Skip to main content

Genetic Erosion and In Situ Conservation of Lima Bean (Phaseolus Lunatus L.) Landraces in Mesoamerican Diversity Center

  • Chapter
  • First Online:
Genetic Diversity and Erosion in Plants

Abstract

To understand the role of a geographical region in the in situ conservation of the genetic diversity of any crop, it is necessary to analyze the current conservation status of the crop and any genetic changes that have occurred within the last few decades in the region. Lima bean (Phaseolus lunatus L.) is an important crop in the Mayan agriculture of the Yucatan Peninsula, Mexico, its Mesoamerican center of diversity. In this region, 3 of the 21 landraces dominate 71.24 % of the cultivated area, and 12 are rare landraces grown in only 6.29 % of the area. This chapter analyzes the risk of the genetic erosion in Lima bean landraces from the Yucatan Peninsula using molecular markers, with the objective of generating data to develop comprehensive in situ conservation programs for the crop. Molecular analyses showed that the many landraces that are planted by only a few peasants contained higher levels of genetic diversity compared with the three most abundant landraces. Also, they showed that the landraces planted in 1979 have higher levels of genetic diversity than those planted in 2007 and that, over the last 30 years, the genetic make-up of this crop has shifted. If current trends in the cultivation of the Lima bean landraces continue, many will no longer be planted within two to three generations, contributing to further genetic erosion. The establishment of evidence-based programs for the in situ conservation of Lima bean landraces is urgently needed in this center of genetic diversity.

Note: Copyright of Tables and Figs. (8.3, 8.4, 8.5, 8.6) used in this Chapter belong to Springer Science + Business Media Dordrecht.

Original papers were published by Genetic Resources and Crop Evolution journal: November 2008, Volume 55, Issue 7, pp 1065–1077.

DOI:10.1007/s10722-008-9314-1 http://link.springer.com/article/10.1007/s10722-008-9314-1).February 2012, Volume 59, Issue 2, pp 191–204.

DOI:10.1007/s10722-011-9675-8 http://link.springer.com/article/10.1007/s10722-011-9675-8).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams REW, Culbert TP (1977) The origins of civilization in the Maya lowlands. In: Adams REW (ed) The origins of Maya civilization. University of New Mexico, Albuquerque, pp 3–34

    Google Scholar 

  • Andueza-Noh RH, Serrano-Serrano ML, Chacón MI, Sánchez del-Pino I, Camacho-Pérez L, Coello-Coello J, Mijangos-Cortés JO, Debouck DG, Martínez-Castillo J (2013) Multiple domestications of the Mesoamerican gene pool of Lima bean (Phaseolus lunatus L.): evidence from chloroplast DNA sequences. Genet Resour Crop Evol 60:1069–1086

    Google Scholar 

  • Arnold ML (1992) Natural hybridization as an evolutionary process. Annu Rev Ecol Syst 23:237–261

    Article  Google Scholar 

  • Ballesteros GA (1999) Contribuciones al conocimiento del frijol Lima (Phaseolus lunatus L.) en América Tropical. Ph. D thesis. Colegio de Posgraduados. Montecillos, Estado de México, México

    Google Scholar 

  • Baudet JC (1977) The taxonomic status of the cultivated types of lima bean (Phaseolus lunatus L.). Trop Grain Legume 7:29–30

    Google Scholar 

  • Baudoin JP, Rocha O, Degreef J, Maquet A, Guarino L (2004) Ecogeography, demography, diversity and conservation of phaseolus lunatus L. in the Central Valley of Costa Rica. Systematic and ecogeographic studies on crop genepools. Internacional Plant Genetic Resources Institute, Rome, Italy. 94 p

    Google Scholar 

  • Bellón MR, Taylor JE (1993) Farmer soil taxonomy and technology adoption. Econ Develop Cult Change 41:764–786

    Article  Google Scholar 

  • Brush S (1991) A farmer-based approach to conservation crop germplasm. Econ Bot 45:153–165

    Article  Google Scholar 

  • Camacho-Pérez L (2012) Diversidad, Estructura y relaciones genéticas del frijol Lima (Phaseolus lunatus L. var. lunatus) en el área maya. Master thesis. Centro de Investigación Científica de Yucatán, Mérida, México. 66 p

    Google Scholar 

  • Castiñeiras L, Guzmán FA, Duque MC, Shagarodsky T, Cristóbal R, De Vicente MC (2007) AFLPs and morphological diversity of Phaseolus lunatus L. in Cuban home gardens: approaches to recovering the lost ex situ collection. Biodivers Conserv. doi:10.1007/s10531-006-9025-x

    Google Scholar 

  • Colunga-GarcíaMarín P, May-Pat F (1993) Agave studies in Yucatán, Mexico I. Past and present germplasm diversity and uses. Econ Bot 47:312–327

    Article  Google Scholar 

  • Cuanalo de la Cerda HE, Arias LM (1997) Cultural and economic factors that affect farmer decision-making in Yucatan, Mexico. In: Jarvis DI, Hodgkin T (eds) Strengthening the scientific basis of in situ conservation of agricultural biodiversity on-farm. Options for data collecting and analysis, IPGRI, Rome, p 14

    Google Scholar 

  • Culley TM, Sbita SJ, Wick A (2007) Population genetic effects of urban habitat fragmentation in the perennial herb Viola pubescens (Violaceae) using ISSR Markers. Ann Bot 100:91–100

    Article  PubMed  PubMed Central  Google Scholar 

  • Debouck DG (1979) Proyecto de recolección de germoplasma de Phaseolus en México. CIAT-INIA, Centro Internacional de Agricultura Tropical (CIAT), Colombia

    Google Scholar 

  • Dzul-Tejero F (2011) Introgresión genética silvestre-domesticado del Ib (Phaseolus lunatus L.) en la agricultura Maya de la península de Yucatán, México. Master thesis. Centro de Investigación Científica de Yucatán, Mérida, Yucatán, México

    Google Scholar 

  • Esquivel H, Hammer K (1988) The “conuco”- an important refuge of Cuban plant genetic resources. Kulturpflanze 36:451–463

    Article  Google Scholar 

  • Excoffier L, Smouse P, Quattro J (1992) Analysis of molecular variance inferred from metric distance among DNA haplotypes: applications to human mitochondrial DNA restriction data. Genetics 131:479–491

    PubMed  CAS  PubMed Central  Google Scholar 

  • FAO (1996) The State of the World’s plant genetic resources: diversity and erosion. Third world resurgence. Farmers’ rights and the battle for agrobiodiversity. Issue No. 72/73 KDN PP6738/1/96. An excerpt from the report on the State of the World’s plant genetic resources prepared by the FAO secretariat for the international technical conference on plant genetic resources at Leipzig, Germany, 17–23 June 1996

    Google Scholar 

  • Frankel OH, Bennett E (1970) Genetic resources in plants-their exploration and conservation. IBP Handbook No. 11. Blackwell Scientific Publications, Oxford

    Google Scholar 

  • Galván MZ, Bornet B, Balatti PA, Branchard M (2003) Inter-simple sequence repeat (ISSR) markers as a tool for the assessment of both genetic diversity and gene pool origin in common bean (Phaseolus vulgaris L.). Euphytica 132:297–301. 94:597–602

    Google Scholar 

  • González A, Wong A, Delgado-Salinas A, Papa R, Gepts P (2005) Assessment of inter simple sequence repeat markers to differentiate sympatric wild and domesticated populations of common bean. Crop Sci 45:606–615

    Article  Google Scholar 

  • Hammer K, Laghetti G (2005) Genetic erosion—examples from Italy. Genet Resour Crop Evol 52:629–634

    Article  Google Scholar 

  • Hamrick JL, Godt MJW, Murawski DA, Loveless MD (1991) Correlations between species traits and allozyme diversity: implications for conservation biology. In: Falk DA, Holsinger KE (eds) Genetics and conservation of rare plants. Oxford University Press, New York, pp 75–86

    Google Scholar 

  • Harlan JR (1965) The possible role of weedy races in the evolution of cultivated plants. Euphytica 14:173–176

    Article  Google Scholar 

  • Harlan JR, de Wit JMJ (1971) Toward a rational classification of cultivated plants. Taxon 20:509–517

    Article  Google Scholar 

  • Hernández-Xolocotzi E (1973) Genetic resources of primitive varieties of Mesoamerica: Zea spp., Phaseolus spp., Capsicum spp., and Cucurbita spp. In: Survey of crop genetic resources in their centers of diversity. FAO, Roma, pp 76–115

    Google Scholar 

  • Hernández-Xolocotzi E (1992) Racionalidad tecnológica del sistema de producción agrícola de roza-tumba-quema en Yucatán. In: Zizumbo-Villarreal D, Ramussen Ch, Arias-Reyes LM, Terán S (eds) La modernización de la milpa en Yucatán: utopía o realidad. CICY-DANIDA, Mérida, pp 187–194

    Google Scholar 

  • Jarvis DI, Hodgkin T (1999) Wild relatives and crop cultivars: detecting natural introgression and farmer selection of new genetic combinations in agroecosystems. Mol Ecol 8:S159–S173

    Article  Google Scholar 

  • Jarvis DI, Myer L, Klemick H, Guarino L, Smale M, Brown AHD (2000) A training guide for in situ conservation on-farm. Version 1. International Plant Genetic Resources Institute, Rome, Italy

    Google Scholar 

  • Kaplan L, Lynch T (1999) Phaseolus (Fabaceae) in Archaeology: AMS radio-carbon dates and their significance for pre-Colombian agriculture. Econ Bot 53:261–272

    Article  Google Scholar 

  • Ku-Naal R (1995) Cambios técnicos en la milpa bajo roza-tumba-quema en Yaxcabá, Yucatán. In: Hernández XE, Bello BE, Levy TS (eds) La milpa en Yucatán: Un sistema de producción agrícola tradicional. Colegio de Postgraduados, México, pp 401–418

    Google Scholar 

  • Khlestkina EK, Huang XQ, Quenum FBJ, Chebotar S, Röder MS, Börner A (2004) Genetic diversity in cultivated plants—loss or stability? Theor Appl Genet 108:1466–1472

    Article  PubMed  CAS  Google Scholar 

  • Le Clerc V, Bazante F, Baril C, Guiard J, Zhang D (2005) Assessing temporal change in genetic diversity of maize varieties using microsatellite markers. Theor Appl Genet 110:294–302

    Article  PubMed  Google Scholar 

  • Luikart G, Cornuet JM (1997) Empirical evaluation of a test for identifying recently bottlenecked populations from allele frequency data. Conserv Biol 12:228–237

    Article  Google Scholar 

  • Lynch M, Milligan BG (1994) Analysis of population genetic structure with RAPD markers. Mol Ecol 3:91–99

    Article  PubMed  CAS  Google Scholar 

  • Mantegazza R, Biloni M, Grassi F, Basso B, Lu BR, Cai XX, Sala F, Spada A (2008) Temporal trends of variation in Italian rice germplasm over the past two centuries revealed by AFLP and SSR markers. Crop Sci 48:1832–1840

    Article  CAS  Google Scholar 

  • Maquet A, Zoro Bi I, Delvaux M, Wathelet B, Baudoin JP (1997) Genetic structure of a Lima bean base collection using allozyme markers. Theor Appl Genet 95:980–991

    Article  CAS  Google Scholar 

  • Martínez-Castillo J (2005). Diversidad intraespecífica de Phaseolus lunatus L. e intensificación de la agricultura tradicional en la Península de Yucatán, México. Ph. D. thesis. Centro de Investigación Científica de Yucatán, A. C., Mérida, México

    Google Scholar 

  • Martínez-Castillo J, Zizumbo-Villarreal D, Perales-Rivera H, Colunga-GarcíaMarín P (2004) Intraspecific diversity and morpho-phenological variation in Phaseolus lunatus L. from the Yucatan Peninsula, Mexico. Econ Bot 58(3):354–380

    Article  Google Scholar 

  • Martínez-Castillo J, Zizumbo-Villarreal Z, Gepts P, Delgado-Valerio P, Colunga-GarcíaMarín P (2006) Structure and genetic diversity of wild populations of Lima Bean (Phaseolus lunatus L.) from the Yucatan Peninsula, Mexico. Crop Sci 46:1071–1080

    Article  Google Scholar 

  • Martínez-Castillo J, Zizumbo-Villarreal D, Gepts P, Colunga-GarcíaMarín P (2007) Gene flow and genetic structure in the wild-weedy-domesticated complex of Lima bean (Phaseolus lunatus L.) in its Mesoamerican center of domestication and diversity. Crop Sci 47:58–66

    Article  Google Scholar 

  • Martínez-Castillo J, Colunga-GarcíaMarín P, Zizumbo-Villarreal D (2008) Genetic erosion and in situ conservation of Lima bean (Phaseolus lunatus L.) landraces in its Mesoamerican diversity center. Genet Resour Crop Evol 55:1065–1077

    Article  Google Scholar 

  • Martínez-Castillo J, Camacho-Pérez L, Coello-Coello J, Andueza-Noh RH (2011) Wholesale replacement of Lima bean (Phaseolus lunatus L.) landraces over the last 30 years in northeastern Campeche, Mexico. Genet Resour Crop Evol 59:191–204

    Article  Google Scholar 

  • Martins M, Tenreiro R, Oliveira MM (2003) Genetic relatedness of Portuguese almond cultivars assessed by RAPD and ISSR markers. Plant Cell Rep 22:71–78

    Article  PubMed  CAS  Google Scholar 

  • Motta-Aldana J, Serrano-Serrano ML, Torres HJ, Villamizar CG, Debouck DG, Chacón MI (2010) Multiple origins of Lima bean landraces in the Americas: evidence from chloroplast and nuclear DNA polymorphisms. Crop Sci 50:1773–1787

    Article  CAS  Google Scholar 

  • Nienhuis J, Tivang J, Skroch P, dos Santos JB (1995) Genetic relationships among cultivars and landraces of Lima bean (Phaseolus lunatus L.) as measured by RAPD markers. J Am Soc Hortic Sci 120(2):300–306

    Google Scholar 

  • Pérez-Toro A (1945) La agricultura milpera de los mayas de Yucatán. In: Enciclopedia yucatanense, vol. VI, ediciones del Gobierno de Yucatán, México

    Google Scholar 

  • Pritchard J, Stephens M, Donelly P (2000) Inference of population structure usin multilocus genotype data. Genetics 155:945–959

    PubMed  CAS  PubMed Central  Google Scholar 

  • Prevost A, Wilkinson M (1999) A new system of comparing PCR primers applied to ISSR fingerprinting of potato cultivars. Theor Appl Genet 98:107–112

    Article  CAS  Google Scholar 

  • Reyes GD, Aguilar CG (1992) Intensificación de la milpa en Yucatán. In: Zizumbo-Villarreal D, Ramussen Ch, Arias-Reyes LM, Terán S (eds) La modernización de la milpa en Yucatán: utopía o realidad. CICY-DANIDA, Mérida, pp 347–358

    Google Scholar 

  • Ruz LA (1981) El pueblo maya. Salvat Mexicana de Ediciones, México

    Google Scholar 

  • Serrano-Serrano ML, Hernandez-Torres J, Castillo-Villamizar G, Debouck DG, Chacón MI (2010) Gene pools in wild Lima bean (Phaseolus lunatus L.) from the Americas: evidences for an Andean origin and past migrations. Mol Phylogen Evol 54:76–87

    Article  CAS  Google Scholar 

  • Serrano-Serrano ML, Andueza-Noh RH, Martínez-Castillo J, Debouck DG, Chacón MI (2012) Evolution and domestication of Lima bean (Phaseolus lunatus L.) in Mexico: evidence from ribosomal DNA. Crop Sci 52:1698–1712

    Article  Google Scholar 

  • Shannon CE, Weaver W (1949) The mathematical theory of communication. University of Illinois Press, Urbana

    Google Scholar 

  • Sharer R (1999) La civilización maya. Fondo de Cultura Económica, México

    Google Scholar 

  • Slatkin M (1987) Gene flow and the geographic structure of natural populations. Science 236:787–792

    Article  PubMed  CAS  Google Scholar 

  • Tautz D, Renz M (1984) Simple sequences are ubiquitous repetitive components of eukaryote genomes. Nucleid Acids Res 12:4127–4137

    Article  CAS  Google Scholar 

  • Tsegaye B, Berg T (2006) Genetic erosion of Ethiopian tetraploid wheat landraces in Eastern Shewa, Central Ethiopia. Genet Resour Crop Evol. doi:10.1007/s10722-006-0016-2

    Google Scholar 

  • Vavilov NI (1926) Centers of origin of cultivated plants. Bull Appl Bot Genet Plant Breed 16:248

    Google Scholar 

  • Xiu-Qiang H, Wolf M, Ganal MW, Orford S, Koebner RMD, Röder MS (2007) Did modern plant breeding lead to genetic erosion in European winter wheat varieties? Crop Sci 47:343–349

    Article  Google Scholar 

  • Zhou WJ, Zhang GQ, Tuvesson S, Dayteg C, Gertsson B (2006) Genetic survey of Chinese and Swedish oilseed rape (Brassica napus L.) by simple sequence repeats (SSRs). Genet Resour Crop Evol 53:443–447

    Article  CAS  Google Scholar 

  • Zhivotovsky LA (1999) Estimating population structure in diploids with multilocus dominant DNA markers. Mol Ecol 8:907–913

    Article  PubMed  CAS  Google Scholar 

  • Zietkiewicz E, Rafalski A, Labuda D (1994) Genome finger-printing by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification. Genomics 20:176–183

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was done in the Molecular Markers Laboratory of the Department of Natural Resources-CICY. The authors thank Julian Coello Coello for laboratory assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaime Martínez-Castillo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Martínez-Castillo, J., May-Pat, F., Camacho-Pérez, L., Andueza-Noh, R.H., Dzul-Tejero, F. (2016). Genetic Erosion and In Situ Conservation of Lima Bean (Phaseolus Lunatus L.) Landraces in Mesoamerican Diversity Center. In: Ahuja, M., Jain, S. (eds) Genetic Diversity and Erosion in Plants. Sustainable Development and Biodiversity, vol 8. Springer, Cham. https://doi.org/10.1007/978-3-319-25954-3_8

Download citation

Publish with us

Policies and ethics