Skip to main content

Solanum tuberosum

  • Chapter
  • First Online:
Edible Medicinal and Non-Medicinal Plants

Abstract

Potato plant habit

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Selected References

  • Albishi T, John JA, Al-Khalifa AS, Shahidi F (2013) Phenolic content and antioxidant activities of selected potato varieties and their processing by-products. J Funct Foods 5(2):590–600

    Article  CAS  Google Scholar 

  • Al-Saikhan MS, Howard LR, Miller JC Jr (1995) Antioxidant activity and total phenolics in different genotypes of potato (Solanum tuberosum L.). J Food Sci 60:341–343

    Article  CAS  Google Scholar 

  • Alvani K, Qi X, Tester RF, Snape CE (2011) Physico-chemical properties of potato starches. Food Chem 125(3):958–965

    Article  CAS  Google Scholar 

  • Amado IR, Franco D, Sánchez M, Zapata C, Vázquez JA (2014) Optimisation of antioxidant extraction from Solanum tuberosum potato peel waste by surface response methodology. Food Chem 165:290–299

    Article  CAS  PubMed  Google Scholar 

  • Andre CM, Ghislain M, Bertin P, Oufir M, Herrera Mdel R, Hoffmann L, Hausman JF, Larondelle Y, Evers D (2007a) Andean potato cultivars (Solanum tuberosum L.) as a source of antioxidant and mineral micronutrients. J Agric Food Chem 55(2):366–378

    Article  CAS  PubMed  Google Scholar 

  • Andre CM, Oufir M, Guignard C, Hoffmann L, Hausman J-F, Evers D, Larondelle Y (2007b) Antioxidant profiling of native andean potato tubers (Solanum tuberosum L.) reveals cultivars with high levels of β-carotene, α-tocopherol, chlorogenic acid, and petanin. J Agric Food Chem 55(26):10839–10849

    Article  CAS  PubMed  Google Scholar 

  • Andre CM, Schafleitner R, Guignard C, Oufir M, Aliaga CA, Nomberto G, Hoffmann L, Hausman JF, Evers D, Larondelle Y (2009) Modification of the health-promoting value of potato tubers field grown under drought stress: emphasis on dietary antioxidant and glycoalkaloid contents in five native andean cultivars (Solanum tuberosum L.). J Agric Food Chem 57(2):599–609

    Article  CAS  PubMed  Google Scholar 

  • Andrews DL, Beames B, Summers MD, Park WD (1988) Characterization of the lipid acyl hydrolase activity of the major potato (Solanum tuberosum) tuber protein, patatin, by cloning and abundant expression in a baculovirus vector. Biochem J 252(1):199–206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anstis PJP, Northcote DH (1975) Cytokinin activity in potato tuber extracts. Z Pflanzenphysiol 75(3):273–275

    Article  Google Scholar 

  • Arab A, Trigo JR, Lourenção AL, Peixoto AM, Ramos F, Bento JM (2007) Differential attractiveness of potato tuber volatiles to Phthorimaea operculella (Gelechiidae) and the predator Orius insidiosus (Anthocoridae). J Chem Ecol 33(10):1845–1855

    Article  CAS  PubMed  Google Scholar 

  • Ardenne M, Steinfelder K, Tummler R, Schreiber K (1963) Molekul-massenspektrographie von naturstoffen. 1. Mitteilung: steroide. Experientia 19:178–180

    Article  CAS  Google Scholar 

  • Ardenne M, Osske G, Schreiber K, Steinfelder K, Tummler R (1965) Sterine und Ttriterpenoide. X. Über die sterine des kartoffelkäfers, Leptinotarsa decemlineata Say. J Insect Physiol 11(10):1365–1376

    Article  Google Scholar 

  • Arrieta-Baez D, Stark RE (2006) Using trifluoroacetic acid to augment studies of potato suberin molecular structure. J Agric Food Chem 54(26):9636–9641

    Article  CAS  PubMed  Google Scholar 

  • Asano N, Kato A, Matsui K, Watson AA, Nash RJ, Molyneux RJ, Hackett L, Topping J, Winchester B (1997) The effects of calystegines isolated from edible fruits and vegetables on mammalian liver glycosidases. Glycobiology 7(8):1085–1088

    Article  CAS  PubMed  Google Scholar 

  • Attoumbré J, Lesur D, Giordanengo P, Baltora-Rosset S (2012) Preparative separation of glycoalkaloids α-solanine and α-chaconine by centrifugal partition chromatography. J Chromatogr B Analyt Technol Biomed Life Sci 908:150–154

    Article  PubMed  CAS  Google Scholar 

  • Attoumbré J, Giordanengo P, Baltora-Rosset S (2013) Solanidine isolation from Solanum tuberosum by centrifugal partition chromatography. J Sep Sci 36(14):2379–2385

    Article  PubMed  CAS  Google Scholar 

  • Azim A, Shaikh HA, Ahmad R (1982) Effect of feeding greened potatoes on different visceral organs and blood plasma of rabbits. J Sci Food Agric 33(12):1275–1279

    Article  CAS  PubMed  Google Scholar 

  • Aziz A, Randhawa MA, Butt MS, Asghar A, Yasin M, Shibamoto T (2012) Glycoalkaloids (α-chaconine and α-solanine) contents of selected Pakistani potato cultivars and their dietary intake assessment. J Food Sci 77(3):T58–T61

    Article  CAS  PubMed  Google Scholar 

  • Bártová V, Bárta J (2009) Chemical composition and nutritional value of protein concentrates isolated from potato (Solanum tuberosum L.) fruit juice by precipitation with ethanol or ferric chloride. J Agric Food Chem 57(19):9028–9034

    Article  PubMed  CAS  Google Scholar 

  • Baup M (1826) Extrait d’une lettre sur plusieurs nouvelles substances. Ann Chim Phys 31:108–109

    Google Scholar 

  • Bellakhdar J (1997) La pharmacopée marocaine traditionnelle: Médecine arabe ancienne et savoirs populaires. Ibis Press, Paris, 764 pp. (in French)

    Google Scholar 

  • Bergenstråhle A, Tillberg E, Jonsson L (1992) Regulation of glycoalkaloid accumulation in potato tuber disks. J Plant Physiol 140(3):269–275

    Article  Google Scholar 

  • Bergenstråhle A, Borga P, Jonsson MV (1996) Sterol composition and synthesis in potato tuber discs in relation to glycoalkaloid synthesis. Phytochemistry 41:155–161

    Article  Google Scholar 

  • Bernards MA, Razem FA (2001) The poly(phenolic) domain of potato suberin: a non-lignin cell wall bio-polymer. Phytochemistry 57(7):1115–1122

    Article  CAS  PubMed  Google Scholar 

  • Bethke PC, Bussan AJ (2013) Acrylamide in processed potato products. Am J Potato Res 90(5):403–424

    Article  CAS  Google Scholar 

  • Blanda G, Cerretani L, Comandini P, Toschi TG, Lercker G (2010) Investigation of off-odour and off-flavour development in boiled potatoes. Food Chem 118(2):283–290

    Article  CAS  Google Scholar 

  • Blasiole S, Biondi E, Samudrala D, Spinelli F, Cellini A, Bertaccini A, Cristescu SM, Braschi I (2014) Identification of volatile markers in potato brown rot and ring rot by combined GC-MS and PTR-MS techniques: study on in vitro and in vivo samples. J Agric Food Chem 62:337–347

    Article  CAS  Google Scholar 

  • Boemer A, Mattis H (1924) Der solaningehalt der kartoffeln. Z Unters Nahr Genussm Gebrauchs-gegenstaende 47:97–127

    Google Scholar 

  • Bolter CJ, Dicke M, Van Loon JJ, Visser JH, Posthumus MA (1997) Attraction of Colorado potato beetle to herbivore-damaged plants during herbivory and after its termination. J Chem Ecol 23(4):1003–1023

    Article  CAS  Google Scholar 

  • Breithaupt DE, Bamedi A (2002) Carotenoids and carotenoid esters in potatoes (Solanum tuberosum L.): new insights into an ancient vegetable. J Agric Food Chem 50(24):7175–7181

    Article  CAS  PubMed  Google Scholar 

  • Bretzloff CW (1971) A method for the rapid estimation of glycoalkaloids in potato tubers. Am Potato J 48(5):158–162

    Article  Google Scholar 

  • Brown CR (2005) Antioxidants in potato. Am J Potato Res 82(2):163–172

    Article  CAS  Google Scholar 

  • Brown CR (2006) Anthocyanin and carotenoid contents in potato: breeding for the specialty market. Proc Idaho Winter Commod Schools 39:157–163

    Google Scholar 

  • Brown CR, Wrolstad R, Durst R, Yang C-P, Clevidence BA (2003) Breeding studies in potatoes containing high concentrations of anthocyanins. Am J Potato Res 80:241–249

    Article  CAS  Google Scholar 

  • Brown CR, Culley D, Bonierbale M, Amorós W (2007) Anthocyanin, carotenoid content, and antioxidant values in native South American potato cultivars. HortScience 42(7):1733–1736

    Google Scholar 

  • Brown CR, Durst RW, Wrolstad R, De Jong W (2008) Variability of phytonutrient content of potato in relation to growing location and cooking method. Potato Res 51(3–4):259–270

    Article  CAS  Google Scholar 

  • Bub A, Möseneder J, Wenzel G, Rechkemmer G, Briviba K (2008) Zeaxanthin is bioavailable from genetically modified zeaxanthin-rich potatoes. Eur J Nutr 47(2):99–103

    Article  CAS  PubMed  Google Scholar 

  • Burgos G, Muñoa L, Sosa P, Bonierbale M, zum Felde T, Díaz C (2013) In vitro bioaccessibility of lutein and zeaxanthin of yellow fleshed boiled potatoes. Plant Foods Hum Nutr 68(4):385–390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burton WG, Meigh DF (1971) The production of growth-suppressing volatile substances by stored potato tubers. Potato Res 14(2):96–101

    Article  CAS  Google Scholar 

  • Bushway RJ, Ponnampalam R (1981) α-Chaconine and α-solanine content of potato products and their stability during several modes of cooking. Agric Food Chem 29(4):814–817

    Article  CAS  Google Scholar 

  • Bushway RJ, Bureau JL, McGann DF (1983) Alpha-chaconine and alpha-solanine content of potato peels and potato peel products. J Food Sci 48:84–86

    Article  CAS  Google Scholar 

  • Buttery RG (1973) Unusual volatile carbonyl components of potato chips. J Agric Food Chem 21(1):31–33

    Article  CAS  Google Scholar 

  • Buttery RG, Ling LC (1972) Characterization of nonbasic steam volatile components of potato chips. J Agric Food Chem 20(3):698–700

    Article  Google Scholar 

  • Buttery RG, Ling LC (1973) Earthy aroma of potatoes. J Agric Food Chem 21(4):745–746

    Article  CAS  Google Scholar 

  • Buttery RG, Seifert RM, Ling LC (1970) Characterization of some volatile potato components. J Agric Food Chem 18(3):538–539

    Article  CAS  Google Scholar 

  • Buttery RG, Seifert RM, Guadagni DG, Ling LC (1971) Characterization of volatile pyrazine and pyridine components of potato chips. J Agric Food Chem 19(5):969–971

    Article  CAS  Google Scholar 

  • Buttery RG, Guadagni DG, Ling LC (1973) Volatile components of baked potatoes. J Sci Food Agric 24:1125–1131

    Article  CAS  Google Scholar 

  • Cahill MG, Caprioli G, Vittori S, James KJ (2010) Elucidation of the mass fragmentation pathways of potato glycoalkaloids and aglycons using Orbitrap mass spectrometry. J Mass Spectrom 45(9):1019–1025

    Article  CAS  PubMed  Google Scholar 

  • Carlin JT, Jin QZ, Huang TC, Ho CT, Chang SS (1986) Identification of alkyloxazoles in the volatile compounds from French-fried potatoes. J Agric Food Chem 34(4):621–623

    Article  CAS  Google Scholar 

  • Carlin JT, Ho CT, Chang SS, Velluz A, Pickenhagen W (1990) Analysis of French fried potato flavor: identification of 3-(methylthio) alkanals. Lebensm Wiss Technol 23(3):276

    CAS  Google Scholar 

  • Castro G, Kraus T, Abdala G (1999) Endogenous jasmonic acid and radial cell expansion in buds of potato tubers. J Plant Physiol 155(6):706–710

    Article  CAS  Google Scholar 

  • Chataing B, Concepcion JL, Lobaton R, Usubillaga A (1998) Inhibition of Trypanosoma cruzi growth in vitro by Solanum alkaloids: a comparison with ketoconazole. Planta Med 64(1):31–36

    Article  CAS  PubMed  Google Scholar 

  • Chiou A, Salta FN, Kalogeropoulos N, Mylona A, Ntalla I, Andrikopoulos NK (2007) Retention and distribution of polyphenols after pan-frying of French fries in oils enriched with olive leaf extract.J. Food Sci 72(8):S574–S584

    Article  CAS  Google Scholar 

  • Chiou A, Kalogeropoulos N, Salta FN, Efstathiou P, Andrikopoulos NK (2009) Pan-frying of French fries in three different edible oils enriched with olive leaf extract: oxidative stability and fate of microconstituents. LWT-Food Sci Technol 42(6):1090–1097

    Article  CAS  Google Scholar 

  • Chong ES, McGhie TK, Heyes JA, Stowell KM (2013) Metabolite profiling and quantification of phytochemicals in potato extracts using ultra-high-performance liquid chromatography-mass spectrometry. J Sci Food Agric 93(15):3801–3808

    Article  CAS  PubMed  Google Scholar 

  • Coleman EC, Ho CT (1980) Chemistry of baked potato flavor. 1. Pyrazines and thiazoles indentified in the volatile flavor of baked potato. J Agric Food Chem 28(1):66–68

    Article  CAS  Google Scholar 

  • Coleman EC, Ho CT, Chang SS (1981) Isolation and identification of volatile compounds from baked potatoes. J Agric Food Chem 29(1):42–48

    Article  CAS  Google Scholar 

  • Coquoz JL, Buchala A, Métraux JP (1998) The biosynthesis of salicylic acid in potato plants. Plant Physiol 117(3):1095–1101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Creech DL, Workman M, Harrison MD (1973) The influence of storage factors on endogenous ethylene production by potato tubers. Am Potato J 50(5):145–150

    Article  CAS  Google Scholar 

  • Cummings JH, Bingham SA, Heaton KW, Eastwood MA (1992) Fecal weight, colon cancer risk, and dietary intake of nonstarch polysaccharides (dietary fiber). Gastroenterology 103:1783–1789

    Article  CAS  PubMed  Google Scholar 

  • Curl AL, Nelson EK (1940) The non-volatile acids of the potato. Am Potato J 17(12):328–330

    Article  CAS  Google Scholar 

  • Dale MFB, Mackay GR (1994) Inheritance of table and processing quality. In: Bradshaw JE, Mackay GR (eds) Potato genetics. CAB International, Wallingford, pp 285–315

    Google Scholar 

  • Dattatreya RM, Nuijen S, van Swaaij AC, Klopper PJ (1991) Evaluation of boiled potato peel as a wound dressing. Burns 17(4):323–328

    Article  CAS  PubMed  Google Scholar 

  • Davies AMC, Blincow PJ (1984) Glycoalkaloid content of potatoes and potato products sold in the UK. J Sci Food Agric 35(5):553–557

    Article  CAS  Google Scholar 

  • De Lacy Costello B, Evans P, Ewen R, Gunson H, Ratcliffe NM, Spencer-Phillips PT (1999) Identification of volatiles generated by potato tubers (Solanum tuberosum CV: Maris Piper) infected by Erwinia carotovora, Bacillus polymyxa and Arthrobacter sp. Plant Pathol 48(3):345–351

    Article  Google Scholar 

  • De Lacy Costello BPJ, Evans P, Ewen RJ, Gunson HE, Jones PRH, Ratcliffe NM, Spencer-Phillips PTN (2001) Gas chromatography–mass spectrometry analyses of volatile organic compounds from potato tubers inoculated with Phytophthora infestans or Fusarium coeruleum. Plant Pathol 50(4):489–496

    Article  Google Scholar 

  • De Lorenzo MS, Menna PL, Alonso DF, Gomez E (2001) In vitro activity of a Solanum tuberosum extract against mammary carcinoma cells. Planta Med 67:164–166

    Article  PubMed  Google Scholar 

  • De Sotillo DR, Hadley M, Holm ET (1994a) Phenolics in aqueous potato peel extract: extraction, identification and degradation. J Food Sci 59(3):649–651

    Article  Google Scholar 

  • De Sotillo DR, Hadley M, Holm ET (1994b) Potato peel waste: stability and antioxidant activity of a freeze‐dried extract. J Food Sci 59(5):1031–1033

    Article  Google Scholar 

  • De Sotillo DR, Hadley M, Wolf‐Hall C (1998) Potato peel extract a nonmutagenic antioxidant with potential antimicrobial activity. J Food Sci 63(5):907–910

    Article  Google Scholar 

  • Deck RE, Chang SS (1965) Identification of 2,5-dimethylpyrazine in the volatile flavour compounds of potato chips. Chem Ind (London) 30:1343–1344

    CAS  Google Scholar 

  • Deck RE, Pokorny J, Chang SS (1973) Isolation and identification of volatile compounds from potato chips. J Food Sci 38(2):345–349

    Article  CAS  Google Scholar 

  • Del Mar Verde Méndez C, Rodríguez Delgado MÁ, Rodríguez Rodríguez EM, Díaz Romero C (2004) Content of free phenolic compounds in cultivars of potatoes harvested in Tenerife (Canary Islands). J Agric Food Chem 52(5):1323–1327

    Article  CAS  Google Scholar 

  • Delgado JA, Schwarz PB, Gillespie J, Rivera-Varas VV, Secor GA (2010) Trichothecene mycotoxins associated with potato dry rot caused by Fusarium graminearum. Phytopathology 100(3):290–296

    Article  PubMed  Google Scholar 

  • Desborough S, Peloquin SJ (1966) Disc electrophoresis of tuber proteins from Solanum species and interspecific hybrids. Phytochemistry 5:727–733

    Article  CAS  Google Scholar 

  • Desta B (1993) Ethiopian traditional herbal drugs.Part II: antimicrobial activity of 63 medicinal plants. J Ethnopharmacol 39(2):129–139

    Article  CAS  PubMed  Google Scholar 

  • Deusser H, Guignard C, Hoffmann L, Evers D (2012) Polyphenol and glycoalkaloid contents in potato cultivars grown in Luxembourg. Food Chem 135(4):2814–2824

    Article  CAS  PubMed  Google Scholar 

  • Dobson G, Griffiths DW, Davies HV, McNicol JW (2004) Comparison of fatty acid and polar lipid contents of tubers from two potato species, Solanum tuberosum and Solanum phureja. J Agric Food Chem 52(20):6306–6314

    Article  CAS  PubMed  Google Scholar 

  • Dornseifer TP, Powers JJ (1965) Volatile constituents of potato chips and changes during storage. Food Technol 19:877–879

    CAS  Google Scholar 

  • Dresow JF, Böhm H (2009) The influence of volatile compounds of the flavour of raw, boiled and baked potatoes: Impact of agricultural measures on the volatile components. Landbauforsch 4(59):309–338

    Google Scholar 

  • Duckham SC, Dodson AT, Bakker J, Ames JM (2001) Volatile flavour components of baked potato flesh. A comparison of eleven potato cultivars. Nahrung 45(5):317–323

    Article  CAS  PubMed  Google Scholar 

  • Duckham SC, Dodson AT, Bakker J, Ames JM (2002) Effect of cultivar and storage time on the volatile flavor components of baked potato. J Agric Food Chem 50(20):5640–5648

    Article  CAS  PubMed  Google Scholar 

  • Eichhorn S, Winterhalter P (2005) Anthocyanins from pigmented potato (Solanum tuberosum L.) varieties. Food Res Int 38(8–9):943–948

    Article  CAS  Google Scholar 

  • Ek KL, Wang S, Copeland L, Brand-Miller JC (2014) Discovery of a low-glycaemic index potato and relationship with starch digestion in vitro. Br J Nutr 111(4):699–705

    Article  CAS  PubMed  Google Scholar 

  • Ellner FM (2002) Mycotoxins in potato tubers infected byFusarium sambucinum. Mycotoxin Res 18(2):57–61

    Article  CAS  PubMed  Google Scholar 

  • Engelbrecht L, Bielinska-Czarnecka M (1972) Increase of cytokinin activity in potato tubers near the end of dormancy. Biochem Physiol Pflanz 163:499–504

    CAS  Google Scholar 

  • Englyst HN, Kingman SM, Cummings JH (1992) Classification and measurement of nutritionally important starch fractions. Eur J Clin Nutr 46(suppl 2):S33–S50

    PubMed  Google Scholar 

  • Espelie KE, Sadek NZ, Kolattukudy PE (1980) Composition of suberin-associated waxes from the subterranean storage organs of seven plants. Planta 148(5):468–476

    Article  CAS  PubMed  Google Scholar 

  • Ezekiel R, Rana G, Singh N, Singh S (2007) Physicochemical, thermal and pasting properties of starch separated from γ-irradiated and stored potatoes. Food Chem 105(4):1420–1429

    Article  CAS  Google Scholar 

  • Ezekiel R, Rana G, Singh N, Singh S (2010) Physico-chemical and pasting properties of starch from stored potato tubers. J Food Sci Technol 47(2):195–201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ezekiel R, Singh N, Sharma S, Kaur A (2013) Beneficial phytochemicals in potato—a review. Food Res Int 50(2):487–496

    Article  CAS  Google Scholar 

  • Faivre J, Boutron MC, Quipourt V (1993) Diet and large bowel cancer. In: Zappia V (ed) Advances in nutrition and cancer. Plenum Press, New York, pp 107–118

    Chapter  Google Scholar 

  • FAO (2014) FAO STAT. Food and Agricultural Organization of United Nations: Economic And Social Department: The Statistical Division. http://faostat.fao.org/site/567/DesktopDefault.aspx?PageID=567

  • Fernandes G, Velangi A, Wolever TM (2005) Glycemic index of potatoes commonly consumed in North America. J Am Diet Assoc 105(4):557–562

    Article  PubMed  Google Scholar 

  • Fernandez-Orozco R, Gallardo-Guerrero L, Hornero-Méndez D (2013) Carotenoid profiling in tubers of different potato (Solanum sp) cultivars: accumulation of carotenoids mediated by xanthophyll esterification. Food Chem 141(3):2864–2872

    Article  CAS  PubMed  Google Scholar 

  • Filmer AAE, Rhodes MJC (1984) An assessment of 1, 4, 6-trimethylnaphthalene as a sprout suppressant for stored potato tubers. Potato Res 27(4):383–392

    Article  CAS  Google Scholar 

  • Filmer AAE, Rhodes MJC (1985) Investigation of sprout-growth-inhibitory compounds in the volatile fraction of potato tubers. Potato Res 28(3):361–377

    Article  CAS  Google Scholar 

  • Fischer J (1991) Untersuchungen über flüchtige aromastoffe der kartoffel. II. Der einfluss differenzierter nährstoffgaben auf das spektrum der aromastoffe in kartoffeln. (Studies on the volatile aromatics in potato. II. The effect of nutrient input on the aromatic spectrum of potato). Potato Res 34:169–178

    Article  CAS  Google Scholar 

  • Fitzpatrick TJ, Herb SF, Osman SF, McDermott JA (1977) Potato glycoalkaloids: increases and variations of ratios in aged slices over prolonged storage. Am Potato J 54(11):539–544

    Article  CAS  Google Scholar 

  • Foot RJ, Haase NU, Grob K, Gondé P (2007) Acrylamide in fried and roasted potato products: a review on progress in mitigation. Food Addit Contam 24(Suppl 1):37–46

    Article  CAS  PubMed  Google Scholar 

  • Fossen T, Øvstedal DO, Slimestad R, Andersen ØM (2003) Anthocyanins from a Norwegian potato cultivar. Food Chem 81(3):433–437

    Article  CAS  Google Scholar 

  • Freedman MR, Keast DR (2011) White potatoes, including french fries, contribute shortfall nutrients to children’s and adolescents’ diets. Nutr Res 31(4):270–277

    Article  CAS  PubMed  Google Scholar 

  • Freedman MR, Keast DR (2012) Potatoes, including French fries, contribute key nutrients to diets of US adults: NHANES 2003–2006. J Nutr Therap 1(1):1–11

    CAS  Google Scholar 

  • Friedman M (2006) Potato glycoalkaloids and metabolites: roles in the plant and in the diet. J Agric Food Chem 54:8655–8681

    Article  CAS  PubMed  Google Scholar 

  • Friedman M, Dao L (1992) Distribution of glycoalkaloids in potato plants and commercial potato products. Agric Food Chem 40(3):419–423

    Article  CAS  Google Scholar 

  • Friedman M, McDonald GM (1997) Potato glycoalkaloids: chemistry, analysis, safety, and plant physiology. Crit Rev Plant Sci 16:55–132

    Article  CAS  Google Scholar 

  • Friedman M, Rayburn JR, Bantle JA (1991) Developmental toxicology of potato alkaloids in the frog embryo teratogenesis assay - Xenopus (FETAX). Food Chem Toxicol 29(8):537–547

    Article  CAS  PubMed  Google Scholar 

  • Friedman M, Henika PR, Mackey BE (1996) Feeding of potato, tomato and eggplant alkaloids affects food consumption and body and liver weights in mice. J Nutr 126(4):989–999

    CAS  PubMed  Google Scholar 

  • Friedman M, Henika PR, Mackey BE (2003a) Effect of feeding solanidine, solasodine and tomatidine to non-pregnant and pregnant mice. Food Chem Toxicol 41(1):61–71

    Article  CAS  PubMed  Google Scholar 

  • Friedman M, Roitman JN, Kozukue N (2003b) Glycoalkaloid and calystegine contents of eight potato cultivars. J Agric Food Chem 51(10):2964–2973

    Article  CAS  PubMed  Google Scholar 

  • Friedman M, Lee KR, Kim HJ, Lee IS, Kozukue N (2005) Anticarcinogenic effects of glycoalkaloids from potatoes against human cervical, liver, lymphoma, and stomach cancer cells. J Agric Food Chem 53(15):6162–6169

    Article  CAS  PubMed  Google Scholar 

  • FSANZ (2014) Acrylamide and food. http://www.foodstandards.gov.au/consumer/chemicals/acrylamide/Pages/default.aspx

  • Funayama S, Yoshida K, Konno C, Hikino H (1980) Structure of kukoamine A, a hypotensive principle of Lycium chinense root barks. Tetrahedron Lett 21(14):1355–1356

    Article  CAS  Google Scholar 

  • Gaffield W, Keeler RF (1996) Induction of terata in hamsters by solanidane alkaloids derived from Solanum tuberosum. Chem Res Toxicol 9(2):426–433

    Article  CAS  PubMed  Google Scholar 

  • Gao XQ, Yang Q, Minami C, Matsuura H, Kimura A (2003) Inhibitory effect of salicylhydroxamic acid on theobroxide-induced potato tuber formation. Plant Sci 165(5):993–999

    Article  CAS  Google Scholar 

  • Gao SY, Wang QJ, Ji YB (2006) Effect of solanine on the membrane potential of mitochondria in HepG2 cells and (Ca2+)i in the cells. World J Gastroenterol 12(21):3359–3367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • García-Alonso A, Goñi I (2000) Effect of processing on potato starch: in vitro availability and glycaemic index. Nahrung 44(1):19–22

    Article  PubMed  Google Scholar 

  • Gibson S, Kurilich AC (2013) The nutritional value of potatoes and potato products in the UK diet. Nutr Bull 38(4):389–399

    Article  Google Scholar 

  • Gilbert GA, Patrick AD (1952a) Enzymes of the potato concerned in the synthesis of starch. I. The separation and crystallization of Q-enzyme. Biochem J 51(2):181–186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gilbert GA, Patrick AD (1952b) Enzymes of the potato concerned in the synthesis of starch. 2. The separation of phosphorylase. Biochem J 51(2):186–190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giusti MM, Maria Fernanda Polit MF, Huseyin Ayvaz H, David Tay D, Manrique I (2014) Characterization and quantitation of anthocyanins and other phenolics in native Andean potatoes. J Agric Food Chem 62(19):4408–4416

    Article  CAS  PubMed  Google Scholar 

  • Gomez-Roldan V, Fermas S, Brewer PB, Puech-Pagès V, Dun EA, Jean-Paul Pillot J-P, Fabien Letisse F, Matusova R, Danoun S, Portais J-C, Bouwmeester H, Bécard G, Beveridge CA, Rameau C, Rochange SF (2008) Strigolactone inhibition of shoot branching. Nature 455:189–194

    Article  CAS  PubMed  Google Scholar 

  • Gorinstein S, Yamagata S, Hadziyev D (1988) Electrophoretic separation of proteins and their amino acid composition in raw and processed potatoes. J Food Biochem 12(1):37–50

    Article  CAS  Google Scholar 

  • Graves C (2001) The potato treasure of the Andes: from agriculture to culture. Int Potato Center (CIP), Lima

    Google Scholar 

  • Grieve M (1971) A modern herbal. vols 2, Penguin. Dover Publications, New York, 919 pp

    Google Scholar 

  • Griffiths DW, Shepherd T, Stewart D (2008) Comparison of the calystegine composition and content of potato sprouts and tubers from Solanum tuberosum Group Phureja and Solanum tuberosum Group Tuberosum. J Agric Food Chem 56(13):5197–5204

    Article  CAS  PubMed  Google Scholar 

  • Groot EH, Janssen LW, Kentie A, Oosterhuis HK, Trap AJL (1947) A new protein in potatoes. BiochimBiophys Acta 1:410–414

    Article  Google Scholar 

  • Guadagni DG, Buttery RG, Seifert RM, Venstrom DW (1971) Flavor enhancement of potato products. J Food Sci 36(3):363–366

    Article  CAS  Google Scholar 

  • Guadagni DG, Buttery RG, Turnbaugh JG (1972) Odour thresholds and similarity ratings of some potato chip components. J Sci Food Agric 23(12):1435–1444

    Article  CAS  Google Scholar 

  • Halford NG, Muttucumaru N, Powers SJ, Gillatt PN, Hartley L, Elmore JS, Mottram DS (2012) Concentrations of free amino acids and sugars in nine potato varieties: effects of storage and relationship with acrylamide formation. J Agric Food Chem 60:12044–12055

    Article  CAS  PubMed  Google Scholar 

  • Han KH, Hashimoto N, Hashimoto M, Noda T, Shimada K, Lee CH, Sekikawa M, Fukushima M (2006a) Red potato extract protects from d-galactosamine-induced liver injury in rats. Biosci Biotechnol Biochem 70(9):2285–2288

    Article  CAS  PubMed  Google Scholar 

  • Han KH, Sekikawa M, Shimada K, Hashimoto M, Hashimoto N, Noda T, Tanaka H, Fukushima M (2006b) Anthocyanin-rich purple potato flake extract has antioxidant capacity and improves antioxidant potential in rats. Br J Nutr 96(6):1125–1133

    Article  CAS  PubMed  Google Scholar 

  • Han KH, Matsumoto A, Shimada K, Sekikawa M, Fukushima M (2007a) Effects of anthocyanin-rich purple potato flakes on antioxidant status in F344 rats fed a cholesterol-rich diet. Br J Nutr 98(5):914–921

    Article  CAS  PubMed  Google Scholar 

  • Han KH, Shimada K, Sekikawa M, Fukushima M (2007b) Anthocyanin-rich red potato flakes affect serum lipid peroxidation and hepatic SOD mRNA level in rats. Biosci Biotechnol Biochem 71(5):1356–1359

    Article  CAS  PubMed  Google Scholar 

  • Hansen AA (1925) Two fatal cases of potato poisoning. Science 61(1578):340–341

    Article  CAS  PubMed  Google Scholar 

  • Harris PM (ed) (1978) The potato crop: the scientific basis for improvement. Chapman & Hall, London, 730 pp

    Google Scholar 

  • Hasegawa S, Johnson RM, Gould WA (1966) Effect of cold storage on chlorogenic acid content of potatoes. J Agric Food Chem 14(2):165–169

    Article  CAS  Google Scholar 

  • Hashimoto N, Nakamura Y, Noda T, Han KH, Fukushima M (2011) Effects of feeding potato pulp on cholesterol metabolism and its association with cecal conditions in rats. Plant Foods Hum Nutr 66(4):401–407

    Article  CAS  PubMed  Google Scholar 

  • Hayward A, Stirnberg P, Beveridge C, Leyser O (2009) Interactions between auxin and strigolactone in shoot branching control. Plant Physiol 151(1):400–412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hellenäs K-E, Nyman A, Slanina P, Lööf L, Gabrielsson J (1992) Determination of potato glycoalkaloids and their aglycone in blood serum by high-performance liquid chromatography. Application to pharmacokinetic studies in humans. J Chromatogr 573(1):69–78

    Article  PubMed  Google Scholar 

  • Hellenäs K-E, Branzell C, Johnsson H, Slanina P (1995a) Glycoalkaloid content of early potato varieties. J Sci Food Agric 67(1):125–128

    Article  Google Scholar 

  • Hellenäs K-E, Branzell C, Johnsson H, Slanina P (1995b) High levels of glycoalkaloids in the established Swedish potato variety Magnum Bonum. J Sci Food Agric 68(2):249–255

    Article  Google Scholar 

  • Ho CT, Coleman EC (1980) Chemistry of baked potato flour: further identification of heterocyclic compounds in the volatile flavor of baked potato. J Food Sci 45(4):1094–1095

    Article  CAS  Google Scholar 

  • Ho CT, Coleman EC (1981) Halogen compounds identified in the volatile constituents of baked potatoes. J Agric Food Chem 29(1):200–201

    Article  CAS  PubMed  Google Scholar 

  • Hossain MB, Tiwari BK, Gangopadhyay N, O’Donnell CP, Brunton NP, Rai DK (2014) Ultrasonic extraction of steroidal alkaloids from potato peel waste. Ultrason Sonochem 21(4):1470–1476

    Article  CAS  PubMed  Google Scholar 

  • Huxtable RJ (1992) The toxicology of alkaloids in foods and herbs. In: Tu AT (ed) Handbook of natural toxins, vol 7, Food poisoning. Marcel Dekker, Inc., New York, pp 237–263

    Google Scholar 

  • Hylla S, Gostner A, Dusel G, Anger H, Bartram HP, Christl SU, Kasper H, Scheppach W (1998) Effects of resistant starch on the colon in healthy volunteers: possible implications for cancer prevention. Am J Clin Nutr 67:136–142

    CAS  PubMed  Google Scholar 

  • Iablokov V, Sydora BC, Foshaug R, Meddings J, Driedger D, Churchill T, Fedorak RN (2010) Naturally occurring glycoalkaloids in potatoes aggravate intestinal inflammation in two mouse models of inflammatory bowel disease. Dig Dis Sci 55(11):3078–3085

    Article  CAS  PubMed  Google Scholar 

  • Im HW, Suh BS, Lee SU, Kozukue N, Ohnisi-Kameyama M, Levin CE, Friedman M (2008) Analysis of phenolic compounds by high-performance liquid chromatography and liquid chromatography/mass spectrometry in potato plant flowers, leaves, stems, and tubers and in home-processed potatoes. J Agric Food Chem 56(9):3341–3349

    Article  CAS  PubMed  Google Scholar 

  • Jansen G, Flamme W (2006) Coloured potatoes (Solanum tuberosum L.) – anthocyanin content and tuber quality. Genet Resour Crop Evol 53(7):1321–1331

    Article  CAS  Google Scholar 

  • Järvinen R, Silvestre AJ, Holopainen U, Kaimainen M, Nyyssölä A, Gil AM, Pascoal Neto C, Lehtinen P, Buchert J, Kallio H (2009) Suberin of potato (Solanum tuberosum var. Nikola): comparison of the effect of cutinase CcCut1 with chemical depolymerization. J Agric Food Chem 57(19):9016–9027

    Article  PubMed  CAS  Google Scholar 

  • Jobling SA, Schwall GP, Westcott RJ, Sidebottom CM, Debet M, Gidley MJ, Jeffcoat R, Safford R (1999) A minor form of starch branching enzyme in potato (Solanum tuberosum L.) tubers has a major effect on starch structure: cloning and characterisation of multiple forms of SBE A. Plant J 18(2):163–171

    Article  CAS  PubMed  Google Scholar 

  • Jocković N, Fischer W, Brandsch M, Brandt W, Dräger B (2013) Inhibition of human intestinal α-glucosidases by calystegines. J Agric Food Chem 61(23):5550–5557

    Article  PubMed  CAS  Google Scholar 

  • Johnson DF, Bennet RD, Heftmann E (1963) Cholesterol in higher plants. Science 140:198–199

    Article  CAS  PubMed  Google Scholar 

  • Johnson DF, Heftmann E, Houghland GVC (1964) The biosynthesis of sterols in Solanum tuberosum. Arch Biochem Biophys 104(1):102–105

    Article  CAS  PubMed  Google Scholar 

  • Joint FAO/WHO Expert Committee on Food Additives (JECFA) (1993) Solanine and chacocine. In: Toxicologicval evalution of certain food aditves and naturally occurring toxicants, prepared by the 39th meeting of JECFA, WHO food additives series 30. World Health Orgnization, Geneva, Switzerland

    Google Scholar 

  • Jones PG, Fenwick GR (1981) The glycoalkaloid content of some edible solanaceous fruits and potato products. J Sci Food Agric 32(4):419–421

    Article  CAS  PubMed  Google Scholar 

  • Josephson DB, Lindsay RC (1987) c4‐Heptenal: an influential volatile compound in boiled potato flavor. J Food Sci 52(2):328–331

    Article  CAS  Google Scholar 

  • Kapoor AC, Desborough SL, Li PH (1975) Potato tuber proteins and their nutritional quality. Potato Res 18(3):469–478

    Article  CAS  Google Scholar 

  • Karlsson ME, Eliasson AC (2003) Effects of time/temperature treatments on potato (Solanum tuberosum) starch: a comparison of isolated starch and starch in situ. J Sci Food Agric 83(15):1587–1592

    Article  CAS  Google Scholar 

  • Karlsson MF, Birgersson G, Cotes Prado AM, Bosa F, Bengtsson M, Witzgall P (2009) Plant odor analysis of potato: response of guatemalan moth to above- and below ground potato volatiles. J Agric Food Chem 57(13):5903–5909

    Article  CAS  PubMed  Google Scholar 

  • Karlsson MF, Birgersson G, Witzgall P, Lekfeldt JD, Nimal Punyasiri PA, Bengtsson M (2013) Guatemalan potato moth Tecia solanivora distinguish odour profiles from qualitatively different potatoes Solanum tuberosum L. Phytochemistry 85:72–81

    Article  CAS  PubMed  Google Scholar 

  • Kaspar KL, Park JS, Brown CR, Mathison BD, Navarre DA, Chew BP (2011) Pigmented potato consumption alters oxidative stress and inflammatory damage in men. J Nutr 141(1):108–111

    Article  CAS  PubMed  Google Scholar 

  • Kaspar KL, Park JS, Brown CR, Weller K, Ross CF, Mathison BD, Chew BP (2013) Sensory evaluation of pigmented flesh potatoes (Solanum tuberosum L.). Food Nutr Sci 4(1):Article ID 26766

    Google Scholar 

  • Kaur L, Singh N, Sodhi NS (2002) Some properties of potatoes and their starches II. Morphological, thermal and rheological properties of starches. Food Chem 79(2):183–192

    Article  CAS  Google Scholar 

  • Kaur A, Singh N, Ezekiel R, Guraya HS (2007) Physicochemical, thermal and pasting properties of starches separated from different potato cultivars grown at different locations. Food Chem 101(2):643–651

    Article  CAS  Google Scholar 

  • Kayonga A, Habiyaremye FX (1987) Médecine traditionnelle et plantes médicinales rwandaises. Contribution aux études ethnobotaniques de la flore rwandaise.Préfecture de Gisenyi.Univ. Nat. Rwanda Centre universitaire de recherche sur la pharmacopée et la médecine traditionnelle, CURPHAMETRA, inédit, 121 pp (in French)

    Google Scholar 

  • Keeler RF, Baker DC, Gaffield W (1990) Spirosolane-containing Solanum species and induction of congenital craniofacial malformations. Toxicon 28(8):873–884

    Article  CAS  PubMed  Google Scholar 

  • Kenny OM, McCarthy CM, Brunton NP, Hossain MB, Rai DK, Collins SG, Jones PW, Maguire AR, O’Brien NM (2013) Anti-inflammatory properties of potato glycoalkaloids in stimulated Jurkat and Raw 264.7 mouse macrophages. Life Sci 92(13):775–782

    Article  CAS  PubMed  Google Scholar 

  • Keswani MH, Vartak AM, Patil A, Davies JW (1990) Histological and bacteriological studies of burn wounds treated with boiled potato peel dressings. Burns 16(2):137–143

    Article  CAS  PubMed  Google Scholar 

  • Keukens EA, de Vrije T, Fabrie CH, Demel RA, Jongen WM, de Kruijff B (1992) Dual specificity of sterol-mediated glycoalkaloid induced membrane disruption. Biochim Biophys Acta 1110(2):127–136

    Article  CAS  PubMed  Google Scholar 

  • Keukens EA, de Vrije T, van den Boom C, de Waard P, Plasman HH, Thiel F, Chupin V, Jongen WM, de Kruijff B (1995) Molecular basis of glycoalkaloid induced membrane disruption. Biochim Biophys Acta 1240(2):216–228

    Article  PubMed  Google Scholar 

  • Keukens EA, de Vrije T, Jansen LA, de Boer H, Janssen M, de Kroon AI, Jongen WM, de Kruijff B (1996) Glycoalkaloids selectively permeabilize cholesterol containing biomembranes. Biochim Biophys Acta 1279(2):243–250

    Article  PubMed  Google Scholar 

  • Khalilova AZ, Paramonov EA, Baltaev UA, Odinokov VN, Khalilov LM (1997) Cyclic sesquiterpenes in the volatile secretions of potato leaves (Solanum tuberosum L.) and Colorado beetle (Leptinotarsa decemlineata Say). Russ Chem Bull 46(10):1805

    Article  CAS  Google Scholar 

  • Khan I, Muller K, Warmbier H (1977) Einfluss von sorte und düngung auf das spektrum flüchtiger aromastoffe in kartoffeln. (Effects of variety and fertilizer on the volatile aromatic spectrum of potatoes). Potato Res 20:235–242

    Article  CAS  Google Scholar 

  • Kim SY, Wiesenborn DP, Orr PH, Grant LA (1995) Screening potato starch for novel properties using differential scanning calorimetry. J Food Sci 60:1060–1065

    Article  CAS  Google Scholar 

  • King RR (1980) Analysis of potato glycoalkaloids by gas–liquid chromatography of alkaloid components. J Assoc Off Anal Chem 63(6):1226–1230

    CAS  PubMed  Google Scholar 

  • Kita A, Bąkowska-Barczak A, Hamouz K, Kułakowska K, Lisińska G (2013) The effect of frying on anthocyanin stability and antioxidant activity of crisps from red-and purple-fleshed potatoes (Solanum tuberosum L.). J Food Comp Anal 32(2):169–175

    Article  CAS  Google Scholar 

  • Kita A, Bąkowska-Barczak A, Lisińska G, Hamouz K, Kułakowska K (2014) Antioxidant activity and quality of red and purple flesh potato chips. LWT-Food Sci Technol 62(1) Part 2:525–531

    Google Scholar 

  • Knowles LO, Knowles NR (2012) Toxicity and metabolism of exogenous α, β-unsaturated carbonyls in potato (Solanum tuberosum L.) tubers. J Agric Food Chem 60(44):11173–11181

    Article  CAS  PubMed  Google Scholar 

  • Koda Y (1982) Changes in levels of butanol-and water-soluble cytokinins during the life cycle of potato tubers. Plant Cell Physiol 23(5):843–849

    CAS  Google Scholar 

  • Koda Y, Okazawa Y (1988) Detection of potato tuber-inducing activity in potato leaves and old tubers. Plant Cell Physiol 29:969–974

    CAS  Google Scholar 

  • Koda Y, Omer EA, Yoshihara T, Shibata H, Sakamura S, Okazawa Y (1988) Isolation of a specific potato tuber-inducing substance from potato leaves. Plant Cell Physiol 29:1047–1051

    CAS  Google Scholar 

  • Koda Y, Kikuta Y, Tazaki H, Tsujino Y, Sakamura S, Yoshihara T (1991) Potato tuber-inducing activities of jasmonic acid and related compounds. Phytochemistry 30:1435–1438

    Article  CAS  Google Scholar 

  • Koda Y, Kikuta Y, Kitahara T, Nishi T, Mori K (1992a) Comparisons of various biological activities of stereoisomers of methyl jasmonate. Phytochemistry 31:1111–1114

    Article  CAS  Google Scholar 

  • Koda Y, Takahashi K, Kikuta Y (1992b) Potato tuber-inducing activities of salicylic acid and related compounds. J Plant Growth Reg 11(4):215–219

    Article  CAS  Google Scholar 

  • Koehler PE, Mason ME, Odell GV (1971) Odor threshold levels of pyrazine compounds and assessment of their role in the flavor of roasted foods. J Food Sci 36(5):816–818

    Article  CAS  Google Scholar 

  • Kon SK (1928) The nutritional value of tuberin, the globulin of potato. Biochem J 22(1):261–267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kong AH, Fuenzalida C, Hess S, Contreras A, Vega-Gálvez A, Lemus-Mondaca R (2012) Capacidad antioxidante y compuestos fenólicos totales de una selección de doce variedades tradicionales de papa cultivadas en la región sur de Chile. Chilean J Agric Res 72(1):3–9

    Article  Google Scholar 

  • Kozukue N, Kozukue E, Mizuno S (1987) Glycoalkaloids in potato plants and tubers. HortScience 22:294–296

    CAS  Google Scholar 

  • Kozukue N, Misoo S, Yamada T, Kamijima O, Friedman M (1999) Inheritance of morphological characters and glycoalkaloids in potatoes of somatic hybrids between dihaploid Solanum acaule and tetraploid Solanum tuberosum. J Agric Food Chem 47(10):4478–4483

    Article  CAS  PubMed  Google Scholar 

  • Kröner A, Marnet N, Andrivon D, Val F (2012) Nicotiflorin, rutin and chlorogenic acid: phenylpropanoids involved differently in quantitative resistance of potato tubers to biotrophic and necrotrophic pathogens. Plant Physiol Biochem 57:23–31

    Article  PubMed  CAS  Google Scholar 

  • Kubow S, Hobson L, Iskandar MM, Sabally K, Donnelly DJ, Agellon LB (2014) Extract of Irish potatoes (Solanum tuberosum L.) decreases body weight gain and adiposity and improves glucose control in the mouse model of diet-induced obesity. Mol Nutr Food Res 58:2235–2238

    Google Scholar 

  • Kuc J (1984) Steroid glycoalkaloids and related compounds as potato quality factors. Am Potato J 61(3):123–139

    Article  CAS  Google Scholar 

  • Kvasnicka F, Jockovic N, Dräger B, Sevcík R, Cepl J, Voldrich M (2008) Electrophoretic determination of calystegines A3 and B2 in potato. J Chromatogr A 1181(1–2):137–144

    Article  CAS  PubMed  Google Scholar 

  • Lachman J, Hamouz K (2005) Red and purple coloured potatoes as a significant antioxidant source in human nutrition- a review. Plant Soil Environ 51(11):477–482

    CAS  Google Scholar 

  • Lachman J, Hamouz K, Sulc M, Orsák M, Dvorak P (2008) Differences in phenolic content and antioxidant activity in yellow and purple-fleshed potatoes grown in the Czech Republic. Plant Soil Environ 54(1):1–6

    Article  CAS  Google Scholar 

  • Lachman J, Hamouz K, Orsák M, Pivec V, Hejtmánková K, Pazderů K, Dvořák P, Čepl J (2012) Impact of selected factors–cultivar, storage, cooking and baking on the content of anthocyanins in coloured-flesh potatoes. Food Chem 133(4):1107–1116

    Article  CAS  Google Scholar 

  • Lachman J, Hamouz K, Musilová J, Hejtmánková K, Kotíková Z, Pazderů K, Domkářová J, Pivec V, Cimr J (2014) Effect of peeling and three cooking methods on the content of selected phytochemicals in potato tubers with various colour of flesh. Food Chem 161:224–229

    Article  CAS  Google Scholar 

  • Lampitt LH, Bushill JH, Rooke HS, Jackson EM (1943) Solanine, glycoside of the potato. II. Its distribution in the potato plant. J Soc Chem Ind 62(4):48–51

    Article  CAS  Google Scholar 

  • Langkilde S, Schrøder M, Stewart D, Meyer O, Conner S, Davies H, Poulsen M (2008) Acute toxicity of high doses of the glycoalkaloids, alpha-solanine and alpha-chaconine, in the Syrian Golden hamster. J Agric Food Chem 56(18):8753–8760

    Article  CAS  PubMed  Google Scholar 

  • Langkilde S, Mandimika T, Schrøder M, Meyer O, Slob W, Peijnenburg A, Poulsen M (2009) A 28-day repeat dose toxicity study of steroidal glycoalkaloids, alpha-solanine and alpha-chaconine in the Syrian Golden hamster. Food Chem Toxicol 47(6):1099–1108

    Article  CAS  PubMed  Google Scholar 

  • Langkilde S, Schrøder M, Frank T, Shepherd LV, Conner S, Davies HV, Meyer O, Danier J, Rychlik M, Belknap WR, McCue KF, Engel KH, Stewart D, Knudsen I, Poulsen M (2012) Compositional and toxicological analysis of a GM potato line with reduced α-solanine content – a 90-day feeding study in the Syrian Golden hamster. Regul Toxicol Pharmacol 64(1):177–185

    Article  CAS  PubMed  Google Scholar 

  • Langner E, Nunes FM, Pozarowski P, Kandefer-Szerszeń M, Pierzynowski SG, Rzeski W (2011) Antiproliferative activity of melanoidins isolated from heated potato fiber (Potex) in glioma cell culture model. J Agric Food Chem 59(6):2708–2716

    Article  CAS  PubMed  Google Scholar 

  • Langner E, Nunes FM, Pożarowski P, Kandefer-Szerszeń M, Pierzynowski SG, Rzeski W (2013) Melanoidins isolated from heated potato fiber (Potex) affect human colon cancer cells growth via modulation of cell cycle and proliferation regulatory proteins. Food Chem Toxicol 57:246–255

    Article  CAS  PubMed  Google Scholar 

  • Lee JH, Pangloli P (2013) Volatile compounds and storage stability of potato chips fried in mid-oleic sunflower oil. Int J Food Prop 16(3):563–573

    Article  CAS  Google Scholar 

  • Lee KR, Kozukue N, Han JS, Park JH, Chang EY, Baek EJ, Chang JS, Friedman M (2004) Glycoalkaloids and metabolites inhibit the growth of human colon (HT29) and liver (HepG2) cancer cells. J Agric Food Chem 52:2832–2839

    Article  CAS  PubMed  Google Scholar 

  • Lee SJ, Shin JS, Choi HE, Lee KG, Cho YW, An HJ, Jang DS, Jeong JC, Kwon OK, Nam JH, Lee KT (2014) Chloroform fraction of Solanum tuberosum L. cv Jayoung epidermis suppresses LPS-induced inflammatory responses in macrophages and DSS-induced colitis in mice. Food Chem Toxicol 63:53–61

    Article  PubMed  CAS  Google Scholar 

  • Leeman M, Ostman E, Björck I (2005) Vinegar dressing and cold storage of potatoes lowers postprandial glycaemic and insulinaemic responses in healthy subjects. Eur J Clin Nutr 59(11):1266–1271

    Article  CAS  PubMed  Google Scholar 

  • Leeman M, Ostman E, Björck I (2008) Glycaemic and satiating properties of potato products. Eur J Clin Nutr 62(1):87–95

    Article  CAS  PubMed  Google Scholar 

  • Leo L, Leone A, Longo C, Lombardi DA, Raimo F, Zacheo G (2008) Antioxidant compounds and antioxidant activity in “early potatoes”. J Agric Food Chem 56(11):4154–4163

    Article  CAS  PubMed  Google Scholar 

  • Lewis CE, Walker JRL, Lancaster JE, Sutton KH (1998a) Determination of anthocyanins, flavonoids and phenolic acids in potatoes. I: coloured cultivars of Solanum tuberosum L. J Sci Food Agric 77:45–57

    Article  CAS  Google Scholar 

  • Lewis CE, Walker JRL, Lancaster JE, Sutton KH (1998b) Determination of anthocyanins, flavonoids and phenolic acids in potatoes. II: wild, tuberous Solanum species. J Sci Food Agric 77:58–63

    Article  CAS  Google Scholar 

  • Lewis CE, Walker JRL, Lancaster JE (1999) Changes in anthocyanin, flavonoid and phenolic acid concentrations during development and storage of coloured potato (Solanum tuberosum L) tubers. J Sci Food Agric 79:311–316

    Article  CAS  Google Scholar 

  • Liang SB, McDonald AG (2014) Chemical and thermal characterization of potato peel waste and its fermentation residue as potential resources for biofuel and bioproducts production. J Agric Food Chem 62(33):8421–8429

    Article  CAS  PubMed  Google Scholar 

  • Lindhauer MG, De Fekete MAR (1990) Starch synthesis in potato (Solanum tuberosum) tubers: activity of selected enzymes in dependence of potassium content in storage tissue. In: Van Beusichem ML (ed) Plant nutrition—physiology and applications. Springer, Netherlands, pp 643–647

    Chapter  Google Scholar 

  • Lindner J, Jaschik S, Korpaczy J (1960) Amino acid composition and biological value of potato protein fractions. Qual Plant Mater Veg 7:290–294

    Article  Google Scholar 

  • Lisinska G, Leszczynski W (1989) Potato tubers as a raw material for processing and nutrition. In: Lisinska G, Leszczynski W (eds) Potato science and technology. Elsevier Applied Science, London

    Google Scholar 

  • Liu YW, Han CH, Lee MH, Hsu FL, Hou WC (2003) Patatin, the tuber storage protein of potato (Solanum tuberosum L.), exhibits antioxidant activity in vitro. J Agric Food Chem 51(15):4389–4393

    Article  CAS  PubMed  Google Scholar 

  • Lojzova L, Riddellova K, Hajslova J, Zrostlikova J, Schurek J, Cajka T (2009) Alternative GC–MS approaches in the analysis of substituted pyrazines and other volatile aromatic compounds formed during Maillard reaction in potato chips. Anal Chim Acta 641(1–2):101–109

    Article  CAS  PubMed  Google Scholar 

  • Lui LH, Vikram A, Abu-Nada Y, Kushalappa AC, Raghavan GSV, Al-Mughrabi K (2005) Volatile metabolic profiling for discrimination of potato tubers inoculated with dry and soft rot pathogens. Am J Potato Res 82(1):1–8

    Article  CAS  Google Scholar 

  • Mäder J, Rawel H, Kroh LW (2009) Composition of phenolic compounds and glycoalkaloids alpha-solanine and alpha-chaconine during commercial potato processing. J Agric Food Chem 57(14):6292–6297

    Article  PubMed  CAS  Google Scholar 

  • Madiwale GP, Reddivari L, Holm DG, Vanamala J (2011) Storage elevates phenolic content and antioxidant activity but suppresses antiproliferative and pro-apoptotic properties of colored-flesh potatoes against human colon cancer cell lines. J Agric Food Chem 59(15):8155–8166

    Article  CAS  PubMed  Google Scholar 

  • Madiwale GP, Reddivari L, Stone M, Holm DG, Vanamala J (2012) Combined effects of storage and processing on the bioactive compounds and pro-apoptotic properties of color-fleshed potatoes in human colon cancer cells. J Agric Food Chem 60(44):11088–11096

    Article  CAS  PubMed  Google Scholar 

  • Maga JA (1994) Potato flavor. Food Rev Int 10(1):1–48

    Article  CAS  Google Scholar 

  • Mandimika T, Baykus H, Poortman J, Garza C, Kuiper H, Peijnenburg A (2008) PI3K/AKT, JNK, and ERK pathways are not crucial for the induction of cholesterol biosynthesis gene transcription in intestinal epithelial cells following treatment with the potato glycoalkaloid alpha-chaconine. J Agric Food Chem 56(18):8745–8752

    Article  CAS  PubMed  Google Scholar 

  • Martin FL, Ames JM (2001) Comparison of flavor compounds of potato chips fried in palmolein and silicone fluid. J Am Oil Chemi Soc 78(8):863–866

    Article  CAS  Google Scholar 

  • Matsuura-Endo C, Ohara-Takada A, Chuda Y, Ono H, Yada H, Yoshida M, Kobayashi A, Tsuda S, Takigawa S, Noda T, Yamauchi H, Mori M (2006) Effects of storage temperature on the contents of sugars and free amino acids in tubers from different potato cultivars and acrylamide in chips. Biosci Biotechnol Biochem 70(5):1173–1180

    Article  CAS  PubMed  Google Scholar 

  • Mattila P, Hellström J (2007) Phenolic acids in potatoes, vegetables, and some of their products. J Food Comp Anal 20:152–160

    Article  CAS  Google Scholar 

  • Mattinen ML, Filpponen I, Järvinen R, Li B, Kallio H, Lehtinen P, Argyropoulos D (2009) Structure of the polyphenolic component of suberin isolated from potato (Solanum tuberosum var. Nikola). J Agric Food Chem 57(20):9747–9753

    Article  CAS  PubMed  Google Scholar 

  • Mazza G, Pietrzak EM (1990) Headspace volatiles and sensory characteristics of earthy, musty flavoured potatoes. Food Chem 36:97–112

    Article  CAS  Google Scholar 

  • McGill CR, Kurilich AC, Davignon J (2013) The role of potatoes and potato components in cardiometabolic health: a review. Ann Med 45(7):467–473

    Article  PubMed  Google Scholar 

  • McMillan M, Thompson JC (1979) An outbreak of suspected solanine poisoning in schoolboys: examinations of criteria of solanine poisoning. Q J Med 48(190):227–243

    CAS  PubMed  Google Scholar 

  • Meigh DF, Filmer AAE, Self R (1973) Growth-inhibitory volatile aromatic compounds produced by Solanum tuberosum tubers. Phytochemistry 12:987–993

    Article  CAS  Google Scholar 

  • Mensinga TT, Sips AJ, Rompelberg CJ, van Twillert K, Meulenbelt J, van den Top HJ, van Egmond HP (2005) Potato glycoalkaloids and adverse effects in humans: an ascending dose study. Regul Toxicol Pharmacol 41(1):66–72

    Article  CAS  PubMed  Google Scholar 

  • Miao YT, Zhang HJ, Zhang LL, Wu SJ, Sun YJ, Shan Y, Yuan Y (2014) Acrylamide and 5-hydroxymethylfurfural formation in reconstituted potato chips during frying. J Food Sci Technol 51(12):4005–4011

    Article  CAS  PubMed  Google Scholar 

  • Miča B (1976) Charakteristik der stärke ausgewählter kartoffelsorten teil 2. Gehalt an phosphor, kalium und calcium in der stärke. Starch/Stärke 28:410–413

    Article  Google Scholar 

  • Miranda L, Deußer H, Evers D (2013) The impact of in vitro digestion on bioaccessibility of polyphenols from potatoes and sweet potatoes and their influence on iron absorption by human intestinal cells. Food Funct 4(11):1595–1601

    Article  CAS  PubMed  Google Scholar 

  • Mohdaly AAA, Sarhan MA, Smetanska I, Mahmoud A (2010) Antioxidant properties of various solvent extracts of potato peel, sugar beet pulp and sesame cake. J Sci Food Agric 90(2):218–226

    Article  CAS  PubMed  Google Scholar 

  • Mohdaly AAA, Hassanien MFR, Mahmoud A, Sarhan MA, Smetanska I (2013) Phenolic extracted from potato, sugar beet, and sesame processing by-products. Int J Food Prop 16(5):1148–1168

    Article  CAS  Google Scholar 

  • Mondy NI, Gosselin B (1988) Effect of peeling on total phenols, total glycoalkaloids, discoloration and flavor of cooked potatoes. J Food Sci 53(3):756–759

    Article  CAS  Google Scholar 

  • Mookherjee BD, Deck RE, Chang SS (1965) Food flavor changes, relationship between monocarbonyl compounds and flavor of potato chips. J Agric Food Chem 13(2):131–134

    Article  CAS  Google Scholar 

  • Morris SC, Lee TH (1984) The toxicity and teratogenicity of solanaceae glycoalkaloids, particularly those of the potato (Solanum tuberosum): a review. Food Technol Aus 36:118–124

    CAS  Google Scholar 

  • Morris WL, Ross HA, Ducreux LJ, Bradshaw JE, Bryan GJ, Taylor MA (2007) Umami compounds are a determinant of the flavor of potato (Solanum tuberosum L.). J Agric Food Chem 55(23):9627–9633

    Article  CAS  PubMed  Google Scholar 

  • Morris WL, Shepherd T, Verrall SR, McNicol JW, Taylor MA (2010) Relationships between volatile and non-volatile metabolites and attributes of processed potato flavour. Phytochemistry 71(14–15):1765–1773

    Article  CAS  PubMed  Google Scholar 

  • Morris WL, Ducreux LJ, Shepherd T, Lewinsohn E, Davidovich-Rikanati R, Sitrit Y, Taylor MA (2011) Utilisation of the MVA pathway to produce elevated levels of the sesquiterpene α-copaene in potato tubers. Phytochemistry 72(18):2288–2293

    Article  CAS  PubMed  Google Scholar 

  • Mosley AR, Chase RW (1993) Selecting cultivars and obtaining healthy seed lots. In: Rowe RC (ed) Potato health management. APS Press, St Paul, pp 193

    Google Scholar 

  • Mottram DS, Wedzicha BL, Dodson AT (2002) Acrylamide is formed in the Maillard reaction. Nature 419(6906):448–449

    Article  CAS  PubMed  Google Scholar 

  • Mulinacci N, Ieri F, Giaccherini C, Innocenti M, Andrenelli L, Canova G, Saracchi M, Casiraghi MC (2008) Effect of cooking on the anthocyanins, phenolic acids, glycoalkaloids, and resistant starch content in two pigmented cultivars of Solanum tuberosum L. J Agric Food Chem 56(24):11830–11837

    Article  CAS  PubMed  Google Scholar 

  • Mullin WJ, Wolynetz MS, Emery JP, Brooks L (1993) The effect of variety, growing location, and storage on the dietary fiber content of potatoes. J Food Comp Anal 6(4):316–323

    Article  Google Scholar 

  • Mutti B, Grosch W (1999) Potent odorants of boiled potatoes. Nahrung 43:302–306

    Article  CAS  Google Scholar 

  • Muttucumaru N, Elmore JS, Curtis T, Mottram DS, Parry MA, Halford NG (2008) Reducing acrylamide precursors in raw materials derived from wheat and potato. J Agric Food Chem 56(15):6167–6172

    Article  CAS  PubMed  Google Scholar 

  • Muttucumaru N, Keys AJ, Parry MA, Powers SJ, Halford NG (2014a) Photosynthetic assimilation of 14C into amino acids in potato (Solanum tuberosum) and asparagine in the tubers. Planta 239(1):161–170

    Article  CAS  PubMed  Google Scholar 

  • Muttucumaru N, Powers SJ, Elmore JS, Briddon A, Mottram DS, Halford NG (2014b) Evidence for the complex relationship between free amino acid and sugar concentrations and acrylamide‐forming potential in potato. Ann Appl Biol 164(2):286–300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naito K, Umemura Y, Mori M, Sumida T, Okada T, Takamatsu N, Okawa Y, Hayashi K, Saito N, Honda T (1998) Acylated pelargonidin glycosides from a red potato. Phytochemistry 47(1):109–112

    Article  CAS  Google Scholar 

  • Nakamura T, Komori C, Lee Y, Hashimoto F, Yahara S, Nohara T, Ejima J (1996) Cytotoxic activities of Solanum steroidal glycosides. Biol Pharm Bull 19(4):564–566

    Article  CAS  PubMed  Google Scholar 

  • Nakasone K, Hayashi R, Hata T (1972) Composition of potato proteins. Nippon Nogei Kagakukai J 46:45–50

    Article  CAS  Google Scholar 

  • Nara K, Miyoshi T, Honma T, Koga H (2006) Antioxidative activity of bound-form phenolics in potato peel. Biosci Biotechnol Biochem 70(6):1489–1491

    Article  CAS  PubMed  Google Scholar 

  • Narváez-Cuenca CE, Vincken JP, Zheng C, Gruppen H (2013) Diversity of (dihydro) hydroxycinnamic acid conjugates in Colombian potato tubers. Food Chem 139(1–4):1087–1097

    Article  PubMed  CAS  Google Scholar 

  • Nash RJ, Rothschild M, Porter EA, Watsion AA, Waigh RD, Waterman PG (1993) Calystegines in Solanum and Datura species and the death’s-head hawk-moth (Acherontia atropus). Phytochemistry 34:1281–1283

    Article  CAS  Google Scholar 

  • Navarre DA, Pillai SS, Shakya R, Holden MJ (2011) HPLC profiling of phenolics in diverse potato genotypes. Food Chem 127:34–41

    Article  CAS  Google Scholar 

  • Navarre DA, Payyavula RS, Shakya R, Knowles NR, Pillai SS (2013) Changes in potato phenylpropanoid metabolism during tuber development. Plant Physiol Biochem 65:89–101

    Article  CAS  PubMed  Google Scholar 

  • Nikolic NC, Stankovic MZ (2003) Solanidine hydrolytic extraction and separation from the potato (Solanum tuberosum L.) vines by using solid–liquid-liquid systems. J Agric Food Chem 51(7):1845–1849

    Article  CAS  PubMed  Google Scholar 

  • Nisha P, Singhal RS, Pandit AB (2009) A study on degradation kinetics of niacin in potato (Solanum tuberosum L.). J Food Comp Anal 22(6):620–624

    Article  CAS  Google Scholar 

  • Nnomo RD, Tchouamo IR, Pinta JY (2009) Apiphytothérapie à base du miel au Cameroun. Ethnopharmacologia 44:56–63 (in French)

    Google Scholar 

  • Noda T, Kottearachchi NS, Tsuda S, Mori M, Takigawa S, Matsuura-Endo C, Kim SJ, Hashimoto N, Yamauchi H (2007) Starch phosphorus content in potato (Solanum tuberosum L.) cultivars and its effect on other starch properties. Carbohydr Polym 68(4):793–796

    Article  CAS  Google Scholar 

  • Nowacki W (2009) Characteristics of native potato cultivars register. Plant Breeding and Acclimatization Institute, Jadwisin, pp 1–34 (in Polish)

    Google Scholar 

  • Nursten HE, Sheen MR (1974) Volatile flavour components of cooked potato. J Sci Food Agric 25(6):643–663

    Article  CAS  Google Scholar 

  • Nwokocha LM, Aviria NA, Senan C, Williams PA (2014) A comparative study of properties of starches from Irish potato (Solanum tuberosum) and sweet potato (Ipomea batatas) grown in Nigeria. Starch-Stärke 66(7–8):714–723

    Article  CAS  Google Scholar 

  • Ohara-Takada A, Matsuura-Endo C, Chuda Y, Ono H, Yada H, Yoshida M, Kobayashi A, Tsuda S, Takigawa S, Noda T, Yamauchi H, Mori M (2005) Change in content of sugars and free amino acids in potato tubers under short-term storage at low temperature and the effect on acrylamide level after frying. Biosci Biotechnol Biochem 69(7):1232–1238

    Article  CAS  PubMed  Google Scholar 

  • Okeke BC, Frankenberger WT Jr (2005) Use of starch and potato peel waste for perchlorate bioreduction in water. Sci Total Environ 347(1–3):35–45

    Article  CAS  PubMed  Google Scholar 

  • Onyeneho SN, Hettiarachchy NS (1993) Antioxidant activity, fatty acids and phenolic acids compositions of potato peels. J Sci Food Agric 62(4):345–350

    Article  CAS  Google Scholar 

  • Oruna-Concha MJ, Duckham SC, Ames JM (2001) Comparison of volatile compounds isolated from the skin and flesh of four potato cultivars after baking. J Agric Food Chem 49(5):2414–2421

    Article  CAS  PubMed  Google Scholar 

  • Oruna‐Concha MJ, Bakker J, Ames JM (2002a) Comparison of the volatile components of eight cultivars ofeight cultivars of potato after microve baking. LWt food Sci Technol 35(1):80–86

    Google Scholar 

  • Oruna‐Concha MJ, Bakker J, Ames JM (2002b) Comparison of the volatile components of two cultivars of potato cooked by boiling, conventional baking and microwave baking. J Sci Food Agric 82(9):1080–1087

    Article  CAS  Google Scholar 

  • Osborne TC, Campbell GF (1896) The proteides of potato. J Am Chem Soc 18:575–582

    Article  Google Scholar 

  • Osske G, Schreiber K (1965) 24-methylen-lophenol, ein neues 4α-methyl-sterin aus Saccharum officinarum L. und Solanum tuberosum L. sterine und triterpenoide. VI. Mitteilung. Tetrahedron 21:1559–1566

    Article  CAS  Google Scholar 

  • Ostrý V, Ruprich J, Skarkova J (2010) Glycoalkaloids in potato tubers: the effect of peeling and cooking in salted water. Acta Aliment 39(2):130–135

    Article  CAS  Google Scholar 

  • Paiva E, Lister RM, Park WD (1983) Induction and accumulation of major tuber proteins of potato stems and petioles. Plant Physiol 71:161–168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parada J, Aguilera JM (2009) In vitro digestibility and glycemic response of potato starch is related to granule size and degree of gelatinization. J Food Sci 74(1):E34–E38

    Article  CAS  PubMed  Google Scholar 

  • Pareles SR, Chang SS (1974) Identification of compounds responsible for baked potato flavor. J Agric Food Chem 22(2):339–340

    Article  CAS  Google Scholar 

  • Park WD, Blackwood C, Mignery GA, Hermodson MA, Lister RM (1983) Analysis of the heterogeneity of the 40,000 molecular weight tuber glycoprotein of potatoes by immunological methods and by NH2‐terminal sequence analysis. Plant Physiol 71:156–160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parr AJ, Mellon FA, Colquhoun IJ, Davies HV (2005) Dihydrocaffeoyl polyamines (kukoamine and allies) in potato (Solanum tuberosum) tubers detected during metabolite profiling. J Agric Food Chem 53(13):5461–5466

    Article  CAS  PubMed  Google Scholar 

  • Pasare SA, Ducreux LJ, Morris WL, Campbell R, Sharma SK, Roumeliotis E, Kohlen W, van der Krol S, Bramley PM, Roberts AG, Fraser PD, Taylor MA (2013) The role of the potato (Solanum tuberosum) CCD8 gene in stolon and tuber development. New Phytol 198(4):1108–1120

    Article  CAS  PubMed  Google Scholar 

  • Patel B, Schutte R, Sporns P, Doyle J, Jewel L, Fedorak RN (2002) Potato glycoalkaloids adversely affect intestinal permeability and aggravate inflammatory bowel disease. Inflamm Bowel Dis 8(5):340–346

    Article  PubMed  Google Scholar 

  • Payyavula RS, Navarre DA, Kuhl JC, Pantoja A, Pillai SS (2012) Differential effects of environment on potato phenylpropanoid and carotenoid expression. BMC Plant Biol 12:39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Payyavula RS, Navarre DA, Kuhl J, Pantoja A (2013) Developmental effects on phenolic, flavonol, anthocyanin, and carotenoid metabolites and gene expression in potatoes. J Agric Food Chem 61(30):7357–7365

    Article  CAS  PubMed  Google Scholar 

  • Pęksa A, Golubowska G, Rytel E, Lisinska G, Aniolowski K (2002) Influence of harvest date on glycoalkaloid contents of three potato varieties. Food Chem 78(3):313–317

    Article  Google Scholar 

  • Pęksa A, Gołubowska G, Aniołowski K, Lisińska G, Rytel E (2006) Changes of glycoalkaloids and nitrate contents in potatoes during chip processing. Food Chem 97(1):151–156

    Article  CAS  Google Scholar 

  • Pęksa A, Kita A, Kułakowska K, Aniołowska M, Hamouz K, Nemś A (2013) The quality of protein of coloured fleshed potatoes. Food Chem 141(3):2960–2966

    Article  PubMed  CAS  Google Scholar 

  • Percival G, Dixon GR, Sword A (1996) Glycoalkaloid concentration of potato tubers following exposure to daylight. J Sci Food Agric 71(1):59–63

    Article  CAS  Google Scholar 

  • Petersen MA, Poll L, Larsen LM (1998) Comparison of volatiles in raw and boiled potatoes using a mild extraction technique combined with GC odour profiling and GC–MS. Food Chem 61(4):461–466

    Article  CAS  Google Scholar 

  • Petersen MA, Poll L, Larsen LM (1999) Identification of compounds contributing to boiled potato off-flavour (‘POF’). LWT-Food Sci Technol 32(1):32–40

    Article  CAS  Google Scholar 

  • Petersson EV, Arif U, Schulzova V, Krtková V, Hajšlová J, Meijer J, Andersson HC, Jonsson L, Sitbon F (2013) Glycoalkaloid and calystegine levels in table potato cultivars subjected to wounding, light, and heat treatments. J Agric Food Chem 61(24):5893–5902

    Article  CAS  PubMed  Google Scholar 

  • Phillips BJ, Hughes JA, Phillips JC, Walters DG, Anderson D, Tahourdin CS (1996) A study of the toxic hazard that might be associated with the consumption of green potato tops. Food Chem Toxicol 34(5):439–448

    Article  CAS  PubMed  Google Scholar 

  • Pihlanto A, Akkanen S, Korhonen HJ (2008) ACE-inhibitory and antioxidant properties of potato (Solanum tuberosum). Food Chem 109(1):104–112

    Article  CAS  PubMed  Google Scholar 

  • Piletska EV, Burns R, Terry LA, Piletsky SA (2012) Application of a molecularly imprinted polymer for the extraction of kukoamine A from potato peels. J Agric Food Chem 60(1):95–99

    Article  CAS  PubMed  Google Scholar 

  • Ponasik JA, Strickland C, Faerman C, Savvides S, Karplus PA, Ganem B (1995) Kukoamine A and other hydrophobic acylpolyamines: potent and selective inhibitors of Crithidia fasciculata trypanothione reductase. Biochem J 311:371–375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pots AM, de Jongh HH, Gruppen H, Hamer RJ, Voragen AG (1998) Heat-induced conformational changes of patatin, the major potato tuber protein. Eur J Biochem 252(1):66–72

    Article  CAS  PubMed  Google Scholar 

  • Powers SJ, Mottram DS, Curtis A, Halford NG (2013) Acrylamide concentrations in potato crisps in Europe from 2002 to 2011. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 30(9):1493–1500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Purseglove JW (1968) Tropical crops: Dicotyledons. 1 & 2. Longman, London, 719 pp

    Google Scholar 

  • Raben A, Tagliabue A, Christensen NJ, Madsen J, Host JJ, Astrup A (1994) Resistant starch: the effect on postprandial glycemia, hormonal response, and satiety. Am J Clin Nutr 60:544–551

    CAS  PubMed  Google Scholar 

  • Raben A, Andersen K, Karberg MA, Holst JJ, Astrup A (1997) Acetylation of or beta-cyclodextrin addition to potato beneficial effect on glucose metabolism and appetite sensations. Am J Clin Nutr 66(2):304–314

    CAS  PubMed  Google Scholar 

  • Racusen D, Foote M (1980) A major soluble glycoprotein of potato tubers. J Food Biochem 4:43–52

    Article  CAS  Google Scholar 

  • Ramdath DD, Padhi E, Hawke A, Sivaramalingam T, Tsao R (2014) The glycemic index of pigmented potatoes is related to their polyphenol content. Food Funct 5(5):909–915

    Article  CAS  PubMed  Google Scholar 

  • Raponda-Walker A, Sillans R (1995) Les Plantes Utiles du Gabon. Encyclopédie Biologique. Editions Sepia, 697 pp (First Published 1961)

    Google Scholar 

  • Reddivari L, Hale AL, Miller JC (2007a) Determination of phenolic content, composition and their contribution to antioxidant activity in specialty potato selections. Am J Potato Res 84(4):275–282

    Article  CAS  Google Scholar 

  • Reddivari L, Hale AL, Miller JC Jr (2007b) Genotype, location, and year influence antioxidant activity, carotenoid content, phenolic content, and composition in specialty potatoes. J Agric Food Chem 55(20):8073–8079

    Article  CAS  PubMed  Google Scholar 

  • Reddivari L, Vanamala J, Chintharlapalli S, Safe SH, Miller JC Jr (2007c) Anthocyanin fraction from potato extracts is cytotoxic to prostate cancer cells through activation of caspase-dependent and caspase-independent pathways. Carcinogenesis 28(10):2227–2235

    Article  CAS  PubMed  Google Scholar 

  • Reddivari L, Vanamala J, Safe SH, Miller JC Jr (2010) The bioactive compounds alpha-chaconine and gallic acid in potato extracts decrease survival and induce apoptosis in LNCaP and PC3 prostate cancer cells. Nutr Cancer 62(5):601–610

    Article  CAS  PubMed  Google Scholar 

  • Revina TA, Speranskaya AS, Kladnitskaya GV, Shevelev AB, Valueva TA (2004) Subtilisin protein inhibitor from potato tubers. Biochemistry (Moscow) 69(10):1092–1098

    Article  CAS  Google Scholar 

  • Revina TA, Kladnitskaya GV, Gerasimova NG, Gvozdeva EL, Valueva TA (2010) Protein trypsin inhibitor from potato tubers. Biochemistry (Moscow) 75(1):36–40

    Article  CAS  Google Scholar 

  • Reyes LF, Miller JC, Cisneros-Zevallos L (2005) Antioxidant capacity, anthocyanins and total phenolics in purple-and red-fleshed potato (Solanum tuberosum L.) genotypes. Am J Potato Res 82(4):271–277

    Article  CAS  Google Scholar 

  • Robert L, Narcy A, Rock E, Demigne C, Mazur A, Rémésy C (2006) Entire potato consumption improves lipid metabolism and antioxidant status in cholesterol-fed rat. Eur J Nutr 45:267–274

    Article  CAS  PubMed  Google Scholar 

  • Robert L, Narcy A, Rayssiguier Y, Mazur A, Rémésy C (2008) Lipid metabolism and antioxidant status in sucrose vs. potato-fed rats. J Am Coll Nutr 27(1):109–116

    Article  CAS  PubMed  Google Scholar 

  • Roddick JG, Rijnenberg AL, Weissenberg M (1990) Membrane-disrupting properties of the steroidal glycoalkaloids solasonine and solamargine. Phytochemistry 29(5):1513–1518

    Article  CAS  Google Scholar 

  • Rodriguez-Saona LE, Giusti MM, Wrolstad RE (1998) Anthocyanin pigment composition of red-fleshed potatoes. J Food Sci 63:458–465

    Article  CAS  Google Scholar 

  • Roumeliotis E, Kloosterman B, Oortwijn M, Kohlen W, Bouwmeester HJ, Visser RG, Bachem CW (2012) The effects of auxin and strigolactones on tuber initiation and stolon architecture in potato. J Exp Bot 63(12):4539–4547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rydberg U, Andersson L, Andersson R, Aman P, Larsson H (2001) Comparison of starch branching enzyme I and II from potato. Eur J Biochem 268(23):6140–6145

    Article  CAS  PubMed  Google Scholar 

  • Rytel E (2012) Changes in the levels of glycoalkaloids and nitrates after the dehydration of cooked potatoes. Am J Potato Res 89(6):501–507

    Article  CAS  Google Scholar 

  • Rytel E, Goubowska G, Lisinska G, Peksa A, Aniolowski K (2005) Changes in glycoalkaloid and nitrate contents in potatoes during French fries processing. J Sci Food Agric 85:879–882

    Article  CAS  Google Scholar 

  • Rytel E, Tajner-Czopek A, Aniołowska M, Hamouz K (2013) The influence of dehydrated potatoes processing on the glycoalkaloids content in coloured-fleshed potato. Food Chem 141(3):2495–2500

    Article  CAS  PubMed  Google Scholar 

  • Rytel E, Tajner-Czopek A, Kita A, Aniołowska M, Kucharska AZ, Sokół-Łętowska A, Hamouz K (2014) Content of polyphenols in coloured and yellow fleshed potatoes during dices processing. Food Chem 161:224–229

    Article  CAS  PubMed  Google Scholar 

  • Saito K, Horie M, Hoshino Y, Nose N, Nakazawa H (1990) High-performance liquid chromatographic determination of glycoalkaloids in potato products. J Chromatogr A 508:141–147

    Article  CAS  Google Scholar 

  • Salinas JP, Hartman TG, Karmas K, Lech J, Rosen RT (1994) Lipid-derived aroma compounds in cooked potatoes and reconstituted dehydrated potato granules. In: Ho CT, Hartman TG (eds) Lipids in food flavors. ACS symposium series, vol 558, Chapter 8, pp 108–129, ACS Publications, Washington DC

    Google Scholar 

  • Samarin AM, Poorazarang H, Hematyar N, Elhamirad A (2012) Phenolics in potato peels: extraction and utilization as natural antioxidants. World Appl Sci J 18(2):191–195

    CAS  Google Scholar 

  • Sanches-Silva A, Lopez-Hernández J, Paseiro-Losada P (2005) Profiling flavor compounds of potato crisps during storage using solid-phase microextraction. J Chromatogr A 1064(2):239–245

    Article  CAS  PubMed  Google Scholar 

  • Sapers GM (1970) Flavor quality in explosion puffed dehydrated potato. 2. Flavor contribution of 2‐methylpropanal, 2‐methylbutanal and 3‐methylbutanal. J Food Sci 35(6):731–733

    Article  CAS  Google Scholar 

  • Sapers GM, Sullivan JF, Talley FB (1970) Flavor quality in explosion puffed dehydrated potato. 1. A gas chromatographic method for the determination of aldehydes associated with flavor quality. J Food Sci 35(6):728–730

    Article  CAS  Google Scholar 

  • Sapers GM, Osman SF, Dooley CJ, Panasiuk O (1971) Flavor quality of explosion puffed dehydrated potato. 3. Contribution of pyrazines and other compounds to the toasted off‐flavor. J Food Sci 36(1):93–95

    Article  CAS  Google Scholar 

  • Sapers GM, Pamasiuk O, Talley FB, Osman SF, Shaw RL (1972) Flavor quality and stability of potato flakes. Volatile components associated with storage changes. J Food Sci 37(4):579–583

    Article  CAS  Google Scholar 

  • Sapers GM, Panasiuk O, Talley FB, Shaw RL (1974) Flavor quality and stability of potato flakes: effects of drying conditions, moisture content and packaging. J Food Sci 39(3):555–558

    Article  Google Scholar 

  • Schieber A, Saldaña MDA (2009) Potato peels: a source of nutritionally and pharmacologically interesting compounds – a review. Food 3(2):23–29

    Google Scholar 

  • Schreiber K, Osske G (1962) Isolierung von cycloartenol aus blättern der kulturkartoffel Solanum tuberosum L. sterine und triterpenoide. II. Mitteilung. Kulturpflanze 10:372–383

    Article  CAS  Google Scholar 

  • Schreiber K, Osske G (1963) Isolierung von 4α-methyl-5α-stigmasta-7,24(28)-dien-3β-ol aus Solanum tuberosum sowie uber die identität dieser verbindung mit α1. sterine und triterpenoide. III. Mitteilung. Experientia 19:69–71

    Article  CAS  Google Scholar 

  • Schreiber K, Osske G (1964) Uber die 4α-Mmethyl-Sterine der kartoffelpflanze Solanum tuberosum L. sterine und triterpenoide. V. Mitteilung. Tetrahedron 20(11):2575–2584

    Article  CAS  Google Scholar 

  • Schreiber K, Osske G, Sembdner G (1961) Identifizierung von β-sitosterin als hauptsterin des kartoffelkäfers (Leptinotarsa decemlincata Say). Experientia 17:463–464

    Article  CAS  Google Scholar 

  • Schreiber L, Franke R, Hartmann K (2005) Wax and suberin development of native and wound periderm of potato (Solanum tuberosum L.) and its relation to peridermal transpiration. Planta 220(4):520–530

    Article  CAS  PubMed  Google Scholar 

  • Schütz S, Weissbecker B, Koch UT, Hummel HE (1999) Detection of volatiles released by diseased potato tubers using a biosensor on the basis of intact insect antennae. Biosens Bioelectron 14:221–228

    Article  Google Scholar 

  • Schwall GP, Safford R, Westcott RJ, Jeffcoat R, Tayal A, Shi YC, Gidley MJ, Jobling SA (2000) Production of very-high-amylose potato starch by inhibition of SBE A and B. Nat Biotechnol 18(5):551–554

    Article  CAS  PubMed  Google Scholar 

  • Schwartz JJ, Wall ME (1955) Isolation of the sterols of the white potato1, 2. J Am Chem Soc 77(20):5442–5443

    Article  CAS  Google Scholar 

  • Self R, Swain T (1963) Flavour in potatoes. Proc Nutr Soc 22(2):176–182

    Article  CAS  PubMed  Google Scholar 

  • Self R, Rolley HLJ, Joyce AE (1963) Some volatile compounds from cooked potatoes. J Sci Food Agric 14(1):8–14

    Article  CAS  Google Scholar 

  • Serra O, Hohn C, Franke R, Prat S, Molinas M, Figueras M (2010) A feruloyl transferase involved in the biosynthesis of suberin and suberin-associated wax is required for maturation and sealing properties of potato periderm. Plant J 62(2):277–290

    Article  CAS  PubMed  Google Scholar 

  • Shakya R, Navarre DA (2006) Rapid screening of ascorbic acid, glycoalkaloids, and phenolics in potato using high-performance liquid chromatography. J Agric Food Chem 54(15):5253–5260

    Article  CAS  PubMed  Google Scholar 

  • Shakya R, Navarre DA (2008) LC-MS analysis of solanidane glycoalkaloid diversity among tubers of four wild potato species and three cultivars (Solanum tuberosum). J Agric Food Chem 56(16):6949–6958

    Article  CAS  PubMed  Google Scholar 

  • Shih MJ, Kuć J (1974) α and β -solamarine in Kennebec Solanum tuberosum leaves and aged tuber slices. Phytochemistry 13(6):997–1000

    Article  CAS  Google Scholar 

  • Shim EH, Choung SY (2014) Inhibitory effects of Solanum tuberosum L. var. vitelotte extract on 2,4-dinitrochlorobenzene-induced atopic dermatitis in mice. J Pharm Pharmacol 66(9):1303–1316

    Article  CAS  PubMed  Google Scholar 

  • Shimoi T, Ushiyama H, Kan K, Saito K, Kamata K, Hirokado M (2007) Survey of glycoalkaloids content in the various potatoes. Shokuhin Eiseigaku Zasshi 48(3):77–82 (in Japanese)

    Article  CAS  PubMed  Google Scholar 

  • Silva EM, Simon PW (2005) Genetic, physiological, and environmental factors affecting acrylamide concentration in fried potato products. Adv Exp Med Biol 561:371–386

    Article  CAS  PubMed  Google Scholar 

  • Sinden SL, Webb RE (1972) Effect of variety and location on the glycoalkaloid content of potatoes. Am Potato J 49(9):334–338

    Article  CAS  Google Scholar 

  • Singh N, Rajini PS (2008) Antioxidant-mediated protective effect of potato peel extract in erythrocytes against oxidative damage. Chem Biol Interact 173(2):97–104

    Article  CAS  PubMed  Google Scholar 

  • Singh N, Kamath V, Rajini PS (2005a) Attenuation of hyperglycemia and associated parameters in STZ-induced diabetic rats by dietary supplementation of potato peel powder. Clin Chim Acta 353(1–2):166–175

    Google Scholar 

  • Singh N, Kamath V, Rajini PS (2005b) Protective effect of potato peel powder in ameliorating oxidative stress in streptozotocin diabetic rats. Plant Foods Hum Nutr 60(2):49–54

    Article  CAS  PubMed  Google Scholar 

  • Sizer CE, Maga JA, Craven CJ (1980) Total glycoalkaloids in potatoes and potato chips. Agric Food Chem 28(3):578–579

    Article  CAS  Google Scholar 

  • Slack EB (1948) Nitrogenous constituents of the potato. Nature 161(4084):211–212

    Article  CAS  PubMed  Google Scholar 

  • Smith DB, Roddick JG, Jones JL (1996) Potato glycoalkaloids: some unanswered questions. Trends Food Sci Technol 7(4):126–131

    Article  CAS  Google Scholar 

  • Smith DB, Roddick JG, Jones JL (2001) Synergism between the potato glycoalkaloids alpha-chaconine and alpha-solanine in inhibition of snail feeding. Phytochemistry 57(2):229–234

    Article  CAS  PubMed  Google Scholar 

  • Soh NL, Brand-Miller J (1999) The glycaemic index of potatoes: the effect of variety, cooking method and maturity. Eur J Clin Nutr 53(4):249–254

    Article  CAS  PubMed  Google Scholar 

  • Sotelo A, Serrano B (2000) High-performance liquid chromatographic determination of the glycoalkaloids alpha-solanine and alpha-chaconine in 12 commercial varieties of Mexican potato. J Agric Food Chem 48(6):2472–2475

    Article  CAS  PubMed  Google Scholar 

  • Spelbrink RE, Lensing H, Egmond MR, Giuseppin ML (2015) Potato patatin generates short-chain fatty acids from milk fat that contribute to flavour development in cheese ripening. Appl Biochem Biotechnol 176:231–243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stanković M, Ostoja tojanović O, Kobilarov N (1990) Unsaponifiable lipids from haulm and tuber sprouts of potato (Solanum tuberosum L.). Potato Res 33(4):459–464

    Article  Google Scholar 

  • Stegemann H, Loeschcke V (1961) The proteins in the potato tuber. Landw Forsch 14:269–272

    Google Scholar 

  • Stevens LH, Davelaar E (1996) Isolation and characterization of blackspot pigments from potato tubers. Phytochemistry 42(4):941–947

    Article  CAS  Google Scholar 

  • Stevens LH, Davelaar E (1997) Biochemical potential of potato tubers to synthesize blackspot pigments in relation to their actual blackspot susceptibility. J Agric Food Chem 45:4221–4226

    Article  CAS  Google Scholar 

  • Stushnoff C, Ducreux LJ, Hancock RD, Hedley PE, Holm DG, McDougall GJ, McNicol JW, Morris J, Morris WL, Sungurtas JA, Verrall SR, Zuber T, Taylor MA (2010) Flavonoid profiling and transcriptome analysis reveals new gene-metabolite correlations in tubers of Solanum tuberosum L. J Exp Bot 61(4):1225–1238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Subrahmanyam M (1996) Honey dressing versus boiled potato peel in the treatment of burns: a prospective randomized study. Burns 22(6):491–493

    Article  CAS  PubMed  Google Scholar 

  • Sukhova LS, Macháčková I, Eder J, Bibik ND, Korableva NP (1993) Changes in the levels of free IAA and cytokinins in potato tubers during dormancy and sprouting. Biol Plant 35(3):387–391

    Article  CAS  Google Scholar 

  • Sun Y, Jiang LZ, Wei DX (2013) Partial characterization, in vitro antioxidant and antiproliferative activities of patatin purified from potato fruit juice. Food Funct 4(10):1502–1511

    Article  CAS  PubMed  Google Scholar 

  • Suttle JC (1995) Postharvest changes in endogenous ABA levels and ABA metabolism in relation to dormancy in potato tubers. Physiolog Plant 95(2):233–240

    Article  CAS  Google Scholar 

  • Suttle JC (1998a) Involvement of ethylene in potato microtuber dormancy. Plant Physiol 118(3):843–848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suttle JC (1998b) Postharvest changes in endogenous cytokinins and cytokinin efficacy in potato tubers in relation to bud endodormancy. Physiol Plant 103(1):59–69

    Article  CAS  Google Scholar 

  • Suttle JC (2004a) Involvement of endogenous gibberellins in potato tuber dormancy and early sprout growth: a critical assessment. J Plant Physiol 161(2):157–164

    Article  CAS  PubMed  Google Scholar 

  • Suttle JC (2004b) Physiological regulation of potato tuber dormancy. Am J Potato Res 81(4):253–262

    Article  CAS  Google Scholar 

  • Suttle JC, Hultstrand JF (1994) Role of endogenous abscisic acid in potato microtuber dormancy. Plant Physiol 105(3):891–896

    CAS  PubMed  PubMed Central  Google Scholar 

  • Szafranek BM, Synak EE (2006) Cuticular waxes from potato (Solanum tuberosum) leaves. Phytochemistry 67(1):80–90

    Article  CAS  PubMed  Google Scholar 

  • Tajner-Czopek A, Rytel E, Kita A, Pęksa A, Hamouz K (2012) The influence of thermal process of coloured potatoes on the content of glycoalkaloids in the potato products. Food Chem 133(4):1117–1122

    Article  CAS  Google Scholar 

  • Tajner-Czopek A, Rytel E, Aniołowska M, Hamouz K (2014) The influence of French fries processing on the glycoalkaloid content in coloured-fleshed potatoes. Eur Food Res Technol 238(6):895–904

    Article  CAS  Google Scholar 

  • Tateo F, Bononi M, Gallone F (2010) Acrylamide content in potato chips on the Italian market determined by liquid chromatography tandem mass spectrometry. Int J Food SciTechnol 45:629–634

    Article  CAS  Google Scholar 

  • The Plant List (2014) Solanum tuberosum L. www.theplantlist.org/

  • Thorne HV, Clarke GF, Skuce R (1985) The inactivation of herpes simplex virus by some Solanaceae glycoalkaloids. Antiviral Res 5(6):335–343

    Article  CAS  PubMed  Google Scholar 

  • Toma RB, Orr PH, D’Appolonia B, Dintzis FR, Tabekhia MM (1979) Physical and chemical properties of potato peel as a source of dietary fiber in bread. J Food Sci 44(5):1403–1407

    Article  CAS  Google Scholar 

  • Tömösközi-Farkas R, Daood HG, Polgar Z, Hajos G (2006) Determination of glycoalcaloids in Hungarian potatoes by HPLC. Chromatographia 63:S115–S118

    Article  CAS  Google Scholar 

  • Tudela JA, Cantos E, Espín JC, Tomás-Barberán FA, Gil MI (2002) Induction of antioxidant flavonol biosynthesis in fresh-cut potatoes. Effect of domestic cooking. J Agric Food Chem 50(21):5925–5931

    Article  CAS  PubMed  Google Scholar 

  • Ugent D (1968) The potato in Mexico: geography and primitive culture. Econ Bot 22:108–123

    Article  Google Scholar 

  • Ulrich D, Hoberg E, Neugebauer W, Tiemann H, Darsow U (2000) Investigation of the boiled potato flavors by human sensory and instrumental methods. Am J Potato Res 77:111–117

    Article  CAS  Google Scholar 

  • Uppal DS (1987) Varietal and environmental effect on the glycoalkaloid content of potato (Solanum tuberosum L.). Plant Foods Hum Nutr 37(4):333–340

    Article  CAS  PubMed  Google Scholar 

  • U.S. Department of Agriculture, Agricultural Research Service (USDA-ARS) (2014) USDA national nutrient database for standard reference, release 27. Nutrient Data Laboratory Home Page. http://www.ars.usda.gov/ba/bhnrc/ndl

  • USFDA (2008) Acrylamide: information on diet, food storage, and food preparation. http://www.fda.gov/Food/FoodborneIllnessContaminants/ChemicalContaminants/ucm151000.htm

  • Valueva TA, Revina TA, Mosolov VV (1997) Potato tuber protein proteinase inhibitors belonging to the Kunitz soybean inhibitor family. Biochemistry (Mosc) 62(12):1367–1374

    CAS  Google Scholar 

  • Valueva TA, Revina TA, Kladnitskaya GV, Mosolov VV (1998) Kunitz-type proteinase inhibitors from intact and Phytophthora-infected potato tubers. FEBS Lett 426(1):131–134

    Article  CAS  PubMed  Google Scholar 

  • Valueva TA, Revina TA, Kladnitskaya GV, Mosolov VV, Mentele P (1999) Primary structure of a 21-kD protein from potato tubers. Biochemistry (Mosc) 64(11):1258–1265

    CAS  Google Scholar 

  • Van Gelder WMJ, Van Vinke JH, Scheffer JJC (1988) Steroidal glycoalkaloids in tubers and leaves of Solanum species used in potato breeding. Euphytica 48:147–158

    Article  Google Scholar 

  • van Koningsveld GA, Gruppen H, de Jongh HH, Wijngaards G, van Boekel MA, Walstra P, Voragen AG (2001) Effects of pH and heat treatments on the structure and solubility of potato proteins in different preparations. J Agric Food Chem 49(10):4889–4897

    Article  PubMed  CAS  Google Scholar 

  • Van Staden J (1976) The nature of a cytokinin in potato tubers. Potato Res 19(3):249–252

    Article  Google Scholar 

  • Varns JL, Glynn MT (1979) Detection of disease in stored potatoes by volatile monitoring. Am Potato J 56(4):185–197

    Article  CAS  Google Scholar 

  • Varns JL, Shaw R (1973) An internal standard for rapid analysis of potato sugars by gas chromatography. Potato Res 16(3):183–184

    Article  CAS  Google Scholar 

  • Verbist JF, Monnet R (1979) A propos de la teneur en solanine des petits tubercules nouveaux de pomme de terre (Solanum tuberosum L.). The solanine content of small new tubers of potato (Solanum tuberosum L.). Potato Res 22:239–244

    Article  CAS  Google Scholar 

  • Verde Méndez Cdel M, Rodríguez Delgado MA, Rodríguez Rodríguez EM, Díaz Romero C (2004) Content of free phenolic compounds in cultivars of potatoes harvested in Tenerife (Canary Islands). J Agric Food Chem 52(5):1323–1327

    Article  PubMed  CAS  Google Scholar 

  • Verma SC, Purohit LK, Sharda RT, Purohit AN, Upadhya MD (1972) Anthocyanin in dark- and light-grown sprouts of potato. Potato Res 15(2):166–169

    Article  CAS  Google Scholar 

  • Vinson JA, Demkosky CA, Navarre DA, Smyda MA (2012) High-antioxidant potatoes: acute in vivo antioxidant source and hypotensive agent in humans after supplementation to hypertensive subjects. J Agric Food Chem 60(27):6749–6754

    Article  CAS  PubMed  Google Scholar 

  • Visser JH, Avé DA (1978) General green leaf volatiles in the olfactory orientation of the Colorado beetle, Leptinotarsa decemlineata. Entomol Expt Appl 24(3):738–749

    Article  CAS  Google Scholar 

  • Visser JH, Van Straten S, Maarse H (1979) Isolation and identification of volatiles in the foliage of potato, Solanum tuberosum, a host plant of the Colorado beetle, Leptinotarsa decemlineata. J Chem Ecol 5(1):13–25

    Article  CAS  Google Scholar 

  • Wagih ME, Wiersema SG (1996) Solanum tuberosum L. In: Flach M, Rumawas F (eds) Plant resources of South-East Asia, no. 9. Plants yielding non-seed carbohydrates. Prosea Foundation, Bogor, Indonesia, pp 148–154

    Google Scholar 

  • Waglay A, Karboune S, Alli I (2014) Potato protein isolates: recovery and characterization of their properties. Food Chem 142:373–382

    Article  CAS  PubMed  Google Scholar 

  • Wagner R, Grosch W (1997) Evaluation of potent odorants of French fries. LWT-Food Sci Technol 30(2):164–169

    Article  CAS  Google Scholar 

  • Wagner RK, Grosch W (1998) Key odorants of French fries. J Am Oil Chem Soc 75(10):1385–1392

    Article  CAS  Google Scholar 

  • Wang S, Panter KE, Gaffield W, Evans RC, Bunch TD (2005) Effects of steroidal glycoalkaloids from potatoes (Solanum tuberosum) on in vitro bovine embryo development. Anim Reprod Sci 85(3–4):243–250

    Article  CAS  PubMed  Google Scholar 

  • Wang QY, Chen Q, He ML, Mir P, Su JY, Yang Q (2011) Inhibitory effect of antioxidant extracts from various potatoes on the proliferation of human colon and liver cancer cells. Nutr Cancer 63(7):1044–1052

    Article  CAS  PubMed  Google Scholar 

  • Wang C, He XW, Huang Q, Fu X, Luo FX, Li L (2013) Distribution of octenylsuccinic substituents in modified A and B polymorph starch granules. J Agric Food Chem 61(51):12492–12498

    Article  CAS  PubMed  Google Scholar 

  • Waterer DR, Pritchard MK (1984) Monitoring of volatiles: a technique for detection of soft rot (Erwinia carotovora) in potato tubers. Can J Plant Pathol 6:165–171

    Article  CAS  Google Scholar 

  • Watson AA, Davies DR, Asano N, Winchester B, Kato A, Molyneux RJ, Stegelmeie BL, Nash RJ (2000) Calystegine alkaloids in the potato and other food plants. In: Tu AT, Gaffield W (eds) Natural and selected synthetic toxins: biological implications. American Chemical Society, Washington, DC, pp 129–139

    Google Scholar 

  • Weidel E, Schantz M, Richlingi E (2014) A rapid method for quantifying chlorogenic acid levels in potato samples. J AOAC Int 97(3):902–907

    Article  CAS  PubMed  Google Scholar 

  • Weissbecker B, Van Loon JJ, Posthumus MA, Bouwmeester HJ, Dicke M (2000) Identification of volatile potato sesquiterpenoids and their olfactory detection by the two-spotted stinkbug Perillus bioculatus. J Chem Ecol 26(6):1433–1445

    Article  CAS  Google Scholar 

  • Whitfield FB, Last JH, Tindale CR (1982) Skatole, indole and p-cresol: components in off-flavoured frozen French fries. Chem Ind 17:662–663

    Google Scholar 

  • Wojnowska I, Poznanski S, Bednarski W (1981) Processing of potato protein concentrates and their properties. J Food Sci 47(1):167–172

    Article  CAS  Google Scholar 

  • Wood FA, Young DA (1974) TGA in potatoes. Canada Department of Agriculture, Ottawa. Publication no 153

    Google Scholar 

  • Woolfe JA, Poats SV (1987) Potato in the human diet. Cambridge University Press, Cambridge, 231 pp

    Google Scholar 

  • Wu ZG, Xu HY, Ma Q, Cao Y, Ma JN, Ma CM (2012) Isolation, identification and quantification of unsaturated fatty acids, amides, phenolic compounds and glycoalkaloids from potato peel. Food Chem 135(4):2425–2429

    Article  CAS  PubMed  Google Scholar 

  • Xu XY, Li WD, Lu ZH, Β T, Hydamaka AW (2009) Phenolic content, composition, antioxidant activity, and their changes during domestic cooking of potatoes. J Agric Food Chem 57(21):10231–10238

    Google Scholar 

  • Xue HL, Bi Y, Wei JM, Tang YM, Zhao Y, Wang Y (2013) New method for the simultaneous analysis of types A and B trichothecenes by ultrahigh-performance liquid chromatography coupled with tandem mass spectrometry in potato tubers inoculated with Fusarium sulphureum. J Agric Food Chem 61(39):9333–9338

    Article  CAS  PubMed  Google Scholar 

  • Xue HL, Bi Y, Tang YM, Zhao Y, Wang Y (2014) Effect of cultivars, Fusarium strains and storage temperature on trichothecenes production in inoculated potato tubers. Food Chem 151:236–242

    Article  CAS  PubMed  Google Scholar 

  • Yan B, Stark RE (2000) Biosynthesis, molecular structure, and domain architecture of potato suberin: a (13)C NMR study using isotopically labeled precursors. J Agric Food Chem 48(8):3298–3304

    Article  CAS  PubMed  Google Scholar 

  • Ye HQ, Miao YT, Zhao CC, Yuan Y (2011) Acrylamide and methylglyoxal formation in potato chips by microwaving and frying heating. Int J Food Sci Technol 46(9):1921–1926

    Article  CAS  Google Scholar 

  • Yoshida M, Ono H, Chuda Y, Yada H, Ohnishi-Kameyama M, Kobayashi H, Ohara-Takada A, Matsuura-Endo C, Mori M, Hayashi N, Yamaguchi Y (2005) Acrylamide in Japanese processed foods and factors affecting acrylamide level in potato chips and tea. Adv Exp Med Biol 561:405–413

    Article  CAS  PubMed  Google Scholar 

  • Yoshihara T, Omer EA, Koshino H, Sakamura S, Kikuta Y, Koda Y (1989) Structure of a tuber-inducing stimulus from potato leaves (Solanum tuberosum L.). Agric Biol Chem 53(10):2835–2837

    CAS  Google Scholar 

  • Yu DQ, Liu YD, Fan BF, Klessig DF, Chen ZX (1997) Is the high basal level of salicylic acid important for disease resistance in potato? Plant Physiol 115(2):343–349

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zaidul ISM, Yamauchi H, Takigawa S, Matsuura-Endo C, Suzuki T, Noda T (2007) Correlation between the compositional and pasting properties of various potato starches. Food Chem 105(1):164–172

    Article  CAS  Google Scholar 

  • Zhao XC, Sheng F, Zheng JL, Liu RT (2011) Composition and stability of anthocyanins from purple Solanum tuberosum and their protective influence on Cr(VI) targeted to bovine serum albumin. J Agric Food Chem 59(14):7902–7909

    Article  CAS  PubMed  Google Scholar 

  • Zia-ur-Rehman HF, Shah WH (2004) Utilization of potato peels extract as a natural antioxidant in soy bean oil. Food Chem 85(2):215–220

    Article  CAS  Google Scholar 

  • Zitnak A (1961) The occurrence and distribution of free alkaloid solanidine in netted gem potatoes. Can J Biochem Physiol 39(8):1257–1265

    Article  CAS  PubMed  Google Scholar 

  • Zitnak A (1981) Photoinduction of glycoalkloids in cured potatoes. Am Potato J 58(8):415–421

    Article  CAS  Google Scholar 

  • Zitnak A, Johnston GR (1970) Glycoalkaloid content of B514-6 potatoes. Am Potato J 47(7):256–260

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lim, T.K. (2016). Solanum tuberosum . In: Edible Medicinal and Non-Medicinal Plants. Springer, Cham. https://doi.org/10.1007/978-3-319-26065-5_2

Download citation

Publish with us

Policies and ethics