Skip to main content

Genetic Diversity and Erosion in Hevea Rubber

  • Chapter
  • First Online:
Genetic Diversity and Erosion in Plants

Part of the book series: Sustainable Development and Biodiversity ((SDEB,volume 8))

Abstract

Genetic diversity keeps the soil fertile, recycles all nutrients, and cleans the air and water. The richer the genetic baggage, the higher shall be the capacity to fight different fungi, virus, or bacteria. Like other essentials, rubber is an industrial commodity that is indispensable to humans with more than 55,000 vivid products made from it. Hevea, rubber originated in Amazon, where 1652 plants belonging to 107 species in 37 different families are found in about 630 m2. Hevea—rubber originated in such a biologically diversified environment. From the story of the first transfer of rubber seeds from Brazil to Asia, it is difficult to evaluate how narrow the genetic base initially was for what has now become the “Wickham” domesticated population. Much importance was conferred to a small number of 22 seedlings disseminated from Singapore to Malaysia after 1876, and the original Wickham stock was collected in only one Brazilian site, Boïm, on the Western banks of the Tapajoz River. Though generation wise assortative mating as the prime breeding tool was applied to these accessions and Wickham collection, much genetic variation could not be tapped for commercial purpose. The molecular marker systems (all three generations markers) are being applied in Hevea rubber. Of these, SNPs are the new generation markers used for Marker-Assisted Selection (MAS). A saturated linkage map of Hevea brasiliensis has been accomplished and the whole genome size was calculated as 6 × 108 base pairs. Selection was indirectly toward nuclear DNA polymorphism, while evolving modern clones. mtDNA of Wickham clones has lesser variation because their female progenitors are all primary clones (either PB 56 or Tjir 1). Chloroplast genomes are sufficiently large and complex to include structural and point mutations that are useful for evolutionary studies from intraspecific to interspecific levels. Populations were subjected to several rounds of controlled crossing that further narrowed the diversity. But the strategy followed by the breeders to select only the desirable genotypes and to reject the unwanted ones (without assessing the utility other than yield) is the main reason that reduced diversity. Much work at the molecular level had been carried out like for Tapping Panel Dryness, latex production, defense genes and alike. Setting up of a molecular library for Hevea and scientists working worldwide contributing to this library will be a good option to study and document molecular diversity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen JO, Fauron CM, Minx P, Roark L, Oddiraju S, Lin GN, Meyer L, Sun H, Kyung Kim K, Wang C, Du F, Xu D, Gibson M, Cifrese J, Clifton SW, Newton KJ et al (2007) Comparisons among two fertile and three male-sterile mitochondrial genomes of maize. Genetics 177:1173–1192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asawatreratanakul K, Asawatreratanakul K, Zhang Y, Wititsuwannakul D, Wititsuwannakul R, Takahashi S, Rattanapittayaporn A, Koyama T (2003) Molecular cloning, expression and characterization of cDNA encoding cis-prenyltransferases from Hevea brasiliensis: a key factor participating in natural rubber biosynthesis. Eur J Biochem 270:4671–4680

    Article  CAS  PubMed  Google Scholar 

  • Backhaus RA (1985) Rubber formation in plants—mini review. Isr J Bot 34:283–293

    Google Scholar 

  • Baldwin JJT (1947) Hevea: a first interpretation. A cytogenetic survey of a controversial genus, with a discussion of its implications to taxonomy and to rubber production. J Hered 38:54–64

    Google Scholar 

  • Baptist EDC (1961) Breeding for high yield and disease resistance in Hevea. In: Proceedings of the natural rubber conference. Kuala Lumpur,1960, pp 430–445

    Google Scholar 

  • Barthe P, Pujade-Renaud V, Breton F, Gargani D, Thai R, Roumestand C, de Lamotte F (2007) Structural analysis of cassiicolin, a host-selective protein toxin from Corynespora cassiicola. J Mol Biol 367:89–101

    Article  CAS  PubMed  Google Scholar 

  • Baulkwill WJ (1989) The history of natural rubber production. In: Webster CC, Baulkwill WJ (eds) Rubber. Longman Scientific and Technical, Essex, pp 1–56

    Google Scholar 

  • Besse P, Seguin M, Lebrun P, Lanaud C (1993) Ribosomal DNA variations in wild and cultivated rubber tree (Hevea brasiliensis). Genome 36:1049–1057

    Article  CAS  PubMed  Google Scholar 

  • Besse P, Seguin M, Lebrun P, Chevallier MH, Nicolas D, Lanaud C (1994) Genetic diversity among wild and cultivated populations of Hevea brasiliensis assessed by nuclear RFLP analysis. Theor Appl Genet 88:199–207

    Article  CAS  PubMed  Google Scholar 

  • Birch-Machin I, Newell CA, Hibberd JM, Gray JC (2004) Accumulation of rotavirus VP6 protein in chloroplasts of transplastomic tobacco is limited by protein stability. Plant Biotechnol J 2:261–270

    Article  CAS  PubMed  Google Scholar 

  • Blanc G, Rodier-Goud M, Lidah YJ, Clément-Demange A, Seguin M (2001) Study of open pollination in Hevea using microsatellites. Plantations, recherche, développement 68–71 (ISSN 1254-7670)

    Google Scholar 

  • Bock R (2000) Sense from nonsense: how the genetic information of chloroplasts is altered by RNA editing. Biochimie 82:549–557

    Article  CAS  PubMed  Google Scholar 

  • Bock R (2007) Plastid biotechnology: prospects for herbicide and insect resistance, metabolic engineering and molecular farming. Curr Opin Biotechnol 18:100–106

    Article  CAS  PubMed  Google Scholar 

  • Brazil (1971) Ministério da Indústria e Comércio. Superintendência da Borracha. O gênero Hevea, descrição das espécies e distribuição geográfica. Rio de Janeiro, Sudhevea, 1971 (Plano Nacional da Borracha, anexo 7)

    Google Scholar 

  • Broekaert N, Lee H, Kush A, Chua NH, Raikhel N (1990) Wound induced accumulation of mRNA containing a hevein sequence in laticifer of rubber tree (Hevea brasiliensis). Proc Natl Acad Sci USA 87:7633–7637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brookson EV (1956) Importation and development of new strains of Hevea brasiliensis by the Rubber Research Institute of Malaya. J Rubb Res Inst Malaya 14:423–448

    Google Scholar 

  • Bullerwell CE, Gray MW (2004) Evolution of the mitochondrial genome: protist connections to animals, fungi and plants. Curr Opin Microbiol 7:528–534

    Article  CAS  PubMed  Google Scholar 

  • Chang S, Yang T, Du T, Huang Y, Chen J, Yan J, He J, Guan R (2011) Mitochondrial genome sequencing helps show the evolutionary mechanism of mitochondrial genome formation in Brassica. BMC Genom 12:497

    Article  CAS  Google Scholar 

  • Chappell J (1995a) The biochemistry and molecular biology of isoprenoid metabolism. Plant Physiol 107:1–6

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chappell J (1995b) Biochemistry and molecular biology of the isoprenoid biosynthetic pathway in plants. Annu Rev Plant Physiol Plant Mol Biol 46:521–547

    Article  CAS  Google Scholar 

  • Chow KS, Sunderasan E, Tan SH, Harikrishna K, Yeang HY (2001) Analysis of latex expressed sequence tags (ESTs) in Hevea brasiliensis. In: Sainte-Beuve J (ed) Annual IRRDB meeting. CIRAD, Montpellier

    Google Scholar 

  • Chye ML, Tan CT, Chua NH (1992) Three genes encode 3-hydroxy-3-methyl glutaryl-coenzyme A reductase in Hevea brasiliensis. hmg1 and hmg3 are differentially expressed. Plant Mol Biol 19:473–484

    Article  CAS  PubMed  Google Scholar 

  • Clément-Demange A, Legnaté H, Chapuset T, Pinard F, Seguin M (1998) Characterization and use of the IRRDB germplasm in Ivory Coast and French Guyana: status in 1997. p. 71–88. In: Cronin ME (ed) Proceedings of the IRRDB symposium natural rubber in Vietnam, 13–15 Oct 1997, vol 1. International Rubber Research and Development Board (IRRDB), Hertford

    Google Scholar 

  • Clément-Demange A, Legnate H, Seguin M, Carron MP, Le Guen V, Chapuset T, Nicolas D (2000) Rubber tree. In: Charrier A, Jacquot M, Hamon S, Nicolas D (eds) Tropical plant breeding. Collection Reperes. CIRAD-ORSTOM, Montpellier, pp 455–480

    Google Scholar 

  • Cole ST, Eiglmeier K, Parkhill J, James KD, Thomson NR, Wheeler PR, Honoré N, Garnier T, Churcher C, Harris D, Mungall K, Basham D, Brown D, Chillingworth T, Connor R, Davies RM, Devlin K, Duthoy S, Feltwell T, Fraser A, Hamlin N, Holroyd S, Hornsby T, Jagels K, Lacroix C, Maclean J, Moule S, Murphy L, Oliver K, Quail MA, Rajandream MA, Rutherford KM, Rutter S, Seeger K, Simon S, Simmonds S, Skelton J, Squares R, Squares S, Stevens K, Taylor K, Whitehead S, Woodward JR, Barrell BG (2001) Massive gene decay in the leprosy bacillus. Nature 409:1007–1011

    Article  CAS  PubMed  Google Scholar 

  • Cornish K (2001) Similarities and differences in rubber biochemistry among plant species. Phytochemistry 57:1123–1134

    Article  CAS  PubMed  Google Scholar 

  • Cornish K, Xie W (2012) Natural rubber biosynthesis in plants: rubber transferase. Methods Enzymol 515:63–82

    Article  CAS  PubMed  Google Scholar 

  • Cornish K, Siler D, Grosjen O, Goodman N (1993) Fundamental similarities in rubber particle architecture and function in three evolutionarily divergent plant species. J Nat Rubb Res 8:275–285

    Google Scholar 

  • Cubry P, Pujade-Renaud V, Garcia D, Espeout S, Leguen V, Granet F, Seguin M (2014) Development and characterization of a new set of 164 polymorphic EST-SSR markers for diversity and breeding studies in rubber tree (Hevea brasiliensis Mull Arg). Plant Breeding. 1–8

    Google Scholar 

  • Daniell H, Khan MS, Allison L (2002) Milestones in chloroplast genetic engineering: an environmentally friendly era in biotechnology. Trends Plant Sci 7:84–91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Gonçalves PS, Fernando DM, Rossetti AG (1982) Interspecific crosses in the genus Hevea. A preliminary progeny test of SALB resistant dwarf hybrids. Pesq Agropec Brasileira 17:775–781

    Google Scholar 

  • de Gonçalves PS, Cardoso M, Ortolani AA (1990) Origin, variability and domestication of Hevea—a review. Pesq Agropec Brasileira 25(2):135–156

    Google Scholar 

  • Dean W (1987) Brazil and the struggle for rubber. Cambridge University Press, Cambridge

    Google Scholar 

  • Dennis MS, Light DR (1989) Rubber elongation factor from Hevea brasiliensis Identification, characterization and role in rubber biosynthesis. J Biol Chem 264:18608–18617

    CAS  PubMed  Google Scholar 

  • Dewey RE, Levings CS III, Timothy DH (1981) Novel recombinations in the maize mitochondrial genome produce a unique transcriptional unit in the Texas male-sterile cytoplasm. Cell 44:439–449

    Article  Google Scholar 

  • Dijkman MJ (1951) Hevea: thirty years of research in the Far East. University Miami Press, Coral Gables

    Google Scholar 

  • Dill CL, Wise RP, Schnable PS (1997) Rf8 and Rf* mediate unique T-urf13-transcript accumulation, revealing a conserved motif associated with RNA processing and restoration of pollen fertility in T-cytoplasm maize. Genetics 147:1367–1379

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dornelas MC, Rodriguez APM (2005) The rubber tree (Hevea brasiliensis Muell Arg) homologue of the LEAFY/FLORICAULA gene is preferentially expressed in both male and female floral meristems. J Expt Bot 56:1965–1974

    Article  CAS  Google Scholar 

  • Ducke A (1941) Revisão de gênero Hevea, principalmente das espécies brasileiras. Departamento de Publicações do Estado do Amazonas, Manaus 42p

    Google Scholar 

  • El-Kassaby YA, Lstibůrek M (2009) Breeding without breeding. Genet Res 91:111–120

    Article  Google Scholar 

  • El-Kassaby YA, Lstibůrek M, Liewlaksaneeyanawin C, Slavov GT, Howe GT (2006) Breeding without breeding: approach, example, and proof of concept. In: Proceedings of the IUFRO, low input breeding and genetic conservation of forest tree species, Antalya, pp 43–54

    Google Scholar 

  • Fong CK, Lek KC, Ping CN (1994) Isolation and restriction analysis of chloroplast DNA from Hevea. J Nat Rubb Res 9:278–288

    CAS  Google Scholar 

  • Gallagher LJ, Betz SK, Chase CD (2002) Mitochondrial RNA editing truncates a chimeric open reading frame associated with S male-sterility in maize. Curr Genet 42:179–184

    Article  CAS  PubMed  Google Scholar 

  • Garcia D, Carels N, Koop DM, de Sousa LA, de Andrade SJ Jr, Pujade-Renaud V, Mattos CRR, Cascardo JCM (2011) EST profiling of resistant and susceptible Hevea infected by Microcyclus ulei. Physiol Mol Plant Pathol 76:126–137. doi:10.1016/j.pmpp.2011.07.006

    Article  CAS  Google Scholar 

  • Gébelin V, Leclercq J, Argout X, Chaidamsari T, Hu S, Tang C, Sarah G, Yang M, Montoro P (2013) The small RNA profile in latex from Hevea brasiliensis trees is affected by tapping panel dryness. Tree Physiol 33:1084–1098. doi:10.1093/treephys/tpt076

    Article  PubMed  CAS  Google Scholar 

  • Goyvaerts E, Dennis M, Light D, Chua NH (1991) Cloning and sequencing of the cDNA encoding the Rubber Elongation Factor of Hevea brasiliensis. Plant Physiol 97:317–321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Graham SW, Olmstead RG (2000) Utility of 17 chloroplast genes for inferring the phylogeny of the basal angiosperms. Am J Bot 87:1712–1730

    Article  CAS  PubMed  Google Scholar 

  • Grattapaglia D, Sederoff R (1994) Genetic linkage maps of Eucalyptus grandis and Eucalyptus urophylla using a pseudo-test cross mapping strategy and RAPD markers. Genetics 137:1121–1137

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta PK, Roy JK, Prasad M (2001) Single nucleotide polymorphism for molecular marker technology and DNA polymorphism detection with emphasis on their use in plants. Curr Sci 80:524–535

    CAS  Google Scholar 

  • Haffer J (1982) General aspects of the refuge theory. In: Prance GT (ed) Biological diversification in the tropics. Columbia University Press, New York, pp 6–26

    Google Scholar 

  • Hallé F, Combe CC (1975) Mission en Amazonie brésilienne pour la récolte de matériel génétique nouveau destiné à l’amélioration de l’Hevea. 17 Sept 11, Nov 1974. Rapport Interne IRCA

    Google Scholar 

  • Hammer K, Teklu Y (2008) Plant genetic resources: selected issues from genetic erosion to genetic engineering. J Agri Rural Develop Tropics Subtropics 109:15–50

    Google Scholar 

  • Hamon S, Dussert S, Deub M, Hamon P, Seguin JC, Glaszmann L, Grivet J, Chantereau MH, Chevallier A, Flori P, Lashermes H, Legnate Noirot M (1998) Effects of quantitative and qualitative principal component score strategies on the structure of coffee, rubber tree, rice and sorghum core collections. Gen Select Evol 30:237–258

    Article  Google Scholar 

  • Han KH, Shin DH, Yang J, Kim IJ, Oh SK, Chow KS (2000) Gene expresion in latex of Hevea bralisiensis. Tree Physiol 20:503–510

    Article  CAS  PubMed  Google Scholar 

  • Harlan JR (1970) Evolution of cultivated plants. In: Frankel OH, Bennett E (eds) Genetic resources in plants—IBP handbook no 11. International Biological Programme, London, pp 19–32

    Google Scholar 

  • Harlan JR (1975) Our vanishing genetic resources. Science 188:618–621

    Article  Google Scholar 

  • Ji Q, Xu X, Wang K (2013) Genetic transformation of major cereal crops. Int J Dev Biol 57:495–508

    Article  CAS  PubMed  Google Scholar 

  • Knoop V (2010) When you can’t trust the DNA: RNA editing changes transcript sequences. Cell Mol Life Sci 68:567–586

    Article  PubMed  CAS  Google Scholar 

  • Ko JH, Chow K, Han K (2003) Transcriptome analysis reveals novel features of the molecular events occurring in the laticifers of Hevea brasiliensis (para rubber tree). Plant Mol Biol 53:479–492

    Article  CAS  PubMed  Google Scholar 

  • Kush AE, Goyvaerts E, Chye ML, Chua NH (1990) Laticifer specific gene expression in Hevea brasiliensis (rubber tree). Proc Natl Acad Sci USA 87:1787–1790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lander ES, Botstein D (1989) Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121:185–199

    CAS  PubMed  PubMed Central  Google Scholar 

  • Landgren M, Zetterstrand M, Sundberg E, Glimelius K (1996) Alloplasmic male-sterile Brassica lines containing B. tournefortii mitochondria express an ORF 3’ of the atp6 gene and a 32 kDa protein. Plant Mol Biol 32:879–890

    Article  CAS  PubMed  Google Scholar 

  • Laver HK, Reynolds SJ, Moneger F, Leaver CJ (1991) Mitochondrial genome organization and expression associated with cytoplasmic male sterility in sunflower (Helianthus annuus). Plant J 1:185–193

    Article  CAS  PubMed  Google Scholar 

  • Lebrun P, Chevallier MH (1990) Starch and Polyacrylamide Gel Electrophoresis of Hevea brasiliensis: a Laboratory Manual. IRCA/CIRAD, Montpellier, France

    Google Scholar 

  • Le Guen V, Lespinasse D, Lover G, Rodier-Goud M, Pinard F, Seguin M (2003) Molecular mapping of genes conferring field resistance to South American Leaf Blight (Microcyclus ulei) in trubber tree. Theor Appl Genet 108:160–167

    Google Scholar 

  • Leitch AR, Lim KY, Leitch IJ, O’Neill M, Chye M, Low F (1998) Molecular cytogenetic studies in rubber Hevea brasiliensis Muell Arg (Euphorbiaceae). Genome 41:464–467

    Article  CAS  Google Scholar 

  • Lekawipat N (2004) Comparison of gene and non-gene specific molecular markers for evaluating genetic diversity in rubber (Hevea brasiliensis Muell. Arg). Diss., Doctor of Philosophy (Tropical Agriculture), Graduate School, Kasetsart University, Thailand

    Google Scholar 

  • Lekawipat N, Teerawatannasuk K, Rodier-Goud M, Seguin M, Vanavichit A, Toojinda T, Tragoonrung S (2003) Genetic diversity analysis of wild germplasm and cultivated clones of Hevea brasiliensis Muell Arg by using microsatellite markers. J Rubb Res 6:36–47

    CAS  Google Scholar 

  • Lespinasse D, Rodier-Goud M, Grivet L, Leconte A, Legnaté H, Seguin M (2000a) A saturated genetic linkage map of rubber tree (Hevea spp.) based on RFLP, AFLP, microsatellite and isozyme markers. Theor Appl Genet 100:127–138

    Article  CAS  Google Scholar 

  • Lespinasse D, Grivet L, Troispoux V, Rodier-Goud M, Pinard F, Seguin M (2000b) Identification of QTLs involved in the resistance to South American Leaf Blight (Microcyclus ulei) in the rubber tree. Theor Appl Genet 100:975–984

    Article  CAS  Google Scholar 

  • Lewinsohn TM (1991) The geographical distribution of plant latex. Chemoecology 2:64–68

    Article  Google Scholar 

  • Li D, Deng Z, Qin B, Liu X, Men Z (2012) De novo assembly and characterization of bark transcriptome using Illumina sequencing and development of EST-SSR markers in rubber tree (Hevea brasiliensis Muell Arg). BMC Genom 13:192. doi:10.1186/1471-2164-13-192

    Article  CAS  Google Scholar 

  • Lichtenthaler H (1999) The 1-deoxy-D-xylulose-5-phosphate pathway of isoprenoid biosynthesis in plants. Annu Rev Plant Physiol Plant Mol Biol 50:47–65

    Article  CAS  PubMed  Google Scholar 

  • Lichtenthaler HK, Schwender J, Disch A, Rohmer M (1997) Biosynthesis of isoprenoids in higher plant chloroplasts proceeds via a mevalonate-independent pathway. FEBS Lett 400:271–274

    Article  CAS  PubMed  Google Scholar 

  • Lidah YJ (2005) Contribution à l’amélioration génétique de l’hévéa (Hevea brasiliensis Muell Arg) par l’étude du mode de reproduction de populations sauvages en vergers à graines. Thèse de doctorat soumise à l’Université de Cocody, Abidjan, Côte d’Ivoire

    Google Scholar 

  • Low FC, Bonner J (1985) Characterization of the nuclear genome of Hevea brasiliensis. In: Proceedings of the international rubber conference. Kuala Lumpur, p 1–9

    Google Scholar 

  • Luo H, Van Coppenolle B, Seguin M, Boutry M (1995) Mitochondrial DNA polymorphism and phylogenetic relationships in Hevea brasiliensis. Mol Breed 1:51–63

    Article  CAS  Google Scholar 

  • Majumder SK (1964) Chromosome studies of some species of Hevea. J Rubb Res Inst Malay 18:269–273

    Google Scholar 

  • Maliga P (2002) Engineering the plastid genome of higher plants. Curr Opin Plant Biol 5:164–172

    Article  CAS  PubMed  Google Scholar 

  • Maliga P (2004) Plastid transformation in higher plants. Annu Rev Plant Biol 55:289–313

    Article  CAS  PubMed  Google Scholar 

  • Mantello CC, Suzuki FI, Souza LM, Gonçalves PS, Souza AP (2012) Microsatellite marker development for the rubber tree (Hevea brasiliensis): characterization and cross-amplification in wild Hevea species. BMC Res Notes 5:329. doi:10.1186/1756-0500-5-329

    Article  PubMed  PubMed Central  Google Scholar 

  • Mantello CC, Cardoso-Silva CB, da Silva CC, de Souza LM, Scaloppi Junior EJ, Gonçalves PS, Vicentini R, de Souza AP (2014) De Novo assembly and transcriptome analysis of the rubber tree (Hevea brasiliensis) and SNP markers development for rubber biosynthesis pathways. PLoS ONE 9(7):e102665. doi:10.1371/journal.pone.0102665

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Markose VC, Panikkar AON, Annamma Y, Nair VKB (1977) Effect of gamma rays on rubber seeds, germination, seedling growth and morphology. J Rubb Res Inst Sri Lanka 54:50–64

    Google Scholar 

  • Marshall TC, Slate J, Kruuk LEB, Pemberton JM (1998) Statistical confidence for likelihood-based paternity inference in natural populations. Mol Ecol 7:639–655

    Article  CAS  PubMed  Google Scholar 

  • McCauley DE (1992) The use of chloroplast DNA polymorphism in studies of gene flow in plants. Trends Ecol Evol 10:198–202

    Article  Google Scholar 

  • McGarvey DJ, Croteau R (1995) Terpenoid metabolism. Plant Cell 7:1015–1026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Melillo JM, McGuire AD, Kicklighter DW, Moore B III, Vorosmarty CJ, Schloss AL (1993) Global climate change and terrestrial net primary production. Nature 363:234–240

    Article  CAS  Google Scholar 

  • Mendes LOT, Mendes AJ (1963) Poliploidia artificial em seringueria (Hevea brasiliensis Muell Arg). Bragantia 22:383–392

    Article  Google Scholar 

  • MRB (1999) Annual Report 1999. Malaysian Rubber Board, p 27

    Google Scholar 

  • Nazeer MA, Saraswatyamma CK (1987) Spontaneous triploidy in Hevea brasiliensis (Willd. ex. A. de. Juss) Muell Arg J Plant. Crops 15:69–71

    Google Scholar 

  • Neale DB, Saghai-Maroof MA, Allard RW, Zhang Q, Jorgensen RA (1988) Chloroplast DNA diversity in populations of wild and cultivated barley. Genetics 120:1105–1110

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nicolas D (1976) Mission en amazonie, transfert du matériel génétique nouveau du Brésil aux relais phytosanitaires, 16 Jan 12 Fév Rapport IRCA

    Google Scholar 

  • Nicolas D (1981) Prospection et récolte de matériel végétal Hevea dans la forêt amazonienne. Fév-Mars 1981. Rapport IRCA

    Google Scholar 

  • Nicolas D, Chevallier M-H, Clément-Demange A (1988) Contribution to the study and evaluation of new germplasm for use in Hevea genetic improvement. In: Compte-rendu du Colloque Exploitation-Physiologie et Amélioration de l’Hevea. Colloque Hevea 88 IRRDB. Irca-Cirad, Paris, pp 335–352

    Google Scholar 

  • Nouy B (1982) Status report on new Hevea germplasm collected from Brasil. IRRDB African Germplasm Centre. Status: Sept 1982

    Google Scholar 

  • Oh SK, Kang HS, Shin DS, Yang J, Chow KS, Yeang HY, Wagner B, Breiteneder H, Han KH (1999) Isolation, characterization and functional analysis of a novel cDNA clone encoding a small rubber particle protein (SRPP) from Hevea brasiliensis. J Biol Chem 274:17132–17138

    Article  CAS  PubMed  Google Scholar 

  • Ohyama K, Fukuzawa H, Kohchi T, Shirai H, Sano T, Sano S, Umesono K, Shiki Y, Takeuchi M, Chang Z, Aota S, Inokuchi S, Ozeki H (1986) Chloroplast gene organization deduced from complete sequence of liverwort Marchantia polymorpha chloroplast DNA. Nature 322:572–574

    Article  CAS  Google Scholar 

  • Ong SN (1975) Chromosome morphology at pachytene stage in Hevea brasiliensis: a preliminary report. In: Sripathi B (ed) Proceedings of the international rubber conference. Rubber Research Institute of Malaysia, Kuala Lumpur, pp 3–12

    Google Scholar 

  • Ong SH (1979) Cytotaxonomic investigation of the genus Hevea. PhD thesis, University of California

    Google Scholar 

  • Ong SH, Subramaniam S (1973) Mutation breeding in Hevea brasiliensis Muell Arg. Induced mutations in vegetatively propagated plants. IAEA, Vienna

    Google Scholar 

  • Ong SH, Tan H (1987) Utilization of Hevea genetic resources in the RRIM. Malays Appl Biol 16(1):145–155

    Google Scholar 

  • Ong SH, Ghani MNA, Tan AM, Tan H (1983) New Hevea germplasm: its introduction and potential. In: Proceedings of the rubber research institute of malaysia rubber planters’ conference, Kuala Lumpur. pp 1–14

    Google Scholar 

  • Palmer JD, Herbon LA (1987) Unicircular structure of the Brassica hirta mitochondrial genome. Curr Genet 11:565–570

    Article  CAS  PubMed  Google Scholar 

  • Pellicer J, Fa MF, Leitch IJ (2010) The largest eukaryotic genome of them all? Bot J Linn Soc 164:1–10

    Article  Google Scholar 

  • Pires JM (1973) Revisão do gênero Hevea: descrição da espécies e distribuição geográfica. Relatório Anual, 1972. Belém, Instituto de Pesquisa Agropecuária do Norte, 1973, pp 6–66 (Projeto de Botânica—Subprojeto revisão do gênero Hevea. Sudhevea/Dnpea (Ipean)

    Google Scholar 

  • Pires JM (1981) Euphorbiaceae: Hevea camargoana sp. Notas de herbario I. Museu Emilio Goeldi, Belem, pp 4–8

    Google Scholar 

  • Posch A, Chen Z, Wheeler C, Dunn MJ, Raulf-Heinsoth K, Baur X (1997) Characterization and identification of latex allergens by two-dimensional electrophoresis and protein micro-sequencing. J Allerg Chem 99:385–395

    Google Scholar 

  • Priyadarshan PM (2003) Breeding Hevea brasiliensis for environmental constraints. Adv Agron 79:351–400 (Review Article—Academic Press)

    Article  Google Scholar 

  • Priyadarshan PM, Clément-Demange A (2004) Breeding Hevea rubber: formal and molecular genetics. Adv Genet 52:51–115

    Article  CAS  PubMed  Google Scholar 

  • Priyadarshan PM, de Goncalves PS (2003) Hevea gene pool for breeding. Genet Resour Crop Evol 50:101–114

    Article  CAS  Google Scholar 

  • Priyadarshan PM, de Goncalves PS, Omokhafe K (2008) Rubber. In: Kole CK (ed) Genome mapping and molecular breeding in plants, vol 6. Springer, Berlin, pp 143–174

    Google Scholar 

  • Provan J, Powell W, Hollingsworth PM (2001) Chloroplast microsatellites: new tools for studies in plant ecology and evolution. Trends Ecol Evol 16:142–147

    Article  PubMed  Google Scholar 

  • Pujade-Renaud V, Sanier C, Cambillau L, Arokiaraj P, Jones H, Ruengsri N, Tharreau D, Chrestin H, Montoro P, Narangajavana J (2005) Molecular characterization of new members of the Hevea brasiliensis hevein multigene family and analysis of their promoter region in rice. Biochem Biophys Acta 1727:151–161

    CAS  PubMed  Google Scholar 

  • Pushparajah E (2001) Natural rubber. In: Last FT (ed) Tree crop ecosystems (Ecosytems of the world series), vol 19. Elsevier Science, Amsterdam, pp 379–407

    Google Scholar 

  • Raemer H (1935) Cytology of Hevea. Genetics 17:193

    Google Scholar 

  • Rahman AYA et al (2013) Draft genome sequence of the rubber tree Hevea brasiliensis. BMC Genom 14:75. http://www.biomedcentral.com/1471-2164/14/75

  • Rodríguez-Moreno L, González VM, Benjak A, Marti MC, Puigdomènech P, Aranda MA, Garcia-Mas J (2011) Determination of the melon chloroplast and mitochondrial genome sequences reveals that the largest reported mitochondrial genome in plants contains a significant amount of DNA having a nuclear origin. BMC Genom 12:424

    Article  CAS  Google Scholar 

  • RRIM (1997) Rubber Research Institute of Malaysia Annual report 1997, p 13

    Google Scholar 

  • Saha T, Priyadarshan PM (2012) Genomics of Hevea rubber. In: Schnell RJ, Priyadarshan PM (eds) Genomics of tree crops. Springer, Berlin, pp 261–298

    Chapter  Google Scholar 

  • Salgado LR, Koop DM, Pinheiro DG, Rivallan R, Le Guen V, Nicolás MF, de Almeida LGP, Rocha VR, Magalhães M, Gerber AL, Figueira A, de Mattos Cascardo JC, Tereza A, de Vasconcelos R, Silva WA, Coutinho LL, Garcia D (2014) De novo transcriptome analysis of Hevea brasiliensis tissues by RNA-seq and screening for molecular markers. BMC Genom 15:236. doi:10.1186/1471-2164-15-236

    Article  CAS  Google Scholar 

  • Saraswathyamma CK, Nazeer MA, Premakumari D, Licy J, Panikkar AON (1988) Comparative cytomorphological studies on a diploid, a triploid and a tetraploid clone of Hevea brasiliensis (Willd. ex. Adr. De. Juss) Müll Arg. Ind J Nat Rubb Res 1:1–7

    Google Scholar 

  • Schroth G, Coutinho P, Moraes VHF, Albernaz AL (2003) Rubber agroforests at the Tapajós River, Brazilian Amazonia: environmentally benign land use systems in an old forest frontier region. Agric Ecosyst Environ 97:151–165

    Article  Google Scholar 

  • Schroth G, Fonseca GAB, Harvey CA, Gascon C, Lasconcelos HL, Izac AN (2004) Agroforestry and biodiversity conservation in tropical landscapes. Island Press, Washington DC 575 p

    Google Scholar 

  • Schultes RE (1945) Estudo preliminary del genero Hevea em Colombia. Revista de la Academia Colombiana de Ciências Exatas Fricas y Naturales. Bogotá 61:331–338

    Google Scholar 

  • Schultes RE (1977) Wild Hevea: an untapped source of germpalsm. J Rubb Res Inst Sri Lanka 54:227–257

    Google Scholar 

  • Schultes RE (1987) Studies in the genus Hevea VIII. Notes on intrageneric variants of Hevea brasiliensis (Euphorbiaceae). Econ Bot 41:125–147

    Article  Google Scholar 

  • Schultes RE (1990) Taxonomic nomenclature and ethnobotanic notes on Elaeis. Elaeis 2:172–187

    Google Scholar 

  • Seguin M, Besse P, Lespinasse D, Lebrun P, Rodier-Goud M, Nicolas D (1996) Hevea molecular genetics. Plantations, Recherche, Développment 3:77–88

    Google Scholar 

  • Seguin M, Flori A, Legnaté H, Clément-Demange A (2003) Rubber tree. In: Hamon P, Seguin M, Perrier X, Glaszmann JC (eds) Genetic diversity of cultivated tropical plants. Cirad, Ird, Collection “Repères”, pp 277–306. ISBN 2-87614-541-3

    Google Scholar 

  • Seibert RJ (1947) A study of Hevea in republic of Peru. Ann Mo Bot Gard 34:261–352 (Saint Lows)

    Article  Google Scholar 

  • Shearman J, Sangsrakru D, Ruang-areerate P, Sonthirod C, Uthaipaisanwong P, Yoocha T, Poopear S, Theerawattanasuk K, Tragoonrung S, Tangphatsornruang S (2014) Assembly and analysis of a male sterile rubber tree mitochondrial genome reveals DNA rearrangement events and a novel transcript. BMC Plant Biol 14:45. doi:10.1186/1471-2229-14-45

    Article  PubMed  PubMed Central  Google Scholar 

  • Shepherd H (1969) Aspects of Hevea breeding and selection. Investigations undertaken on Prang Besar Estate. RRIM Planters’ Bulletin No: 104, pp 206–216

    Google Scholar 

  • Simmonds NW (1986) Theoretical aspects of synthetic/polycross populations of rubber seedlings. J Nat Rubb Res 1:1–15

    Google Scholar 

  • Simmonds NW (1989) Rubber breeding. In: Webster CC, Baulkwill WJ (eds) Rubber. Longman Scientific and Technical, Essex, pp 85–124

    Google Scholar 

  • Souza LM, Mantello CC, Suzuki F, Gazaffi R, Garcia D, Le Guen V, Garcia AAF, Souza AP (2011) Development of a genetic linkage map of rubber tree (Hevea braziliensis) based on microsatellite markers. BMC Proceedings 2011, 5 (Suppl 7): P39, http://www.biomedcentral.com/1753-6561/5/S7/P39

  • Souza LM, Gazaffi R, Mantello CC, Silva CC, Garcia D, Le Guen V, Cardoso SEA, Garcia AAF, Souza AP (2013) QTL mapping of growth-related traits in a full-sib family of rubber tree (Hevea brasiliensis) evaluated in a sub-tropical climate. PLoS ONE 8(4):e61238. doi:10.1371/journal.pone.0061238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steege H et al (2013) Hyperdominance in the Amazonian tree flora. Science 342:1243092. doi:10.1126/science.1243092

    Article  PubMed  CAS  Google Scholar 

  • Sterck L, Rombauts S, Vandepoele K, Rouzé P, Van de Peer Y (2007) How many genes are there in plants (… and why are they there)? Curr Opin Plant Biol 10:199–203

    Article  CAS  PubMed  Google Scholar 

  • Stewert WD, Watchel WL, Shipman JJ, Hanks JA (1955) Synthesis of rubber by fungi. Science 122:1271

    Article  Google Scholar 

  • Tan H (1987) Strategies in rubber tree breeding. In: Abbott AJ, Atkin RK (eds) Improving vegetatively propagated crops. Academic Press, London, pp 28–54

    Google Scholar 

  • Tangphatsornruang S, Birch-Machin I, Newell CA, Gray JC (2010) The effect of different 3’ untranslated regions on the accumulation and stability of transcripts of a gfp transgene in chloroplasts of transplastomic tobacco. Plant Mol Biol 76(3–5):385–396. doi:10.1007/s11103-010-9689-1 (Epub)

    PubMed  Google Scholar 

  • Tangphatsornruang S, Sangsrakru D, Chanprasert J, Uthaipaisanwong P, Yoocha T, Jomchai N, Tragoonrung S (2011) Characterization of the complete chloroplast genome sequence of Hevea brasiliensis reveals genome rearrangement, RNA editing sites and phylogenetic relationships among angiosperms. Gene 475:104–112

    Article  CAS  PubMed  Google Scholar 

  • Thomas KK (2001) Role of Clement Robert Markham in the introduction of Hevea rubber into the British India. The Planter 77:287–292

    Google Scholar 

  • Tian H, Melillo JM, Kicklighter DW, Mcguire AD, Helfrich J III, Moore B III, Vörösmarty CJ (2000) Climatic and biotic controls on annual carbon storage in Amazonian ecosystems. Glob Ecol Biogeogr 9:315–335

    Article  Google Scholar 

  • Triwitayakorn K, Chatkulkawin P, Kanjanawattanawong S, Sraphet S, Yoocha T, Sangsrakru D, Chanprasert J, Ngamphiw C, Jomchai N, Therawattanasuk K, Tangphatsornruang S (2011) Transcriptome sequencing of Hevea brasiliensis for development of microsatellite markers and construction of a genetic linkage map. DNA Res 18:471–482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turmel M, Otis C, Lemieux C (2003) The mitochondrial genome of Chara vulgaris: insights into the mitochondrial DNA architecture of the last common ancestor of green algae and land plants. Plant Cell 15:1888–1903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Oojen JW, Sandbrink H, Purimahua C, Vrielink R, Verkerk R, Zabel P, Lindhout D (1992) Mapping quantitative genes involved in a trait assessed on an ordinal scale: a case study with bacterial canker in Lycopersicon peruvianum. In: Yoder JI (ed) Molecular biology of tomato. Technomic, Lancaster, pp 59–74

    Google Scholar 

  • Venkatachalam P, Priya P, Saraswathyamma CK, Thulaseedharan A (2004) Identification, cloning and sequence analysis of a dwarf genome-specific RAPD marker in rubber tree Hevea brasiliensis Muell Arg. Plant Cell Rep 23:327–332

    Article  CAS  PubMed  Google Scholar 

  • Wadley G, Martin A (1993) The origins of agriculture: a biological perspective and a new hypothesis. Aust Biologist 6:96–105

    Google Scholar 

  • Wang Z, Zou Y, Li X, Zhang Q, Chen L, Wu H, Su D, Chen Y, Guo J, Luo D, Long Y, Zhong Y, Liu Y (2006) Cytoplasmic male sterility of rice with boro II cytoplasm is caused by a cytotoxic peptide and is restored by Two related PPR motif genes via distinct modes of mRNA silencing. Plant Cell Online 18:676–687

    Article  CAS  Google Scholar 

  • Waterston RH, Lindblad-Toh K, Birney E, Rogers J, Brent MR, Collins FS, Guigó R, Hardison RC, Haussler D, Jaffe DB, Kent WJ, Miller W, Ponting CP, Smit A, Zody MC, Lander ES (2002) Initial sequencing and comparative analysis of the mouse genome. Nature 420:520–562

    Article  CAS  PubMed  Google Scholar 

  • Webster CL (1994) Classification of the Euphorbiaceae. Ann Missouri Bot Gard 81:3–32

    Article  Google Scholar 

  • Webster CC, Paardekooper EC (1989) Botany of the rubber tree. In: Webster CC, Baulkwill WJ (eds) Rubber. Longman Scientific and Technical, Essex, pp 57–84

    Google Scholar 

  • Wong PF, Abubakar S (2005) Post-germination changes in Hevea brasiliensis seeds proteome. Plant Sci 169:303–311

    Article  CAS  Google Scholar 

  • Wycherley PR (1968) Introduction of Hevea to the orient. The Planter 4:1–11

    Google Scholar 

  • Wycherley PR (1976) Rubber. In: Simmonds NW (ed) Evolution of crop plants. Longman, London, pp 77–80

    Google Scholar 

  • Wycherley PR (1992) The genus Hevea—botanical aspects. In: Sethuraj MR, Mathew NM (eds) Natrual rubber: biology, cultivation and technology. Elsevier, Amsterdam, pp 50–66

    Chapter  Google Scholar 

  • Li D, Deng Z, Chen C, Xia, Z, Wu M, He P, Chen S (2010) Identification and characterization of genes associated with tapping panel dryness from Hevea brasiliensis latex using suppression subtractive hybridization. BMC Plant Biol 10: 140 http://www.biomedcentral.com/1471-2229/10/140

    Google Scholar 

  • Xu Y (2010) Molecular plant breeding CABI. UK. 734 pages

    Google Scholar 

  • Young EG, Hanson MR (1987) A fused mitochondrial gene associated with cytoplasmic male sterility is developmentally regulated. Cell 50:41–49

    Article  CAS  PubMed  Google Scholar 

  • Zeder MA (2008) Domestication and early agriculture in the Mediterranean Basin: origins, diffusion, and impact. Proc Natl Acad Sci USA 105:11597–11604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng X, Zeng X, Chen X, Yang G (1980) A further report on induction and cytological studies on polyploid mutants of Hevea. (I). Chin J Trop Crops 1:27–31

    Google Scholar 

  • Zheng X, Zeng X, Chen X, Yang G (1981) A further report on induction and cytological studies on polyploid mutants of Hevea (II). Chin J Trop Crops 2:1–9

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. M. Priyadarshan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Priyadarshan, P.M. (2016). Genetic Diversity and Erosion in Hevea Rubber. In: Ahuja, M., Jain, S. (eds) Genetic Diversity and Erosion in Plants. Sustainable Development and Biodiversity, vol 8. Springer, Cham. https://doi.org/10.1007/978-3-319-25954-3_6

Download citation

Publish with us

Policies and ethics