Skip to main content
Log in

Genetic diversity in cultivated plants—loss or stability?

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Human activities like urbanisation, the replacement of traditional agriculture systems by modern industrial methods or the introduction of modern high-yielding varieties may pose a danger to the biological diversity. Using microsatellite markers, we analysed samples of cultivated wheat (Triticum aestivum L.) collected over an interval of 40–50 years in four comparable geographical regions of Europe and Asia. No significant differences in both the total number of alleles per locus and in the PIC values were detected when the material collected in the repeated collection missions in all four regions were compared. About two-thirds of the alleles were common to both collection periods, while one-third represented collection mission-specific alleles. These findings demonstrate that an allele flow took place during the adaptation of traditional agriculture to modern systems, whereas the level of genetic diversity was not significantly influenced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alamerew S, Chebotar S, Huang XQ, Röder MS, Börner A (2004) Genetic diversity in Ethiopian hexaploid and tetraploid wheat germplasm assessed by microsatellite markers. Gen Res Crop Evol (in press)

  • Anderson JA, Churchill GA, Antrique JE, Tanksley SD, Sorrels ME (1993) Optimising parental selection for genetic linkage maps. Genome 36:181–188

    CAS  Google Scholar 

  • Backes G, Hatz B, Jahoor A, Fischbeck G (2003) RFLP diversity within and between major groups of barley in Europe. Plant Breed 122:291–299

    Article  CAS  Google Scholar 

  • Ben Amer IM, Börner A, Röder MS (2001) Detection of genetic diversity in Libyan wheat genotypes using wheat microsatellite markers. Gen Res Crop Evol 48:579–585

    Article  Google Scholar 

  • Börner A, Chebotar S, Korzun V (2000) Molecular characterization of the genetic integrity of wheat (Triticum aestivum L.) germplasm after long-term maintenance. Theor Appl Genet 100:494–497

    Article  Google Scholar 

  • Chebotar SV, Sivolap YM (2001) Differentiation, identification and characterization of Triticum aestivum L. varieties from Ukrainian breeding programs by using STMS analysis (in Russian). Cytol Genet 35:18–27

    CAS  Google Scholar 

  • Devos KM, Bryan GJ, Collins AJ, Stephenson P, Gale MD (1995) Application of two microsatellite sequences in wheat storage proteins as molecular markers. Theor Appl Genet 90:247–252

    CAS  Google Scholar 

  • Donini P, Stephenson P, Bryan GJ, Koebner RMD (1998) The potential of microsatellites for high throughput genetic diversity assessment in wheat and barley. Gen Res Crop Evol 45:415–421

    Article  Google Scholar 

  • Fahima T, Röder MS, Grama A, Nevo E (1998) Microsatellite DNA polymorphism divergence in Triticum dicoccoides accessions highly resistant to yellow rust. Theor Appl Genet 96:187–195

    Article  CAS  Google Scholar 

  • Gäde HH (1998) Die Kulturpflanzenbank Gatersleben—Geschichte und Entwicklung. Ruth Gerig Verlag, Gatersleben

  • Gregova E, Tisova V, Kraic J (1997) Genetic variability at the Glu-1 loci in old and modern wheats (Triticum aestivum L.) cultivated in Slovakia. Gen Res Crop Evol 44:301–306

    Article  Google Scholar 

  • Hammer K, Knüpffer H, Xhuweli L, Perrino P (1996) Estimating genetic erosion in landraces—two case studies. Gen Res Crop Evol 43:329–336

    Google Scholar 

  • Huang XQ, Börner A, Röder MS, Ganal MW (2002) Assessing genetic diversity of wheat (Triticum aestivum L.) germplasm using microsatellite markers. Theor Appl Genet 105:699–707

    CAS  Google Scholar 

  • Khlestkina EK, Röder MS, Efremova TT, Börner A, Shumny VK (2004) The genetic diversity of old and modern Siberian varieties of common spring wheat determined by microsatellite markers. Plant Breed (in press)

  • Manifesto MM, Schlatter AR, Hopp HE, Suarez EY, Dubcovsky J (2000) Quantitative assessment of genetic erosion among bread wheat cultivars using SSRs. Ann Wheat Newsl 46:23–24

    Google Scholar 

  • Mann HB, Whitney DR (1947) On a test of whether one of two random variables is stochastically larger than the other. Ann Math Stat 18:50–60

    Google Scholar 

  • Mayr E (1924) Getreidebau und Getreidesorten im salzburgischen Salzachtal. Bot Arch 8:185–223

    Google Scholar 

  • Mayr E (1928) Die Getreide-Landsorten und der Getreidebau im Salzachtal und seinen Nebentälern. In: Forschungsberichte der Bundesanstalt für Pflanzenbau und Samenprüfung in Wien. Scholle Verlag Buchhandlungs-Ges, Vienna

  • Mayr E (1935) Über wissenschaftliche und praktische Ergebnisse der alpinen Landsortenforschung an Getreide. Forsch Fortschr 11:376–378

    Google Scholar 

  • Mayr E (1937) Alpine Landsorten in ihrer Bedeutung für die praktische Züchtung. Forschungsdienst 4:162–166

    Google Scholar 

  • Morgante M, Hanafey M, Powell W (2002) Microsatellites are preferentially associated with nonrepetitive DNA in plant genome. Nat Genet 30:194–200

    Article  CAS  PubMed  Google Scholar 

  • Petersen L, Ostergard H, Giese H (1994) Genetic diversity among wild and cultivated barley as revealed by RFLP. Theor Appl Genet 89:676–681

    CAS  Google Scholar 

  • Plaschke J, Ganal MW, Röder MS (1995) Detection of genetic diversity in closely related bread wheat using microsatellite markers. Theor Appl Genet 91:1001–1007

    CAS  Google Scholar 

  • Röder MS, Plaschke J, König SU, Börner A, Sorrells ME, Tanksley SD, Ganal MW (1995) Abundance, variability and chromosomal location of microsatellites in wheat. Mol Gen Genet 246:327–333

    PubMed  Google Scholar 

  • Röder MS, Korzun V, Wendehake K, Plaschke J, Tixier M-H, Leroy P, Ganal MW (1998) A microsatellite map of wheat. Genetics 149:2007–2023

    PubMed  Google Scholar 

  • Rohlf FJ (1998) ntsys-pc: numerical taxonomy and multivariate analysis system. Version 2.0. Applied Biostatistics, New York

  • Struss D, Plieske J (1998) The use of microsatellite markers for detection of genetic diversity in barley populations. Theor Appl Genet 97:308–315

    CAS  Google Scholar 

  • Vavilov NI (1922) The law of homologous series in variation. J Genet 12:47–89

    Google Scholar 

  • Vavilov NI (1926) Studies on the origin of cultivated plants. Bull Appl Bot 16:139–245

    Google Scholar 

Download references

Acknowledgements

Elena Khlestkina thanks the Deutsche Forschungsgemeinschaft for financial support (Project No. 436RUS 17/16/02), Florent J.-B. Quenum was supported by the Deutsche Stiftung für internationale Entwicklung (DSE) and Zentralstelle für Ernährung und Landwirtschaft (ZEL), Programme 72.3. We thank Michael Grau and Marina Schäfer for providing the seed samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Börner.

Additional information

Communicated by G. Wenzel

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khlestkina, E.K., Huang, X.Q., Quenum, F.JB. et al. Genetic diversity in cultivated plants—loss or stability?. Theor Appl Genet 108, 1466–1472 (2004). https://doi.org/10.1007/s00122-003-1572-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-003-1572-x

Keywords

Navigation