Skip to main content
Log in

Volatile metabolic profiling for discrimination of potato tubers inoculated with dry and soft rot pathogens

  • Published:
American Journal of Potato Research Aims and scope Submit manuscript

Abstract

Volatile metabolites from ‘Russet Burbank’ potatoes inoculated withErwinia carotovora ssp.carotovora (ECC),Erwinia carotovora ssp.atroseptica (ECA), andFusarium sambucinum (FSA) were analyzed by sampling the headspace at 3 and 6 days after inoculation and then using a gas chromatograph/mass spectrometer (GC/MS) to identify the compounds. Non-wounded noninoculated and wounded non-inoculated tubers served as checks. Compounds with an abundance of ≥105 and with frequency of ≥3 out of 20 replicates (10 replicates × 2 incubation times) were subjected to further analysis. A total of 81 volatile metabolites were detected, of which 58 were specific to one or common to a few, but not to all inoculations/diseases. Acetic acid ethenyl ester was unique to ECA, while cyclohexene, diazene, and methoxy-(1,1-dimethyl-2-dihydroxy-ethyl)-amine were unique to ECC, and 2,5-norbornadiene and styrene were unique to FSA. Several metabolites were common only to tubers inoculated with ECC and ECA and were not detected in fungus-inoculated or in control tubers. High abundances of acetone and butane were detected in ECC- and ECA-inoculated tubers, respectively. The possible use of differences in volatile metabolic profiles to discriminate diseases of potato tubers in storage is discussed.

Resumen

Los metabolites volátiles de la papa Russet Burbank, inoculados conErwinia carotovora ssp.carotovora (ECC),Erwinia carotovora ssp.atroseptica (ECA)y Fusarium sambucinum (FSA) se analizaron por muestreo del espacio circundante 3 y 6 días después de la inoculación. Para identificar los compuestos se utilizó un cromatógrafo de gas/ espectómetro de masa (GC/MS). Sirvieron como testigos, tubérculos sin herir sin inocular y tubérculos heridos sin inocular. Los compuestos en cantidades ≥105 y con una frecuencia ≥3 de 20 repeticiones (10 repeticiones × 2 periodos de incubación), fueron sujetos a análisis posteriores. Se detectó un total de 81 metabolites volátiles, de los cuales 58 fueron especificos a una o comunes a unas pocas pero no a todas las inoculaciones/enfermedades. El ácido acético etenil ester fue exclusivo de ECA, mientras que el ciclohexeno, diazeno y metoxi-(1,1 dimetil-2-dihidroxi-etil)-amina fueron exclusivos de ECC, y el 2,5-norbordarieno y el estireno fueron exclusivos de FSA. Algunos metabolites fueron comunes solamente en los tubérculos inoculados con ECC y ECA y no se detectaron en los inoculados con el hongo o en los testigos. Abundante acetona y butano se detectó en los tubérculos inoculados con ECC y ECA respectivamente. Se discute el posible uso de las diferencias de los perfiles volatiles metabólicos para distinguir las enfermedades en los tubérculos almacenados.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Burton WG. 1989. The Potato, 3rd ed. John Wiley & Son, Inc., New York.

    Google Scholar 

  • De Lacy Costello BPJ, P Evans, RJ Ewen, HE Gunson, NM Ratcliffe, and PTN Spencer-Phillips. 1999. Identification of volatiles generated by potato tubers (Solanum tuberosum cv:Maris Piper) infected byErwinia carotovora, Bacillus polymyxa andArthrobacter sp. Plant Path 48:345–351.

    Article  Google Scholar 

  • De Lacy Costello BPJ, P Evans, RJ Ewen, HE Gunson, NM Ratcliffe, and PTN Spencer-Phillips. 2001. Gas chromatography-mass spectrometry analyses of volatile organic compounds from potato tubers inoculated withPhytophthora infestons orFusarium coeruleum. Plant Path 50:489496.

    Google Scholar 

  • Dixon, RA, L Achnine, P Kota, C Liu, MSS Reddy, and L Wang. 2002. The phenylpropanoid pathway and plant defense—a genomics perspective. Mol Plant Path 3:371–390.

    Article  CAS  Google Scholar 

  • Fiehn O. 2002. Metabolomics—the link between genotypes and phenotypes. Plant Mol Biol 48:155–171.

    Article  PubMed  CAS  Google Scholar 

  • Hamilton-Kemp TR, DD Archbold, JH Loughrin, RW Collins, and ME Byers. 1996. Metabolism of natural volatile compounds by strawberry fruit. J Agric Food Chem 44:2802–2805.

    Article  CAS  Google Scholar 

  • Kushalappa AC, and M Zulfiqar. 2001. Effect of wet incubation time and temperature on infection, and storage time and temperature on soft rot lesion expansion of potatoes inoculated withErwinia carotovora subsp.carotovora. Potato Res 44:233–242.

    Article  Google Scholar 

  • Kushalappa AC, LH Lui, CR Chen, and BH Lee. 2002. Volatile fingerprinting (SPME-GC-FID) to detect and discriminate diseases of potato tubers. Plant Dis 86:131–137.

    Article  Google Scholar 

  • Lui LH, and AC Kushalappa. 2002. Response surface models to predict potato tuber infection byFusarium sambucinum from duration of wetness and temperature, and dry rot lesion expansion from storage time and temperature. Inter J Food Microbiol 76:19–25.

    Article  CAS  Google Scholar 

  • Lyew D, Y Gariepy, C Ratti, GSV Raghavan, and AC Kushalappa. 1999. An apparatus to sample volatiles in a commercial potato storage facility. Amer Soc Agric Eng 15(3):243–247.

    Google Scholar 

  • Lyew D, Y Gariepy, GSV Raghavan, and AC Kushalappa 2001. Changes in volatile production during an infection of potatoes byErwinia carotovora. Food Res Int 34:807–813.

    Article  CAS  Google Scholar 

  • Marsili RT. 1999. SPME-MS-MVA as an electronic nose for the study of off-flavor in milk. J Agric Food Chem 47:648–654.

    Article  PubMed  CAS  Google Scholar 

  • Ouellette E, GSV Raghavan, RD Reeleder, and R Greenhalgh. 1990. Volatile profiles for disease detection in stored potatoes. J Food Proc Pres 14:279–300.

    Article  CAS  Google Scholar 

  • Roessner U, A Luedemann, D Brust, O Fiehn, T Linke, L Willmitzer, and AR Fernie. 2001. Metabolic profiling allows comprehensive phenotyping of genetically or environmentally modified plant systems. Plant Cell 13:11–29.

    Article  PubMed  CAS  Google Scholar 

  • Schoenemann J. 1991. Storage technology impacts potato industry. Am Veg Grower 39:24–26.

    Google Scholar 

  • Stevenson WR, R Loria, GD Franc, and DP Weingartner (eds). 2001. Compendium of Potato Diseases. II ed., APS Press, St. Paul, MN.

    Google Scholar 

  • Toivonen PMA. 1997. Non-ethylene, non-respiratory volatiles in harvested fruits and vegetables: their occurrence, illogical activity and control. Postharvest Biol Technol 12:109–125.

    Article  CAS  Google Scholar 

  • Varns JL and MT Glynn. 1979. Detection of disease in stored potatoes by volatile monitoring. Am Potato J 56:185–197.

    Article  CAS  Google Scholar 

  • Waterer DR, and MK Pritchard. 1984a. Volatile monitoring as a technique for differentiating betweenE. carotovora andC. sepedonicum infections in stored potatoes. Am Potato J 61:345–353.

    Article  CAS  Google Scholar 

  • Waterer DR, and MK Pritchard. 1984b. Monitoring of volatiles: A technique for detection of soft rot (Erwinia carotovora subsp.carotovora) in potato tubers. Can J Plant Pathol 6:165–171.

    CAS  Google Scholar 

  • Waterer DR, and MK Pritchard. 1985. Production of volatile metabolites in potato infected byE. carotovora var.carotovora. andE. carotovora var.atroseptica. Can J Plant Pathol 7:47–51.

    CAS  Google Scholar 

  • Wilson CL, and ME Wisniewski. 1989. Biological control of post-harvest diseases of fruits and vegetables: an emerging technology. Annu Rev Phytopathol 27:425–441.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. C. Kushalappa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lui, L.H., Vikram, A., Abu-Nada, Y. et al. Volatile metabolic profiling for discrimination of potato tubers inoculated with dry and soft rot pathogens. Amer J of Potato Res 82, 1–8 (2005). https://doi.org/10.1007/BF02894914

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02894914

Additional Key Words

Navigation