Skip to main content

Chromosome Engineering for High Precision Crop Improvement

  • Chapter
  • First Online:
Gene Pool Diversity and Crop Improvement

Abstract

Logarithmically increasing population and steadily changing climatic conditions have created a threatening situation of food insecurity worldwide and pose a challenge to breeders. In view of the narrow genetic background of the cultivated crop species, it has become imperative to broaden their genetic base by introgressing alien genes. However, monitoring the introgression(s) is indispensable for accelerated and high precision crop improvement. This chapter reveals the application of various innovative approaches like haploid inducer genes and chromosome elimination-mediated doubled haploidy breeding in barley, maize, wheat and potato required for the acceleration of breeding endeavours. It also covers the strategic chromosome engineering techniques needed for the alien chromatin introgression in wheat and further monitoring by use of novel molecular cytogenetic tools, including GISH and FISH for the targeted genetic upgradation with high precision.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aghaee-Sarbarzeh M, Ferrahi M, Singh S, Singh H, Friebe B, Gill BS, Dhaliwal HS (2002) Ph I -induced transfer of leaf and stripe rust-resistance genes from Aegilops triuncialis and Ae. geniculata to bread wheat. Euphytica 127:377–382

    Article  CAS  Google Scholar 

  • Ahmad F, Comeau A (1991) A new intergeneric hybrid between Triticum aestivum L. and Agropyron fragile (Roth) Candargy: variation in A. fragile for suppression of the wheat Ph-Locus activity. Plant Breed 106:275–283

    Article  Google Scholar 

  • Aziz AN, Seabrook JEA, Tai GCC, de Jong H (1999) Screening diploid Solanum genotypes responsive to different anther culture conditions and ploidy assessment of anther-derived roots and plants. Am J Potato Res 76:9–16

    Article  Google Scholar 

  • Badiyal A, Chaudhary HK, Jamwal NS, Hussain W, Mahato A, Bhatt AK (2014) Interactive genotypic influence of triticale and wheat on their crossability and haploid induction under varied agroclimatic regimes. Cereal Res Commun 42(1):1–10

    Article  CAS  Google Scholar 

  • Barclay IR (1975) High frequencies of haploid production in wheat (Triticum aestivum) by chromosome elimination. Nature 256:410–411

    Article  Google Scholar 

  • Baulcombe D (2004) RNA silencing in plants. Nature 431:356–363

    Article  CAS  PubMed  Google Scholar 

  • Belling J, Blakeslee AF (1922) The assortment of chromosomes in triploid Daturas. Am Nat 56:339–346

    Article  Google Scholar 

  • Bennett MD, Finch RA, Barclay IR (1976) The time rate and mechanism of chromosome elimination in Hordeum hybrids. Chromosoma 54:175–200

    Article  Google Scholar 

  • Blanco A, Perrone V, Simeone R (1988) Chromosome pairing variation in Triticum turgidum L. × Dasypyrum villosum (L.) Candargy hybrids and genome affinities. In: Proceedings of 7th international wheat genetics symposium, Cambridge, pp 63–67

    Google Scholar 

  • Budke B, Logan HL, Kalin JH, Zelivianskaia AS, Cameron McGuire W, Miller LL, Stark JM, Kozikowski AP, Bishop DK, Connell PP (2012) RI-1: a chemical inhibitor of RAD51 that disrupts homologous recombination in human cells. Nucl Acids Res 40(15):7347–7357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ceoloni C, Signore G, Ercoli L, Donini P (1992) Locating the alien chromatin segment in common wheat–Aegilops longissima mildew resistance transfers. Hereditas 116:239–245

    Article  Google Scholar 

  • Ceoloni C, Biagetti M, Ciaffi M, Forte P, Pasquini M (1996) Wheat chromosome engineering at the 4´ level: the potential of different alien gene transfers into durum wheat. Euphytica 89:87–97

    Article  CAS  Google Scholar 

  • Ceoloni C, Forte P, Gennaro A, Micali S, Carozza R, Bitti A (2005) Recent developments in durum wheat chromosome engineering. Cytogenet Genome Res 109:328–334

    Article  CAS  PubMed  Google Scholar 

  • Chalyk ST (1999) Creating new haploid-inducing lines of maize. Maize Genet Coop Newslett 73:53–54

    Google Scholar 

  • Chalyk S, Bauman A, Daniel G, Eder J (2003) Aneuploidy as a possible cause of haploid induction in maize. Maize Genetic Coop Newslett 77:29–30

    Google Scholar 

  • Chase SS (1947) Techniques for isolating monoploid maize plants. J Bot 34:582

    Google Scholar 

  • Chase SS (1951) The monoploid method of developing inbred lines. In: Proceedings of 6th annual hybrid corn industry research conference. Illinois, Chicago, pp 29–30

    Google Scholar 

  • Chaudhary HK (2008a) Dynamics of wheat × Imperata cylindrica—a new chromosome elimination mediated system for efficient haploid induction in wheat. In: Appels R et al (eds) Proceedings of the 11th international wheat genetics symposium. University of Sydney Press, Sydney, pp 647–650

    Google Scholar 

  • Chaudhary HK (2008b) Dynamics of doubled haploidy breeding and molecular cytogenetic approaches in bread wheat. In: Taniguchi K, Zhang X (eds) Focus on north–west Himalayan regions. Advances in chromosome science, vol 3(2). The Society of Chromosome Research, Hiroshima, pp 67–69

    Google Scholar 

  • Chaudhary HK (2012) New frontiers in chromosome engineering for enhanced and high precision crop improvement. In: Proceedings of national seminar on plant cytogenetics: new approaches, Department of Botany, Punjabi University, Patiala, 23–24, pp 35–36

    Google Scholar 

  • Chaudhary HK (2013) New frontiers in chromosome elimination-mediated doubled haploidy breeding for accelerated and high precision genetic upgradation in wheat. In: Proceedings of international Triticeae mapping initiative and plant & animal genome XXI Conference, San Diego, pp 12–16, p 26

    Google Scholar 

  • Chaudhary HK, Schwarzacher T, Heslop-Horrison  JS (2004) Detection and characterization of rye (Secale cereale) chromatin introgression into wheat (Triticum aestivum) through fluorescence in situ hybridization. Report submitted to Commonwealth Commission, London. p 1–6

    Google Scholar 

  • Chaudhary HK, Singh S, Sethi GS (2002) Interactive influence of wheat and maize genotypes on haploid induction in winter × spring wheat hybrids. J Genet Breed 56:259–266

    Google Scholar 

  • Chaudhary HK, Sethi GS, Singh S, Pratap A, Sharma S (2005) Efficient haploid induction in wheat by using pollen of Imperata cylindrica. Plant Breed 124:96–98

    Article  Google Scholar 

  • Chaudhary HK, Tayeng T, Kaila V, Rather SA (2013a) Use of asynchrony in flowering for easy and economical polyhaploid induction in wheat following Imperata cylindrica- mediated chromosome elimination approach. Plant Breed 132(2):155–158

    Article  Google Scholar 

  • Chaudhary HK, Tayeng T, Kaila V, Rather SA (2013b) Enhancing the efficiency of wide hybridization mediated chromosome engineering for high precision crop improvement with special reference to wheat × Imperata cylindrica system. The Nucleus 56:7–14

    Article  Google Scholar 

  • Cherkaoui S, Lamsaouri O, Chlyah A, Chlyah H (2000) Durum wheat × maize crosses for haploid wheat production: influence of parental genotypes and various experimental factors. Plant Breed 119:31–36

    Article  Google Scholar 

  • Chhuneja P, Kaur S, Goel RK, Aghaee-Sarbarzeh M, Dhaliwal HS (2007) Introgression of leaf rust and stripe rust resistance genes from Aegilops umbellulata to hexaploid wheat through induced homoeologous pairing. Wheat Product Stress Environ Dev Plant Breed 12:83–90

    Article  Google Scholar 

  • Chhuneja P, Kaur S, Goel RK, Aghaee-Sarbarzeh M, Prashar M, Dhaliwal HS (2008) Transfer of leaf rust and stripe rust resistance from Aegilops umbellulata Zhuk. to bread wheat (Triticum aestivum L.). Genet Res Crop Evol 55:849–859

    Article  Google Scholar 

  • Coe EH (1959) A line of maize with high haploid frequency. Am Nat 93:381–382

    Article  Google Scholar 

  • Conner RL, Whelan ED, Laroche A, Thomas JB (1993) Reaction of alien chromosome substitution and addition lines of hard red spring wheat to common root rot and black point. Genome 36(1):173–180

    Article  CAS  PubMed  Google Scholar 

  • David JL, Dusautoir JC, Raynauld C, Roumet P (1999) Heritable variation in the ability to produce haploid embryos via pollination with maize and embryo rescue in durum wheat. Genome 42:338–342

    Article  Google Scholar 

  • Davies DR (1974) Chromosome elimination in inter-specific hybrids. Heredity 32:267–270

    Article  Google Scholar 

  • De Maine MJ (2003) Potato haploid technologies. In: Maluszynski M et al (eds) Doubled haploid production in crop plants: a manual. Kluwer, Dordrecht, pp 241–247

    Chapter  Google Scholar 

  • Dhaliwal HS, Gill BS, Waines JG (1977) Analysis of induced homoeologous pairing in a ph mutant wheat × rye hybrid. J Hered 68:206–209

    Google Scholar 

  • Dhiman R, Rana V, Chaudhary HK (2012) Himalayan maize—potential pollen source for maize mediated system of chromosome elimination approach in DH breeding of bread wheat. Cereal Res Commun 40:246–255

    Article  Google Scholar 

  • Dirks R, van Dun K, de Snoo CB, van den Berg M, Lelivelt CL, Voermans W, Woudenberg L, de Wit JP, Reinink K, Schut JW, van der Zeeuw E, Vogelaar A, Freymark G, Gutteling EW, Keppel MN, van Drongelen P, Kieny M, Ellul P, Touraev A, Ma H, de Jong H, Wijnker E (2009) Reverse breeding: a novel breeding approach based on engineered meiosis. Plant Biotechnol J 7:837–845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dong F, Tek AL, Frasca ABL, McGrath JM, Wielgus SM, Helgeson JP, Jiang J (2005) Development and characterization of potato- Solanum brevidens chromosomal addition/substitution lines. Cytogenet Genome Res 109:368–372

    Article  CAS  PubMed  Google Scholar 

  • Dundas IS, Anugrahwati DR, Verlin DC, Park RF, Bariana HS (2007) New sources of rust resistance from alien species: meliorating linked defects and discovery. Aust J Agric Res 58:545–549

    Article  CAS  Google Scholar 

  • Dupre A, Boyer-Chatenet L, Sattler RM, Modi AP, Lee JH, Nicolette ML, Kopelovich L, Jasin M, Raer R, Paull TT, Gautier J (2008) A forward chemical genetic screen reveals an inhibitor of the mre11-rad50-nbs1 complex. Nat Chem Biol 4:119–125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dvorak J, Deal KR, Luo MC (2006) Discovery and mapping of wheat Ph1 suppressors. Genetics 174:17–27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fernandez-Silva I, Moreno E, Eduardo I, Arus P, Alvarez JM, Monforte AJ (2009) On the genetic control of heterosis for fruit shape in melon (Cucumis melo L.). J Hered 100:229–235

    Article  CAS  PubMed  Google Scholar 

  • Finch RA (1983) Tissue-specific elimination of alternative whole parental genomes in one barley hybrid. Chromosoma 88:386–393

    Article  Google Scholar 

  • Forster BP, Heberle-Bors E, Kasha KJ, Touraev A (2007) The resurgence of haploids in higher plants. Trends Plant Sci 12:368–375

    Article  CAS  PubMed  Google Scholar 

  • Gernand D, Rutten T, Varshney A, Rubtsova M, Prodanovic S, Brub C, Kumlehn J, Matzk F, Houben A (2005) Uniparental chromosome elimination at mitosis and interphase in wheat and pearl millet crosses involves micronucleus formation, progressive heterochromatinization, and DNA fragmentation. Plant Cell 17:2431–2438

    Google Scholar 

  • Gernand D, Rutten T, Pickering R, Houben A (2006) Elimination of chromosomes in Hordeum vulgare × H. bulbosum crosses at mitosis and interphase involves micronucleus formation and progressive heterochromatinization. Cytogenet Genome Res 114:169–174

    Article  CAS  PubMed  Google Scholar 

  • Gill BS, Chen PO (1987) Role of cytoplasm specific introregression in the evolution of polyploidy wheats. Proc Natl Acad Sci USA 84:6800–6804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giorgi B, Barbera F (1981) Increase of homoeologous pairing in hybrids between a ph mutant of T. turgidum L. var. durum and two tetraploid species of Aegilops kotschyi and Ae. cylindrica. Cereal Res Commun 9:205–211

    Google Scholar 

  • Guha S, Maheshwari SC (1964) In vitro production of embryos from anthers of Datura. Nature 204:497

    Article  Google Scholar 

  • Gupta SB (1969) Duration of mitotic cycle and regulation of DNA replication in Nicotiana plumbaginifolia and a hybrid derivative of N. tabacum showing chromosome instability. Can J Genet Cytol 11:133–142

    Article  Google Scholar 

  • Gustafsson  A, Hagberg A, Lundqvist U (1960) The induction of early mutants in Bonus barley. Hereditas 46:675–699

    Google Scholar 

  • Hagberg A, Hagberg G (1980) High frequency of spontaneous haploids in the progeny of an induced mutation barley. Hereditas 93:341–343

    Article  Google Scholar 

  • Hagberg G, Hagberg A (1981) Haploidy initiater gene in barley. In: Barley Genetics IV proceedings of 4th international barley genetics symposium. Edinburg, pp 686–689

    Google Scholar 

  • Hagberg A, Hagberg G (1987) Production of spontaneously doubled haploids in barley using a breeding system with marker genes and the “hap”-gene. Biologisches Zentralblatt 106:53–58

    Google Scholar 

  • Ho KM, Kasha KJ (1975) Genetic control of chromosome elimination during haploid formation in barley. Genetics 81:263–275

    CAS  PubMed  PubMed Central  Google Scholar 

  • Inagaki MN, Mujeeb-Kazi A (1995) Comparison of polyhaploid production frequencies in crosses of hexaploid wheat with maize, pearl millet and sorghum. Breed Sci 45:157–161

    Google Scholar 

  • Inagaki MN, Tahir M (1991) Efficient production of wheat haploids through intergeneric crosses. TARC Newslett 2:4

    Google Scholar 

  • Inagaki MN, Varughese G, Rajaram S, van Ginkel M, Mujeeb-Kazi A (1998) Comparison of bread wheat lines selected by doubled haploid, single-seed descent and pedigree selection methods. Theor Appl Genet 97:550–556

    Article  Google Scholar 

  • Inagkai MN, Tahir M (1990) Comparison of haploid production frequencies in wheat varieties crossed with Hordeum bulbosum L. and maize. Jpn J Breed 40:209–216

    Article  Google Scholar 

  • Ishida T, Takizawa Y, Kainuma T, Inoue J, Mikawa T, Shibata T, Suzuki H, Tashiro S, Kurumizaka H (2009) DIDS, a chemical compound that inhibits RAD51-mediated homologous pairing and strand exchange. Nucleic Acids Res 37:3367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishii T, Ueda T, Tanaka H, Tsujimoto H (2010) Chromosome elimination by wide hybridization between Triticeae or oat plant and pearl millet: pearl millet chromosome dynamics in hybrid embryo cells. Chromosome Res 18:821–831

    Article  CAS  PubMed  Google Scholar 

  • Islam AKMR, Shepherd KW (1991) Alien genetic variation in wheat. In: Gupta PK, Tsuchiya T (eds) Chromosome engineering in plants: genetics, breeding, evolution, Part A. Elsevier, Amsterdam, pp 291–319

    Chapter  Google Scholar 

  • Islam AKMR, Shehpherd KW, Sparrow DHB (1975) Addition of individual barley chromosomes to wheat. In: Gaul H (ed) Barley Genetics III. Proceedings of 3rd international barley genetics symposium, Garching, pp 260–270

    Google Scholar 

  • Islam AKMR, Shepherd KW, Sparrow DHB (1981) Isolation and characterization of euplasmic wheat-barley chromosome addition lines. Heredity 46:161  

    Google Scholar 

  • Jacobsen E, Ramanna MS (1994) Production of monohaploids of Solanum tuberosum L. and their use in genetics, molecular biology and breeding. In: Breadshaw JE, Mckay GR (eds) Potato genetics. CAB International, Wallingford, pp 155–170

    Google Scholar 

  • Jalani BS, Moss JP (1980) The site of action of the crossability genes (Kr1, Kr2) between Triticum and Secale in pollen germination, pollen tube growth, and number of pollen tubes. Euphytica 29:571–579

    Article  Google Scholar 

  • Jauhar PP, Almouslem AB (1998) Production and analyses of some intergeneric hybrids between durum wheat and Thinopyrum species. In: Jaradat AA (ed) Triticeae III. Scientific Publishers Inc., New Hampshire, pp 119–126

    Google Scholar 

  • Jauhar PP, Chibbar RN (1999) Chromosome-mediated and direct gene transfers in wheat. Genome 42:570–583

    Article  CAS  Google Scholar 

  • Jauhar PP, Peterson TS, Xu SS (2009) Cytogenetic and molecular characterization of a durum alien disomic addition line with enhanced tolerance to Fusarium head blight. Genome 52:467–483

    Article  CAS  PubMed  Google Scholar 

  • Jeberson MS (2010) Physical mapping of some triticale × wheat derived rye chromatin introgressed wheat recombinants through fluorescent in situ hybridization. Ph. D. thesis. CSK HP Agricultural University, Palampur, Himachal Pradesh, p 127

    Google Scholar 

  • Jeberson MS, Chaudhary HK, Kishore N (2012) Molecular cytogenetic studies for detection and characterization of alien chromosome/chromatin introgressions in triticale × wheat derived wheat stable lines. In: Proceedings of national symposium on plant cytogenetics: new approaches, Punjabi University, Patiala, p 99

    Google Scholar 

  • Jenczewski E, Eber F, Grimaud A, Huet S, Lucas MO, Monod H, Chevre AM (2003) Pr Bn, a major gene controlling homeologous pairing in oilseed rape (Brassica napus) haploids. Genetics 164:645–653

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ji Y, Chetelat RT (2003) Homoeologous pairing and recombination in Solanum lycopersicoides monosomic addition and substitution lines of tomato. Theor Appl Genet 106:979–989

    CAS  PubMed  Google Scholar 

  • Jin W, Melo JR, Nagaki K, Talbert PB, Henikoff S, Dawe RK, Jiang J (2004) Maize centromeres: organization and functional adaptation in the genetic background of oat. Plant Cell 16:571–581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kasha KJ, Kao KN (1970) High frequency haploid production in barley (H. Vulgare L.). Nature 225:874–876

    Article  CAS  PubMed  Google Scholar 

  • Kermicle JL (1969) Androgenesis conditioned by a mutation in maize. Science 166:1422–1424

    Article  CAS  PubMed  Google Scholar 

  • Khrustaleva LI, de Melo PE, van Heusden AW, Kik C (2005) The integration of recombination and physical maps in a large-genome monocots using haploid genome analysis in a trihybrid Allium population. Genetics 169:1673–1685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khush GS (1973) Cytogentics of aneuploids. Academic Press, New York, pp 178–208

    Google Scholar 

  • King IP, Laurie DA (1993) Chromosome damage in early embryo and endosperm development in crosses involving the preferentially transmitted 4Sl chromosome of Aegilops sharonensis. Heredity 70:52–59

    Article  Google Scholar 

  • Kisana NS, Nkongolo KK, Quick JS, Johnson DL (1993) Production of doubled haploids by anther culture and wheat × maize method in a wheat breeding programme. Plant Breed 110:96–102

    Article  Google Scholar 

  • Kishore N, Chaudhary HK, Chahota RK, Kumar V, Sood SP, Jeberson S, Tayeng T (2011) Relative efficiency of the maize and Imperata cylindrica -mediated chromosome elimination approaches for induction of haploids of wheat-rye derivatives. Plant Breed 130:192–194

    Article  Google Scholar 

  • Komeda N, Chaudhary HK, Mukai Y (2007) Cytological evidence for chromosome elimination in wheat × Imperata cylindrica hybrids. Genes Genetic Syst 82:241–248

    Article  Google Scholar 

  • Krolow KD (1970) Investigations on compatibility between wheat and rye. Z. Pflanzenzuchtung 64:44–72

    Google Scholar 

  • Kruse A (1973) Hordeum × Triticum hybrids. Hereditas 73:157–161

    Article  Google Scholar 

  • Lange W (1971) Crosses between Hordeum vulgare L. and H. bulbosum L. 1.Production, morphology and meiosis of hybrids, haploids and dihaploids. Euphytica 20:14–29

    Article  Google Scholar 

  • Lashermes P, Beckert M (1988) A genetic control of maternal haploidy in maize (Zea mays L.) and selection of haploid inducing lines. Theor Appl Genet 76:405–410

    CAS  PubMed  Google Scholar 

  • Laurie DA, Bennett MD (1986) Wheat × maize hybridization. Can J Genet Cytol 28:313–316

    Article  Google Scholar 

  • Laurie DA, Bennett MD (1988) The production of haploid wheat plants from wheat × maize crosses. Theor Appl Genet 76:393–397

    Article  CAS  PubMed  Google Scholar 

  • Laurie DA, Bennett MD (1989) The timing of chromosome elimination in hexaploid wheat × maize crosses. Genome 32:953–961

    Article  Google Scholar 

  • Laurie DA, Reymondie S (1991) High frequencies of fertilization and haploid seedling production in crosses between commercial hexaploid wheat varieties and maize. Plant Breed 106:182–189

    Article  Google Scholar 

  • Linde-Laursen I, von Bothmer R (1999) Orderly arrangement of the chromosomes within barley genomes of chromosome-eliminating Hordeum lechleri × barley hybrids. Genome 42:225–236

    Article  Google Scholar 

  • Lukaszewski AJ, Xu X (1995) Screening large populations of wheat hybrids by C-banding. Cereal Res Commun 23:9–13

    Google Scholar 

  • Lukaszewski AJ, Rybka K, Korzun V, Malyshev SY, Lapinski B, Whitkus R (2004) Genetic and physical mapping of homoeologous recombination points involving wheat chromosome 2B and rye chromosome 2R. Genome 47:36–45

    Article  CAS  PubMed  Google Scholar 

  • Lussern M, Parisi C, Plan D, Rodríguez-Cerezo E (2011) Drivers & constraints. New plant breeding techniques State-of-the-art and prospects for commercial development. Luxembourg publication, European Union, pp 45–46

    Google Scholar 

  • Mago R, Zhang P, Bariana HS, Verlin DC, Bansal UK (2009) Development of wheat lines carrying stem rust resistance gene Sr39 with reduced Aegilops speltoides chromatin and simple PCR markers for marker-assisted selection. Theor Appl Genet 119:1441–1450

    Article  CAS  PubMed  Google Scholar 

  • Maruthachalam R, Chan SWL (2010) Haploid plants produced by centromere-mediated genome elimination. Nature 464:615

    Article  CAS  Google Scholar 

  • Matzk F, Mahn A (1994) Improved techniques for haploid production in wheat using chromosome elimination. Plant Breed 113:125–129

    Article  Google Scholar 

  • Mendiburu AO, Peloquin SJ, Mok DWS (1974) Potato breeding with haploids and 2n gametes. In: Kasha KJ (ed) Haploids in higher plants. Guelph University Press, Guelph, ON, pp 249–259

    Google Scholar 

  • Miller TE, Reader SM, Gale MD (1983) The effect of homoeologous group 3 chromosomes on chromosome pairing and crossability in Triticum aestivum. Can J Genet Cytol 25:634–641

    Article  Google Scholar 

  • Mochida K, Tsujimoto H, Sasakuma T (2004) Confocal analysis of chromosome behaviour in wheat × maize zygotes. Genome 47:199–205

    Article  PubMed  Google Scholar 

  • Montelongo-Escobedo H, Rowe PR (1969) Haploid induction in potato: cytological basis for the pollinator effect. Euphytica 18:116–123

    Google Scholar 

  • Morozumi Y, Takizawa Y, Takaku M, Kurumizaka H (2009) Human PSF binds to RAD51 and modulates its homologous-pairing and strand-exchange activities. Nucleic Acids Res 37:4296–4307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morshedi AR, Darvey NL (1995) High frequency of embryos in wheat × maize crosses. SABRAO J 27:17–22

    Google Scholar 

  • Nakamura C, Tsuchiya T (1982) Cytogentics of alien addition trisomics in sugar beets. I. Meiotic chromosome behaviour in nematode resistant trisomics. Biologisches Zentralblatt 101:227–240

    Google Scholar 

  • Naranjo T, Roca A, Giráldez R, Goicoechea PG (1988) Chromosome pairing in hybrids of ph1b mutant wheat with rye. Genome 30:639–646

    Article  Google Scholar 

  • Peng JH, Lapitan NLV (2005) Characterization of EST-derived microsatellites in the wheat genome and development of eSSR markers. Funct Integr Genomics 5:80–96

    Article  CAS  PubMed  Google Scholar 

  • Pratap A, Chaudhary HK (2007) Genetic studies on the effect of triticale × wheat F1s and maize genotypes on haploid induction following wheat × maize system. J Genet Breed 60:119–124

    Google Scholar 

  • Pratap A, Sethi GS, Chaudhary HK (2005) Relative efficiency of different Gramineae genera for haploid induction in triticale and triticale × wheat hybrids through chromosome elimination technique. Plant Breed 124:147–153

    Article  Google Scholar 

  • Pratap A, Sethi GS, Chaudhary HK (2006) Relative efficiency of anther culture and chromosome elimination technique for haploid induction in triticale × wheat and triticale × triticale hybrids. Euphytica 150:339–345

    Article  CAS  Google Scholar 

  • Randolph LF (1932) Some effects of high temperature on polyploidy and other variations in maize. Genetics 18:222–229

    CAS  Google Scholar 

  • Rather SA, Chaudhary HK, Kaila V (2014) Proportional contribution and potential of maternal and paternal genotypes for polyhaploid induction in wheat × Imperata cylindrica chromosome elimination approach. Cereal Res Commun 42(1):19–26

    Google Scholar 

  • Riley R (1966) Cytogenetics and wheat breeding. Contemporary. Agriculture 11–12:107–117

    Google Scholar 

  • Riley R, Chapman V (1958) Genetic control of the cytologically diploid behaviour of hexaploid wheat. Nature 182:713–715

    Article  Google Scholar 

  • Riley R, Chapman V (1967) The inheritance in wheat of crossability with rye. Genet Res 9:259–267

    Article  Google Scholar 

  • Riley R, Chapman V, Johnson R (1968) Introduction of yellow rust resistance of Aegilops comosa into wheat by genetically induced homoeologous recombination. Nature 217:383–384

    Article  Google Scholar 

  • Rine J, Herskowitz I (1987) Four genes responsible for a position effect on expression from HML and HMR in Saccharomyces cerevisiae. Genetics 116:9–22

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rogowsky PM, Sorrells ME, Shepherd KW, Langridge P (1993) Characterization of wheat-rye recombinants with RFLP and PCR probes. Theor Appl Genet 85:1023–1028

    Article  CAS  PubMed  Google Scholar 

  • Rokka VM (2003) Anther culture through direct embryogenesis in a genetically diverse range of potato (Solanum) species and their interspecic and intergeneric hybrids. In: Maluszynski M et al (eds) Doubled haploid production in crop plants. A manual. Kluwer, Dordrecht, pp 235–245

    Chapter  Google Scholar 

  • Rokka VM (2009) Potato haploids and breeding. In: Touraev A et al (eds) Advances in haploid production in higher plants. Springer Science + Business Media B.V, Germany, pp 199–208

    Chapter  Google Scholar 

  • Rokka VM, Pietila L, Pehu E (1996) Enhanced production of dihaploid lines via anther culture of tetraploid potato (Solanum tuberosum L. ssp. tuberosum) clones. Am J Potato Res 73:1–12

    Article  Google Scholar 

  • Ruiz MT, Voinnet O, Baulcombe DC (1998) Initiation and maintenance of virus-induced gene silencing. Plant Cell 10:937–946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanei M, Pickering R, Kumke K, Nasuda S, Houben A (2011) Loss of centromeric histone H3 (CENH3) from centromeres precedes uniparental chromosome elimination in interspecific barley hybrids. Proc Natl Acad Sci USA 108:498–505

    Article  Google Scholar 

  • Sarkar KR, Pandey A, Gayen P, Mandan JK, Kumar R, Sachan JKS (1994) Stabilization of high haploid inducer lines. Maize Genet Coop Newslett 68:64–65

    Google Scholar 

  • Schneerman MC, Charbonneau M, Weber DF (2000) A survey of ig containing materials. Maize Genet Coop Newslett 74:92–93

    Google Scholar 

  • Schwarzacher T, Leitch AR, Bennett MD, Heslop-Harrison JS (1989) In situ localization of parental genomes in a wide hybrid. Ann Bot 64:315–324

    Google Scholar 

  • Schwarzacher T, Ali N, Chaudhary HK, Graybosch R, Kapalande HV, Kinski E, Heslop-Harrison JS (2011) Fluorescent in situ hybridization as a genetic technology to analyzing chromosomal organization of alien wheat recombinant lines. IAEA- TECDOC-1664: physical mapping technologies for the identification and characterization of mutated genes to crop quality. IAEA TECDOC 1664 Subject Classification: 0203-Mutation plant breeding. IAEA, Vienna. ISBN 978-92-0- 119610-1 ISSN 1011-4298

    Google Scholar 

  • Sears ER (1952) Misdivision of univalents in common wheat. Chromosoma 4:535–550

    Article  CAS  PubMed  Google Scholar 

  • Sears ER (1956) The transfer of leaf rust resistance from Aegilops umbellulata to wheat. Brookhaven Sympos Biol 9:1–22

    Google Scholar 

  • Sears ER (1972) Chromosome engineering in wheat. In: Stadler genetics symposium 4, University of Missouri, Columbia, pp 23–38

    Google Scholar 

  • Sears ER (1973) Agropyron- wheat transfers induced by homoeologous pairing. In: Sears ER, Sears LMS (eds) Proceedings of 4th international wheat genetics symposium. Columbia, Missouri, pp 191–199

    Google Scholar 

  • Sears ER (1977) An induced mutant with homoeologous pairing in common wheat. Can J Genet Cytol 19:585–593

    Article  Google Scholar 

  • Sears ER (1981) Transfer of alien genetic material to wheat. In: Evans LT, Peacock WJ (eds) Wheat science-today and tomorrow. Cambridge University Press, Cambridge, pp 75–89

    Google Scholar 

  • Sears ER (1982) A wheat mutation conditioning an intermediate level of homoeologous pairing. Can J Genet Cytol 24:715–719

    Article  Google Scholar 

  • Shaharuddin NA, Yuanhuai H, Hongying L, Grierson D (2006) The mechanism of graft transmission of sense and antisense gene silencing in tomato plants. FEBS Lett 580:6579–6586

    Article  CAS  PubMed  Google Scholar 

  • Sharma D, Knott DR (1966) The transfer of leaf rust resistance from Agropyron to Triticum by irradiation. Can J Genet Cytol 8:137–143

    Article  Google Scholar 

  • Sharma S, Sethi GS, Chaudhary HK (2005) Influence of winter and spring wheat genetic backgrounds on haploid induction parameters and trait correlations in the wheat × maize system. Euphytica 144:199–205

    Article  Google Scholar 

  • Shatskaya OA, Zabirova ER, Shcherbak VS, Chumak MV (1994) Mass induction of maternal haploids in corn. Maize Genet Coop Newslett 68:51

    Google Scholar 

  • Singh AK, Stalker HT, Moss JP (1991) Cytogenetics and use of alien genetic variation in groundnut improvement. In: Tsuchiya T, Gupta PK (eds) Chromosome engineering in plants: genetics, breeding, evolution, Part B. Elsevier, Amsterdam, pp 65–78

    Google Scholar 

  • Singh S, Sethi GS, Chaudhary HK (2004) Differential responsiveness of winter and spring wheat genotypes to maize-mediated production of haploids. Cereal Res Commun 32:201–207

    CAS  Google Scholar 

  • Sitch LA, Snape JW, Firman SJ (1985) Intra chromosomal mapping of crossability genes in wheat (Triticum aestivum). Theor Appl Genet 70:309–314

    Article  CAS  PubMed  Google Scholar 

  • Snape JW, Simpson E, Parker BB (1986) Criteria for the selection and use of doubled haploid systems in cereal breeding programs. In: Horn W et al (eds) Genetic manipulation in plant breeding. Walter de Gruiter, New York, pp 217–229

    Google Scholar 

  • Stephan S (1969) Haploid barley from crosses of Hordeum bulbosum (2x) × Hordeum vulgare (2x). Can J Genet Cytol 11:602–608

    Article  Google Scholar 

  • Subrahmanyam NC, Kasha KJ (1973) Selective chromosomal elimination during haploid formation in barley following interspecific hybridization. Chromosoma 42:111–125

    Article  Google Scholar 

  • Suenaga K (1994) Doubled haploid system using the intergeneric crosses between wheat (Triticum aestivum) and maize (Zea mays). Bull Natl Inst Agrobiol Res 9:83–139

    CAS  Google Scholar 

  • Suenaga K, Nakajima K (1989) Efficient production of haploid wheat (Triticum aestivum) through crosses between Japanese wheat and maize (Zea mays). Plant Cell Rep 8:263–266

    Article  CAS  PubMed  Google Scholar 

  • Takaku M, Kainuma T, Ishida-Takaku T, Ishigami S, Suzuki H, Tashiro S, van Soest RW, Nakao Y, Kurumizaka H (2011) Halenaquinone, a chemical compound that specifically inhibits the secondary DNA binding of RAD51. Genes Cells 16(4):427–436

    Article  CAS  PubMed  Google Scholar 

  • Tayeng T, Chaudhary HK, Kishore N (2012) Enhancing doubled haploid production effi ciency in wheat (Triticum aestivum L. em. Thell) by in vivo colchicine manipulation in Imperata cylindrica - mediated chromosome elimination approach. Plant Breed 131:574–578

    Article  CAS  Google Scholar 

  • Valkoun JJ (2001) Wheat pre-breeding using progenitors. Euphytica 119:17–23

    Article  Google Scholar 

  • Wijnker E, Dun K, de Snoo CB, Lelivelt CL, Keurentjes JJ, Naharudin NS, Ravi M, Chan SW, de Jong H, Dirks R (2012) Reverse breeding in Arabidopsis thaliana generates homozygous parental lines from a heterozygous plant. Nat Genet 44:467–470

    Google Scholar 

  • Wall AM, Riley R, Chapman V (1971) Wheat mutants permitting homoeologous meiotic chromosomes pairing. Genetics Res 18:311–328

    Article  Google Scholar 

  • Wedzony M, Röber F, Geiger HH (2004) Chromosome elimination observed in selfed progenies of maize inducer line RWS. In: VII. Intern. Congress on Sexual Plant Reproduction. Maria Curie-Sklodowska University Press, Lublin, p 173

    Google Scholar 

  • Wijnker E, de Jong H (2008) Managing meiotic recombination in plant breeding. Trends Plant Sci 13:640–646

    Article  CAS  PubMed  Google Scholar 

  • Wijnker E, Deurhof L, Jose B, de Snoo CB, Blankestijn H, Becker F, Ravi M, Chan SWL, van Dun K, Lelivelt CL, de Jong H, Dirks H, Keurentjes JJ (2014) Hybrid recreation by reverse breeding in Arabidopsis thaliana. Nat Protoc 9:761–772

    Article  CAS  PubMed  Google Scholar 

  • Wu L, Zheng C, Jia Z, Yuan J (1989) Chromosome pairing in hybrids of ph1b and nulli5B-tetra5D wheat with rye and Agrotricum. Plant Breed 102:281–285

    Google Scholar 

  • Yamamoto M, Mukai Y (1989) Application of fluorescence in situ hybridization to molecular cytogenetics of wheat. Wheat Inf Serv 69:30–32

    Google Scholar 

  • Yu MQ, Jaheir J, Person-Dedryver F (1995) Studies on the effect of Ph1b gene on the F1, BC1, BC2, BC3 crosses between wheat and Ae. variabilis and the transfer of cereal root knot nematode (M. naasi) resistance. Acta Agronomica Sinica 21(2):136–144

    Google Scholar 

  • Zenketler M, Straub J (1979) Cyto-embryological study on the process of fertilization and the development of haploid embryo of Triticum aestivum (2n = 42) after crossing with Hordeum bulbosum (2n = 14). Z Pflanzenzuchtung 82:36–44

    Google Scholar 

  • Zenkteler M, Nitzsche W (1984) Wide hybridization experiments in cereals. Theor Appl Genet 68:311–316

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Qiu F, Liu Y, Ma K, Li K, Xu S (2008) Chromosome elimination and in vivo haploid production induced by Stock 6-derived inducer line in maize (Zea mays L.). Plant Cell Rep 27:1851–1860

    Article  CAS  PubMed  Google Scholar 

  • Zheng YL, Luo MC, Yen C, Yang JL (1992) Chromosome location of a new crossability gene in common wheat. Wheat Inf Serv 75:36–40

    Google Scholar 

Download references

Acknowledgments

The authors are highly obliged to Prof. Yasuhiko Mukai, Osaka Kyoiku University, Japan and Dr. Trude Schwarzacher, Department of Biology, University of Leicester, UK, for extending their expertise in getting the resolution of certain results mentioned in this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harinder Kumar Chaudhary .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Chaudhary, H.K., Kaila, V., Rather, S.A., Jamwal, N.S., Badiyal, A. (2016). Chromosome Engineering for High Precision Crop Improvement. In: Rajpal, V., Rao, S., Raina, S. (eds) Gene Pool Diversity and Crop Improvement. Sustainable Development and Biodiversity, vol 10. Springer, Cham. https://doi.org/10.1007/978-3-319-27096-8_10

Download citation

Publish with us

Policies and ethics