inhibits growth at chilling temperature in Arabidopsis. Plant Physiol 135:1040–1049

    Article  PubMed  CAS  Google Scholar 

  • Segarra S, Mir R, Martinez C, Leon J (2009) Genomic wide analysis of the transcriptomes of salicylic acid-deficient versus wild-type plants uncover pathogen and circadian controlled 1 (PCC1) as a regulator of flowering time in Arabidopsis. Pland Cell Environ 33:11–22

    Google Scholar 

  • Senaratna T, Touchell D, Bunn E, Dixon K (2000) Acetyl salicylic acid (Aspirin) and salicylic acid induce multiple stress tolerance in bean and tomato plants. Plant Growth Regul 30:157–161

    Article  CAS  Google Scholar 

  • Seo PJ, Park CM (2010) MYB96-mediated abscisic acid signals induce pathogen resistance response by promoting salicylic acid biosynthesis in Arabidopsis. New Phytol 186:471–483

    Article  PubMed  CAS  Google Scholar 

  • Seo PJ, Xiang F, Qiao M, Park JY, Lee YN, Kim SG, Lee YH, Park WJ, Park CM (2009) The MYB96 transcription factor mediates abscisic acid signaling during drought stress response in Arabidopsis. Plant Physiol 151:275–289

    Article  PubMed  CAS  Google Scholar 

  • Shakirova FM, Sakhabutdinova AR, Bezrukova MV, Fatkhutdinova RA, Fatkhutdinova DR (2003) Changes in the hormonal status of wheat seedlings induced by salicylic acid and salinity. Plant Sci 164:317–322

    Article  CAS  Google Scholar 

  • Sharma YK, León J, Raskin I, Davis KR (1996) Ozone-induced responses in Arabidopsis thaliana: The role of salicylic acid in the accumulation of defense-related transcripts and induced resistance. Proc Natl Acad Sci USA 93:5099–5104

    Article  PubMed  CAS  Google Scholar 

  • Shi Q, Zhu Z (2008) Effects of exogenous salicylic acid on manganese toxicity, element contents and antioxidative system in cucumber. Environ Exp Bot 63:317–326

    Article  CAS  Google Scholar 

  • Shinozaki M (1985) Organ correlation in long day flowering of Pharbitis nil. Biol Plant 27:382–385

    Article  CAS  Google Scholar 

  • Shinozaki M, Takimoto A (1982) The role of cotyledons in flower initiation of Phabitis nil at low temperatures. Plant Cell Physiol 23:403–408

    Google Scholar 

  • Shinozaki M, Takimoto A (1983) Effects of some growth regulators and benzoic acid derivatives on flower intiation and root elongation of Pharbitis nil strain Kidachi. Plant Cell Physiol 24:433–439

    CAS  Google Scholar 

  • Stevens J, Senaratna T, Sivasithamparam K (2006) Salicylic acid induces salinity tolerance in tomato (Lycopersicon esculentum cv. Roma): associated changes in gas exchange, water relations and membrane stabilisation. Plant Growth Regul 49:77–83

    CAS  Google Scholar 

  • Strawn MA, Marr SK, Inoue K, Inaba N, Zubieta C, Wildermuth MC (2007) Arabidopsis isochorismate synthase functional in pathogen-induced salicylate biosynthesis exhibits properties consistent with a role in diverse stress responses. J Biol Chem 282:5919–5933

    Article  PubMed  CAS  Google Scholar 

  • Suarez-Rodriguez MC, Adams-Phillips L, Liu Y, Wang H, Su SH, Jester PJ, Zhang S, Bent AF, Krysan PJ (2007) MEKK1 is required for flg22-induced MPK4 activation in Arabidopsis plants. Plant Physiol 143:661–669

    Article  PubMed  CAS  Google Scholar 

  • Tamaoki M (2008) The role of phytohormone signaling in ozone-induced cell death in plants. Plant Signal Behav 3:166–174

    Article  PubMed  Google Scholar 

  • Tanada O, Nakayama Y, Emori K, Takeba G, Sato K, Sugino M (1997) Flower-inducing activity of lysine in Lemna paucicostata 6746. Plant Cell Physiol 38:124–128

    Google Scholar 

  • Tasgin E, Atici O, Nalbantoglu B (2003) Effects of salicylic acid and cold on freezing tolerance in winter wheat leaves. Plant Growth Regul 41:231–236

    Article  CAS  Google Scholar 

  • Teige M, Scheikl E, Eulgem T, Dóczi R, Ichimura K, Shinozaki K, Dangl JL, Hirt H (2004) The MKK2 pathway mediates cold and salt stress signaling in Arabidopsis. Mol Cell 15:141–152

    Article  PubMed  CAS  Google Scholar 

  • Thomashow MF (1999) Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Annu Rev Plant Physiol Plant Mol Biol 50:571–599

    Article  PubMed  CAS  Google Scholar 

  • Tosti N, Pasqualini S, Borgogni A, Ederli L, Falistocco E, Crispi S, Paolocci F (2006) Gene expression profiles of O3-treated Arabidopsis plants. Plant Cell Environ 29:1686–1702

    Article  PubMed  CAS  Google Scholar 

  • Tsutsui T, Kato W, Asada Y, Sako K, Sato T, Sonoda Y, Kidokoro S, Yamaguchi-Shinozaki K, Tamaoki M, Arakawa K, Ichikawa T, Nakazawa M, Seki M, Shinozaki K, Matsui M, Ikeda A, Yamaguchi J (2009) DEAR1, a transcriptional repressor of DREB protein that mediates plant defense and freezing stress responses in Arabidopsis. J Plant Res 122:633–643

    Article  PubMed  CAS  Google Scholar 

  • Uppalapati SR, Ishiga Y, Wangdi T, Kunkel BN, Anand A,Mysore KS, Bender CL (2007) The phytotoxincoronatine contributes to pathogen fitness and is required for suppression of salicylic acid accumulation in tomatoinoculated with Pseudomonas syringae pv. tomato DC3000. Mol Plant Microbe Interact 20:955–965

    Article  PubMed  CAS  Google Scholar 

  • van Camp W, van Montagu M, Inze D (1998) H2O2 and NO: redox signals in disease resistance. Trends Plant Sci 3:330–334

    Article  Google Scholar 

  • Vernooij B, Friedrich L, Morse A, Reist R, Kolditz-Jawhar R, Ward E, Uknes S, Kessmann H, Ryals J (1994) Salicylic acid is not the translocated signal responsible for inducing systemic acquired resistance but is required in signal transduction. Plant Cell 6:959–965

    Article  PubMed  CAS  Google Scholar 

  • Vlot AC, Dempsey DA, Klessig DF (2009) Salicylic acid, a multifaceted hormone to combat disease. Annu Rev Phytopathol 47:177–206

    Article  PubMed  CAS  Google Scholar 

  • Wada K (1974) Floral initiation under continuous light in Phabitis nil, a typical short day plant. Plant Cell Physiol 15:381–384

    Google Scholar 

  • Wada KC, Takeno K (2010) Stress-induced flowering. Plant Signal Behav 5:1–4

    Article  Google Scholar 

  • Wada KC, Kondo H, Takeno K (2010a) Obligatory short-day plant Perilla frutescens var. crispa can flower in response to low-intensity light stress under long-day conditions. Physiol Plant 138:339–345

    Article  PubMed  CAS  Google Scholar 

  • Wada KC, Yamada M, Shiraya T, Takeno K (2010b) Salicylic acid and the flowering gene FLOWERING LOCUS T homolog are involved in poor-nutrition stress- induced flowering of Pharbitis nil. J Plant Physiol 167:447–452

    Article  PubMed  CAS  Google Scholar 

  • Wan SB, Tian L, Tian RR, Pan QH, Zhan JC, Wen PF, Chen JY, Zhang P, Wang W, Huang WD (2009) Involvement of phospholipase D in the low temperature acclimation-induced thermotolerance in grape berry. Plant Physiol Biochem 47:504–510

    Article  PubMed  CAS  Google Scholar 

  • Wang LJ, Li SH (2006) Thermotolerance and related antioxidant enzyme activities induced by heat acclimation and salicylic acid in grape (Vitis vinifera L.) leaves. Plant Growth Regul 48:137–144

    Article  CAS  Google Scholar 

  • Wang H, Feng T, Peng X, Yan M, Tang X (2009) Up-regulation of chloroplastic antioxidant capacity is involved in alleviation of nickel toxicity of Zea mays L. by exogenous salicylic acid. Ecotoxicol Environ Saf 72:1354–1362

    Article  PubMed  CAS  Google Scholar 

  • Wang LJ, Fan L, Loescher W, Duan W, Liu GJ, Cheng JS, Luo HB, Li SH (2010) Salicylic acid alleviates decreases in photosynthesis under heat stress and accelerates recovery in grapevine leaves. BMC Plant Biol 10:34

    Article  PubMed  CAS  Google Scholar 

  • Ward JM, Hirschi KD, Sze H (2003) Plants pass the salt. Trends Plant Sci 8:200–201

    Article  PubMed  CAS  Google Scholar 

  • Wildermuth MC, Dewdney J, Wu G, Ausubel FM (2001) Isochorismate synthase is required to synthesize salicylic acid for plant defense. Nature 414:562–565

    Article  PubMed  CAS  Google Scholar 

  • Wise RR, Olson AJ, Schrader SM, Sharkey TD (2004) Electron transport is the functional limitation of photosynthesis in field-grown Pima cotton plants at high temperature. Plant Cell Environ 25:717–724

    Article  Google Scholar 

  • Xiao S, Brown S, Patrick E, Brearley C, Turner JG (2003) Enhanced transcription of the Arabidopsis disease resistance genes RPW8.1 and RPW8.2 via a salicylic acid-dependent amplification circuit is required for hypersensitive cell death. Plant Cell 15:33–45

    Article  PubMed  CAS  Google Scholar 

  • Yalpani N, Enyedi AJ, León J, Raskin I (1994) Ultraviolet light and ozone stimulate accumulation of salicylic acid, pathogenesis-related proteins and virus resistance in tobacco. Planta 193:372–376

    Article  CAS  Google Scholar 

  • Yang H, Li Y, Hua J (2006) The C2 domain protein BAP1 negatively regulates defense responses in Arabidopsis. Plant J 48:238–248

    Article  PubMed  CAS  Google Scholar 

  • Yang H, Yang S, Li Y, Hua J (2007) The Arabidopsis BAP1 and BAP2 genes are general inhibitors of programmed cell death. Plant Physiol 145:135–146

    Article  PubMed  CAS  Google Scholar 

  • Yasuda M, Ishikawa A, Jikumaru Y, Seki M, Umezawa T, Asami T, Maruyama-Nakashita A, Kudo T, Shinozaki K, Yoshida S, Nakashita H (2008) Antagonistic interaction between systemic acquired resistance and the abscisic acid-mediated abiotic stress response in Arabidopsis. Plant Cell 20:1678–1692

    Article  PubMed  CAS  Google Scholar 

  • Yun KY, Park MR, Mohanty B, Herath V, Xu F, Mauleon R, Wijaya E, Bajic VB, Bruskiewich R, de los Reyes BG (2010) Transcriptional regulatory network triggered by oxidative signals configures the early response mechanisms of japonica rice to chilling stress. BMC Plant Biol 10:16

    Article  PubMed  CAS  Google Scholar 

  • Zawoznik MS, Groppa MD, Tomaro ML, Benavides MP (2007) Endogenous salicylic acid potentiates cadmium-induced oxidative stress in Arabidopsis thaliana. Plant Sci 173:190–197

    Article  CAS  Google Scholar 

  • Zhou F, Menke FL, Yoshioka K, Moder W, Shirano Y, Klessig DF (2004) High humidity suppresses ssi4-mediated cell death and disease resistance upstream of MAP kinase activation, H2O2 production and defense gene expression. Plant J 39:920–932

    Article  PubMed  CAS  Google Scholar 

  • Zhou ZS, Guo K, Elbaz AA, Yang ZM (2009) Salicylic acid alleviates mercury toxicity by preventing oxidative stress in roots of Medicago sativa. Environ Exp Bot 65:27–34

    Article  CAS  Google Scholar 

  • Zhu Y, Yang H, Mang H-G, Hua J (2010) Induction of BAP1 by a moderate decrease in temperature is mediated by ICE1 in Arabidopsis. Plant Physiol 155:580–588

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported, in part, by Special Coordination Funds for Promoting Science and Technology, and by a Grant-in-Aid for Young Scientists (B, No. 20780046; B, No. 21770032) from the Ministry of Education, Culture, Sports, Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenji Miura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Hara, M., Furukawa, J., Sato, A., Mizoguchi, T., Miura, K. (2012). Abiotic Stress and Role of Salicylic Acid in Plants. In: Ahmad, P., Prasad, M. (eds) Abiotic Stress Responses in Plants. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0634-1_13

Download citation

Publish with us

Policies and ethics