Skip to main content

Abstract

Next-generation sequencing (NGS) of plant genomes provides opportunities to understand the genetic makeup and behavior of plant genomes. Plant whole genome sequencing, transcriptome sequencing and exome sequencing will allow discovering agronomically-important genes that regulate yield and tolerance to biotic and abiotic stresses. The availability of the genome and transcriptome sequence data helps in the development of genetic markers. At present, available NGS tools are powerful enough to provide high-resolution analysis of plant genomes. NGS generates huge amounts of sequenced data in a cost-effective manner and allows profiling for nucleotide variation and large-scale discovery of functional markers. These markers will help in selection of economically-important traits in plant breeding. Plant breeding has been beneficial in developing improved varieties using conventional tools, techniques and methodologies. The availability of NGS tools and online resources is leading to a gene revolution of plant breeding, as they facilitate the study of the genome and its relationship with the phenome for complex traits. The analyses of NGS data allow plant breeders to discover regulatory sequences and their relative positions and subsequent development of molecular markers for marker-assisted selection (MAS).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abeel T, Van Parys T, Saeys Y et al (2012) Genome view: a next-generation genome browser. Nucleic Acids Res 40(2), e12

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Agarwal G, Jhanwar S, Priya P et al (2012) Comparative analysis of kabuli chickpea transcriptome with desi and wild chickpea provides a rich resource for development of functional markers. PLoS One 7(12), e52443

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • AGI (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Arabidopsis genome initiative. Nature 408(6814):796–815

    Article  Google Scholar 

  • Ahn YK, Tripathi S, Kim JH et al (2014) Transcriptome analysis of Capsicum annuum varieties Mandarin and Blackcluster: assembly, annotation and molecular marker discovery. Gene 533(2):494–499

    Article  CAS  PubMed  Google Scholar 

  • Akhunov E, Nicolet C, Dvorak J (2009) Single nucleotide polymorphism genotyping in polyploidy wheat with the Illumina Golden Gate assay. Theor Appl Genet 119:507–517

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Allen AM, Barker GL, Wilkinson P et al (2013) Discovery and development of exome-based, co-dominant single nucleotide polymorphism markers in hexaploid wheat (Triticum aestivum L.). Plant Biotechnol J 11(3):279–295

    Article  CAS  PubMed  Google Scholar 

  • Ameur A, Wetterbom A, Feuk L et al (2010) Global and unbiased detection of splice junctions from RNA-seq data. Genome Biol 11(3):R34

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Anders S, Huber W (2010) Differential expression analysis for sequence count data. Genome Biol 11(10):R106

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Anders S, Reyes A, Huber W (2012) Detecting differential usage of exons from RNA-seq data. Genome Res 22(10):2008–2017

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Anders S, Pyl PT, Huber W (2014) HTSeq – a python framework to work with high-throughput sequencing data, bioRxiv posted online 20 Feb 2014. doi:10.1101/002824

    Google Scholar 

  • Andrews S (2011) FastQ screen [online]. http://www.bioinformatics.babraham.ac.uk/projects/fastq_screen/

  • Arai-Kichise Y, Shiwa Y, Nagasaki H et al (2011) Discovery of genome-wide DNA polymorphisms in a landrace cultivar of japonica rice by whole-genome sequencing. Plant Cell Physiol 52:274–282

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Argout X, Salse J, Aury JM et al (2010) The genome of Thebroma cacao. Nat Genet 43:101–108

    Article  PubMed  CAS  Google Scholar 

  • Aschoff M, Hotz-Wagenblatt A, Glatting KH et al (2013) SplicingCompass: differential splicing detection using RNA-seq data. Bioinformatics 29(9):1141–1148

    Article  CAS  PubMed  Google Scholar 

  • Ashelford K, Eriksson ME, Allen CM et al (2011) Full genome re-sequencing reveals a novel circadian clock mutation in Arabidopsis. Genome Biol 12(3):R28

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ashrafi H, Hill T, Stoffel K et al (2012) De novo assembly of the pepper transcriptome (Capsicum annuum): a benchmark for in silico discovery of SNPs, SSRs and candidate genes. BMC Genomics 13:571

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Au KF, Jiang H, Lin L et al (2010) Detection of splice junctions from paired-end RNA-seq data by SpliceMap. Nucleic Acids Res 38(14):4570–4578

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Babu R, Nair SK, Prasanna BM, Gupta HS (2004) Integrating marker-assisted selection in crop breeding – prospects and challenges. Curr Sci 87:607–619

    CAS  Google Scholar 

  • Bankevich A, Nurk S, Antipov D et al (2012) SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19(5):455–477

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bao H, Guo H, Wang J et al (2009a) MapView: visualization of short reads alignment on a desktop computer. Bioinformatics 25(12):1554–1555

    Article  CAS  PubMed  Google Scholar 

  • Bao H, Xiong Y, Guo H et al (2009b) MapNext: a software tool for spliced and unspliced alignments and SNP detection of short sequence reads. BMC Genomics 10(3):S13

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Batzoglou S, Jaffe DB, Stanley K et al (2002) ARACHNE: a whole-genome shotgun assembler. Genome Res 12(1):177–189

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bentley DR, Balasubramanian S, Swerdlow HP et al (2008) Accurate whole human genome sequencing using reversible terminator chemistry. Nature 456:53–59

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bevan MW, Uauy C (2013) Genomics reveals new landscapes for crop improvement. Genome Biol 14(6):206

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Bi Y, Davuluri RV (2013) NPEBseq: nonparametric empirical Bayesian-based procedure for differential expression analysis of RNA-seq data. BMC Bioinform 14:262

    Article  Google Scholar 

  • Biesecker LG, Shianna KV, Mullikin JC (2011) Exome sequencing: the expert view. Genome Biol 12:128

    Article  PubMed Central  PubMed  Google Scholar 

  • Blankenberg D, Von Kuster G, Coraor N et al (2010) Galaxy: a web-based genome analysis tool for experimentalists. Curr Protoc Mol Biol Chapter 19: Unit 19.10.1-21. doi:10.1002/0471142727.mb1910s89

  • Bohnert R, Ratsch G (2010) rQuant.web: a tool for RNA-Seq-based transcript quantitation. Nucleic Acids Res 38:348–351

    Article  CAS  Google Scholar 

  • Boisvert S, Laviolette F, Corbeil J (2010) Ray: simultaneous assembly of reads from a mix of high-throughput sequencing technologies. J Comput Biol 17(11):1519–1533

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bonfert T, Csaba G, Zimmer R et al (2012) A context-based approach to identify the most likely mapping for RNA-seq experiments. BMC Bioinformatics 13(6):S9

    Article  PubMed Central  PubMed  Google Scholar 

  • Boria I, Boatti L, Pesole G et al (2013) NGS-Trex: Next Generation Sequencing Transcriptome profile explorer. BMC Bioinform Suppl 14(7):S10

    Google Scholar 

  • Breese MR, Liu Y (2013) NGSUtils: a software suite for analyzing and manipulating next-generation sequencing datasets. Bioinformatics 29(4):494–496

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Brenchley R, Spannagl M, Pfeifer M et al (2012) Analysis of the bread wheat genome using whole-genome shotgun sequencing. Nature 491(7426):705–710

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bryant DW Jr, Shen R, Priest HD et al (2010) Supersplat-spliced RNA-seq alignment. Bioinformatics 26(12):1500–1505

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Burland TG (2000) DNASTAR’s Lasergene sequence analysis software. Methods Mol Biol 132:71–91

    CAS  PubMed  Google Scholar 

  • Busby MA, Stewart C, Miller CA et al (2013) Scotty: a web tool for designing RNA-Seq experiments to measure differential gene expression. Bioinformatics 29(5):656–657

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Butler J, MacCallum I, Kleber M et al (2008) ALLPATHS: de novo assembly of whole-genome shotgun microreads. Genome Res 18(5):810–820

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Campagna D, Albiero A, Bilardi A et al (2009) PASS: a program to align short sequences. Bioinformatics 25(7):967–968

    Article  CAS  PubMed  Google Scholar 

  • Cao J, Schneeberger K, Ossowski S et al (2011) Whole-genome sequencing of multiple Arabidopsis thaliana populations. Nat Genet 43(10):956–963

    Article  CAS  PubMed  Google Scholar 

  • Chan AP, Crabtree J, Zhao Q et al (2010) Draft genome sequence of the oilseed species Ricinus communis. Nat Biotech 28:951–956

    Article  CAS  Google Scholar 

  • Chao S, Dubcovsky J, Dvorak J et al (2010) Population- and genome-specific patterns of linkage disequilibrium and SNP variation in spring and winter wheat (Triticum aestivum L.). BMC Genomics 11:727

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chatterjee A, Stockwell PA, Rodger EJ et al (2012) Comparison of alignment software for genome-wide bisulphite sequence data. Nucleic Acids Res 40(10), e79

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chen K, Wallis JW, McLellan MD et al (2009) BreakDancer: an algorithm for high-resolution mapping of genomic structural variation. Nat Meth 6(9):677–681

    Article  CAS  Google Scholar 

  • Chen LY, Wei KC, Huang AC et al (2012) RNASEQR--a streamlined and accurate RNA-seq sequence analysis program. Nucleic Acids Res 40(6), e42

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chitsaz H, Yee-Greenbaum JL, Tesler G (2011) Efficient de novo assembly of single-cell bacterial genomes from short-read data sets. Nat Biotechnol 29(10):915–921

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chu VT, Gottardo R, Raftery AE et al (2008) MeV + R: using MeV as a graphical user interface for bioconductor applications in microarray analysis. Genome Biol 9(7):R118

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Chu HT, Hsiao WW, Chen JC et al (2013) EBARDenovo: highly accurate de novo assembly of RNA-Seq with efficient chimera-detection. Bioinformatics 29(8):1004–1010

    Article  CAS  PubMed  Google Scholar 

  • Church GM (2006) Genomes for all. Sci Am 294(1):46–54

    Article  CAS  PubMed  Google Scholar 

  • Clement NL, Snell Q, Clement MJ et al (2010) The GNUMAP algorithm: unbiased probabilistic mapping of oligonucleotides from next-generation sequencing. Bioinformatics 26(1):38–45

    Article  CAS  PubMed  Google Scholar 

  • Cloonan N, Xu Q, Faulkner GJ et al (2009) RNA-MATE: a recursive mapping strategy for high-throughput RNA-sequencing data. Bioinformatics 25(19):2615–2616

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cock PJ, Fields CJ, Goto N et al (2010) The Sanger FASTQ file format for sequences with quality scores, and the Solexa/Illumina FASTQ variants. Nucleic Acids Res 38(6):1767–1771

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Collard BCY, Jahufer MZZ, Brouwer JB, Pang ECK (2005) An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: the basic concepts. Euphytica 142:169–196

    Article  CAS  Google Scholar 

  • Cumbie JS, Kimbrel JA, Di Y et al (2011) GENE-counter: a computational pipeline for the analysis of RNA-Seq data for gene expression differences. PLoS One 6(10), e25279

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dassanayake M, Oh DH, Haas JS et al (2011) The genome of the extremophile crucifer Thellungiella parvula. Nat Genet 43(9):913–918

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dayarian A, Michael TP, Sengupta AM (2010) SOPRA: Scaffolding algorithm for paired reads via statistical optimization. BMC Bioinform 11:345

    Article  CAS  Google Scholar 

  • De Bona F, Ossowski S, Schneeberger K et al (2008) Optimal spliced alignments of short sequence reads. Bioinformatics 24(16):i174–i180

    Article  PubMed  Google Scholar 

  • De Hoon M, Hayashizaki Y (2008) Deep cap analysis gene expression (CAGE): genome-wide identification of promoters, quantification of their expression, and network inference. Biotechniques 44(5):627–628

    Article  PubMed  CAS  Google Scholar 

  • De la Bastide M, McCombie WR (2007) Assembling genomic DNA sequences with PHRAP. Curr Protoc Bioinform. Chapter 11: Unit11.4. doi:10.1002/0471250953.bi1104s17

  • Delhomme N, Padioleau I, Furlong EE et al (2012) easyRNASeq: a bioconductor package for processing RNA-Seq data. Bioinformatics 28(19):2532–2533

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • DeLuca DS, Levin JZ, Sivachenko A et al (2012) RNA-SeQC: RNA-seq metrics for quality control and process optimization. Bioinformatics 28(11):1530–1532

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Denoeud F, Aury JM, Da Silva C et al (2008) Annotating genomes with massive-scale RNA sequencing. Genome Biol 9:R175

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Dimon MT, Sorber K, DeRisi JL (2010) HMMSplicer: a tool for efficient and sensitive discovery of known and novel splice junctions in RNA-Seq data. PLoS One 5(11), e13875

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Dobin A, Davis CA, Schlesinger F et al (2013) STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29(1):15–21

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dodt M, Roehr JT, Ahmed R et al (2012) FLEXBAR – flexible barcode and adapter processing for next-generation sequencing platforms. Biol 1(3):895–905

    Article  Google Scholar 

  • Dohm JC, Lottaz C, Borodina T (2007) SHARCGS, a fast and highly accurate short-read assembly algorithm for de novo genomic sequencing. Genome Res 17(11):1697–1706

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dorn KM, Fankhauser JD, Wyse DL et al (2013) De novo assembly of the pennycress (Thlaspi arvense) transcriptome provides tools for the development of a winter cover crop and biodiesel feedstock. Plant J 75(6):1028–1038

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Doust AN, Kellogg EA, Devos KM et al (2009) Foxtail millet: a sequence-driven grass model system. Plant Physiol 149(1):137–141

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Downey T (2006) Analysis of a multifactor microarray study using Partek genomics solution. Methods Enzymol 411:256–270

    Article  CAS  PubMed  Google Scholar 

  • Du Z, Zhou X, Ling Y et al (2010) agriGO: a GO analysis toolkit for the agricultural community. Nucleic Acids Res 38:64–70

    Article  CAS  Google Scholar 

  • Duan J, Xia C, Zhao G et al (2012) Optimizing de novo common wheat transcriptome assembly using short-read RNA-Seq data. BMC Genomics 13:392

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dubey A, Farmer A, Schlueter J et al (2011) Defining the transcriptome assembly and its use for genome dynamics and transcriptome profiling studies in pigeonpea (Cajanus cajan L.). DNA Res 18(3):153–164

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dubey NK, Goel R, Ranjan A et al (2013) Comparative transcriptome analysis of Gossypium hirsutum L in response to sap sucking insects: aphid and whitefly. BMC Genomics 14(1):241

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Eathington SR, Crosbie TM, Edward MD et al (2007) Molecular markers in a commercial breeding programme. Crop Sci 47S:154–163

    Google Scholar 

  • Edwards D, Batley J (2010) Plant genome sequencing: applications for crop improvement. Plant Biotechnol J 8(1):2–9

    Article  CAS  PubMed  Google Scholar 

  • Edwards D, Batley J, Snowdon RJ (2013) Accessing complex crop genomes with next-generation sequencing. Theor Appl Genet 126(1):1–11

    Article  CAS  PubMed  Google Scholar 

  • Egan AN, Schlueter J, Spooner DM (2012) Applications of next-generation sequencing in plant biology. Am J Bot 99(2):175–185

    Article  CAS  PubMed  Google Scholar 

  • Fan H, Xiao Y, Yang Y et al (2013) RNA-Seq analysis of Cocos nucifera: transcriptome sequencing and de novo assembly for subsequent functional genomics approaches. PLoS One 8(3), e59997

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Feng J, Li W, Jiang T (2011) Inference of isoforms from short sequence reads. J Comput Biol 18(3):305–321

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fernandes AD, Macklaim JM, Linn TG et al (2013) ANOVA-like differential expression (ALDEx) analysis for mixed population RNA-Seq. PLoS One 8(7), e67019

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Filichkin SA, Priest HD, Givan SA et al (2010) Genome-wide mapping of alternative splicing in Arabidopsis thaliana. Genome Res 20(1):45–58

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fiume M, Smith EJ, Brook A et al (2012) Savant Genome Browser 2: visualization and analysis for population-scale genomics. Nucleic Acids Res 40:615–621

    Article  CAS  Google Scholar 

  • Florea L, Song L, Salzberg SL (2013) Thousands of exon skipping events differentiate among splicing patterns in sixteen human tissues. Version 2. F1000Res. 16 Sept 2013 [revised 21 Nov 2013]; 2:188. doi:10.12688/f1000research.2-188.v2

    Google Scholar 

  • Foissac S, Sammeth M (2007) ASTALAVISTA: dynamic and flexible analysis of alternative splicing events in custom gene datasets. Nucleic Acids Res 35:297–299

    Article  Google Scholar 

  • Forster SC, Finkel AM, Gould JA et al (2013) RNA-eXpress annotates novel transcript features in RNA-seq data. Bioinformatics 29(6):810–812

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Friedman BA, Maniatis T (2011) ExpressionPlot: a web-based framework for analysis of RNA-Seq and microarray gene expression data. Genome Biol 12(7):R69

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Garber M, Grabherr MG, Guttman M et al (2011) Computational methods for transcriptome annotation and quantification using RNA-seq. Nat Methods 8:469–477

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Mas J, Benjak A, Sanseverino W et al (2012) The genome of melon (Cucumis melo L.). Proc Natl Acad Sci U S A 109(29):11872–11877

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Garg R, Patel RK, Jhanwar S et al (2011) Gene discovery and tissue-specific transcriptome analysis in chickpea with massively parallel pyrosequencing and web resource development. Plant Physiol 156(4):1661–1678

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ge H, Liu K, Juan T et al (2011) FusionMap: detecting fusion genes from next-generation sequencing data at base-pair resolution. Bioinformatics 27(14):1922–1928

    Article  CAS  PubMed  Google Scholar 

  • Gillies S, Furtado A, Henry RJ (2012) Gene expression in the developing aleurone and starchy endosperm of wheat. Plant Biotechnol J 10:668–679

    Article  CAS  PubMed  Google Scholar 

  • Glaus P, Honkela A, Rattray M (2012) Identifying differentially expressed transcripts from RNA-seq data with biological variation. Bioinformatics 28(13):1721–1728

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gnerre S, Lander ES, Lindblad-Toh K et al (2009) Assisted assembly: how to improve a de novo genome assembly by using related species. Genome Biol 10(8):R88

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Gnerre S, Maccallum I, Przybylski D et al (2011) High-quality draft assemblies of mammalian genomes from massively parallel sequence data. Proc Natl Acad Sci U S A 108(4):1513–1518

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Goff SA, Ricke D, Lan TH et al (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. Japonica). Science 296(5565):92–100

    Article  CAS  PubMed  Google Scholar 

  • Goncalves A, Tikhonov A, Brazma A et al (2011) A pipeline for RNA-seq data processing and quality assessment. Bioinformatics 27(6):867–869

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gong T, Szustakowski JD (2013) DeconRNASeq: a statistical framework for deconvolution of heterogeneous tissue samples based on mRNA-Seq data. Bioinformatics 29(8):1083–1085

    Article  CAS  PubMed  Google Scholar 

  • Gopala Krishnan S, Waters DLE, Katiyar SK et al (2011) Genome-wide DNA polymorphisms in elite indica rice inbreds discovered by whole-genome sequencing. Plant Biotechnol J 10:623–634

    Google Scholar 

  • Grant GR, Farkas MH, Pizarro AD et al (2011) Comparative analysis of RNA-Seq alignment algorithms and the RNA-Seq unified mapper (RUM). Bioinformatics 27(18):2518–2528

    PubMed Central  CAS  PubMed  Google Scholar 

  • Griebel T, Zacher B, Ribeca P et al (2012) Modelling and simulating generic RNA-Seq experiments with the flux simulator. Nucleic Acids Res 40(20):10073–10083

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Griffith M, Griffith OL, Mwenifumbo J et al (2010) Alternative expression analysis by RNA sequencing. Nat Methods 7(10):843–847

    Article  CAS  PubMed  Google Scholar 

  • Guo S, Liu J, Zheng Y et al (2011) Characterization of transcriptome dynamics during watermelon fruit development: sequencing, assembly, annotation and gene expression profiles. BMC Genomics 12:454

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Guttman M, Garber M, Levin JZ et al (2010) Ab initio reconstruction of cell type-specific transcriptomes in mouse reveals the conserved multi-exonic structure of lincRNAs. Nat Biotechnol 28(5):503–510

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Haas BJ, Papanicolaou A, Yassour M et al (2013) De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat Protoc 8(8):1494–1512

    Article  CAS  PubMed  Google Scholar 

  • Halbritter F, Kousa AI, Tomlinson SR (2014) GeneProf data: a resource of curated, integrated and reusable high-throughput genomics experiments. Nucleic Acids Res 42:851–858. doi:10.1093/nar/gkt966

    Article  CAS  Google Scholar 

  • Hamilton JP, Buell CR (2012) Advances in plant genome sequencing. Plant J 70(1):177–190

    Article  CAS  PubMed  Google Scholar 

  • Hardcastle TJ, Kelly KA (2010) baySeq: empirical Bayesian methods for identifying differential expression in sequence count data. BMC Bioinformatics 11:422

    Article  PubMed Central  PubMed  Google Scholar 

  • Harris TD, Buzby PR, Babcock H et al (2008) Single-molecule DNA sequencing of a viral genome. Science 320(5872):106–109

    Article  CAS  PubMed  Google Scholar 

  • He J, Jiao Y (2014) Next-generation sequencing applied to flower development: RNA-seq. methods Mol Biol 1110:401–411

    Article  CAS  PubMed  Google Scholar 

  • Henry RJ (2011) Next-generation sequencing for understanding and accelerating crop domestication. Brief Funct Genomics 11(1):51–56

    Article  PubMed  CAS  Google Scholar 

  • Henry RJ, Edwards K (2009) New tools for single nucleotide polymorphism (SNP) discovery and analysis accelerating plant biotechnology. Plant Biotechnol J 7(4):311

    Article  PubMed  Google Scholar 

  • Hernandez D, François P, Farinelli L et al (2008) De novo bacterial genome sequencing: millions of very short reads assembled on a desktop computer. Genome Res 18(5):802–809

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hiremath PJ, Farmer A, Cannon SB et al (2011) Large-scale transcriptome analysis in chickpea (Cicer arietinum L.), an orphan legume crop of the semi-arid tropics of Asia and Africa. Plant Biotechnol J 9(8):922–931

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Homer N, Merriman B, Nelson SF (2009) BFAST: an alignment tool for large scale genome resequencing. PLoS One 4(11), e7767

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Hong D, Rhie A, Park SS et al (2012) FX: an RNA-Seq analysis tool on the cloud. Bioinformatics 28(5):721–723

    Article  CAS  PubMed  Google Scholar 

  • Hu G, Shen S, Ruan J (2007) SGA: a grammar-based alignment algorithm. Comput Methods Prog Biomed 86(1):17–20

    Article  Google Scholar 

  • Hu TT, Pattyn P, Bakker EG et al (2011) The Arabidopsis lyrata genome sequence and the basis of rapid genome size change. Nat Genet 43(5):476–481

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Hu J, Ge H, Newman M et al (2012) OSA: a fast and accurate alignment tool for RNA-Seq. Bioinformatics 28(14):1933–1934

    Article  CAS  PubMed  Google Scholar 

  • Hu Y, Huang Y, Du Y et al (2013) DiffSplice: the genome-wide detection of differential splicing events with RNA-seq. Nucleic Acids Res 41(2), e39

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Huang W, Marth G (2008) EagleView: a genome assembly viewer for next-generation sequencing technologies. Genome Res 18(9):1538–1543

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Huang S, Zhang J, Li R et al (2011) SOAPsplice: genome-wide ab initio detection of splice junctions from RNA-Seq data. Front Genet 2:46

    Article  PubMed Central  PubMed  Google Scholar 

  • Huang J, Chen J, Lathrop M et al (2013) A tool for RNA sequencing sample identity check. Bioinformatics 29(11):1463–1464

    Article  CAS  PubMed  Google Scholar 

  • Iyer MK, Chinnaiyan AM, Maher CA (2011) ChimeraScan: a tool for identifying chimeric transcription in sequencing data. Bioinformatics 27(20):2903–2904

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jaffe DB, Butler J, Gnerre S et al (2003) Whole-genome sequence assembly for mammalian genomes: Arachne 2. Genome Res 13(1):91–96

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jaillon O, Aury JM, Noel B et al (2007) French-Italian public consortium for grapevine genome characterization. The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449(7161):463–467

    Article  CAS  PubMed  Google Scholar 

  • Jain M (2012) Next-generation sequencing technologies for gene expression profiling in plants. Brief Funct Genomics 11(1):63–70

    Article  CAS  PubMed  Google Scholar 

  • Jain M, Misra G, Patel RK et al (2013) A draft genome sequence of the pulse crop chickpea (Cicer arietinum L.). Plant J 74(5):715–729

    Article  CAS  PubMed  Google Scholar 

  • Jean G, Kahles A, Sreedharan VT et al (2010) RNA-Seq read alignments with PALMapper. Curr Protoc Bioinform Chapter 11: Unit 11.6. doi:10.1002/0471250953.bi1106s32

  • Jeck WR, Reinhardt JA, Baltrus DA et al (2007) Extending assembly of short DNA sequences to handle error. Bioinformatics 23(21):2942–2944

    Article  CAS  PubMed  Google Scholar 

  • Jhanwar S, Priya P, Garg R (2012) Transcriptome sequencing of wild chickpea as a rich resource for marker development. Plant Biotechnol J 10(6):690–702

    Article  CAS  PubMed  Google Scholar 

  • Jia W, Qiu K, He M et al (2013) SOAPfuse: an algorithm for identifying fusion transcripts from paired-end RNA-Seq data. Genome Biol 14(2):R12

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Jiang H, Wong WH (2008) SeqMap: mapping massive amount of oligonucleotides to the genome. Bioinformatics 24(20):2395–2396

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kallio MA, Tuimala JT, Hupponen T et al (2011) Chipster: user-friendly analysis software for microarray and other high-throughput data. BMC Genomics 12:507. doi:10.1186/1471-2164-12-507

    Article  PubMed Central  PubMed  Google Scholar 

  • Kaur S, Cogan NO, Pembleton LW et al (2011) Transcriptome sequencing of lentil based on second-generation technology permits large-scale unigene assembly and SSR marker discovery. BMC Genomics 12:265

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kaur S, Francki MG, Forster JW (2012) Identification, characterization and interpretation of single-nucleotide sequence variation in allopolyploid crop species. Plant Biotechnol J 10:125–138

    Article  CAS  PubMed  Google Scholar 

  • Kearse M, Moir R, Wilson A et al (2012) Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28(12):1647–1649

    Article  PubMed Central  PubMed  Google Scholar 

  • Kelly LJ, Leitch IJ (2011) Exploring giant plant genomes with next-generation sequencing technology. Chromosom Res 19(7):939–953

    Article  CAS  Google Scholar 

  • Kent WJ (2002) BLAT--the BLAST-like alignment tool. Genome Res 12(4):656–664

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kim D, Salzberg SL (2011) TopHat-Fusion: an algorithm for discovery of novel fusion transcripts. Genome Biol 12(8):R72

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kim MY, Lee S, Van K et al (2010) Whole-genome sequencing and intensive analysis of the undomesticated soybean (Glycine soja Sieb. And Zucc.) genome. Proc Natl Acad Sci U S A 107:22032–22037

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kim H, Bi Y, Pal S, Gupta R (2011) IsoformEx: isoform level gene expression estimation using weighted non-negative least squares from mRNA-Seq data. BMC Bioinformatics 12:305

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kim KU, Park SK, Kang SA et al (2013) Comparison of functional gene annotation of Toxascaris leonina and Toxocara canis using CLC genomics workbench. Korean J Parasitol 51(5):525–530

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Klambauer G, Unterthiner T, Hochreiter S (2013) DEXUS: identifying differential expression in RNA-Seq studies with unknown conditions. Nucleic Acids Res 41(21), e198

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kudapa H, Azam S, Sharpe AG et al (2014) Comprehensive transcriptome assembly of Chickpea (Cicer arietinum L.) using Sanger and next generation sequencing platforms: development and applications. PLoS One 9(1), e86039

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kuehn H, Liberzon A, Reich M et al (2008) Using GenePattern for gene expression analysis. Curr Protoc Bioinform Chapter 7: Unit 7.12. doi:10.1002/0471250953.bi0712s22. Review

  • Labaj PP, Linggi BE, Wiley HS (2012) Improving RNA-Seq precision with MapAl. Front Genet 3:28

    Article  PubMed Central  PubMed  Google Scholar 

  • Langmead B (2010) Aligning short sequencing reads with Bowtie. Curr Protoc Bioinform Chapter 11: Unit 11.7

    Google Scholar 

  • Lassmann T, Hayashizaki Y, Daub CO (2011) SAMStat: monitoring biases in next generation sequencing data. Bioinformatics 27(1):130–131

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Le HS, Schulz MH, McCauley BM et al (2013) Probabilistic error correction for RNA sequencing. Nucleic Acids Res 41(10), e109

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lee S, Seo CH, Lim B et al (2011) Accurate quantification of transcriptome from RNA-Seq data by effective length normalization. Nucleic Acids Res 39(2), e9

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Lee WP, Stromberg MP, Ward A et al (2014) MOSAIK: A hash-based algorithm for accurate next-generation sequencing short-read mapping. PLoS One 9(3), e90581

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Leng N, Dawson JA, Thomson JA et al (2013) EBSeq: an empirical Bayes hierarchical model for inference in RNA-seq experiments. Bioinformatics 29(8):1035–1043

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li B, Dewey CN (2011) RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinform 12:323

    Article  CAS  Google Scholar 

  • Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25(14):1754–1760

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li H, Ruan J, Durbin R (2008a) Mapping short DNA sequencing reads and calling variants using mapping quality scores. Genome Res 18(11):1851–1858

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li R, Li Y, Kristiansen K et al (2008b) SOAP: short oligonucleotide alignment program. Bioinformatics 24(5):713–714

    Article  CAS  PubMed  Google Scholar 

  • Li H, Handsaker B, Wysoker A et al (2009) 1000 Genome project data processing subgroup. The sequence alignment/map format and SAMtools. Bioinformatics 25(16):2078–2079

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Li JJ, Jiang CR, Brown JB et al (2011a) Sparse linear modeling of next-generation mRNA sequencing (RNA-Seq) data for isoform discovery and abundance estimation. Proc Natl Acad Sci U S A 108(50):19867–19872

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li W, Feng J, Jiang T (2011b) IsoLasso: a LASSO regression approach to RNA-Seq based transcriptome assembly. J Comput Biol 18(11):1693–1707

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Li Y, Chien J, Smith DI et al (2011c) FusionHunter: identifying fusion transcripts in cancer using paired-end RNA-seq. Bioinformatics 27(12):1708–1710

    Article  CAS  PubMed  Google Scholar 

  • Li JW, Wan R, Yu CS et al (2013a) ViralFusionSeq: accurately discover viral integration events and reconstruct fusion transcripts at single-base resolution. Bioinformatics 29(5):649–651

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Li Y, Li-Byarlay H, Burns P (2013b) TrueSight: a new algorithm for splice junction detection using RNA-seq. Nucleic Acids Res 41(4), e51

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Liao Y, Smyth GK, Shi W (2013a) FeatureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30(7):923–930. doi:10.1093/bioinformatics/btt656

    Article  PubMed  CAS  Google Scholar 

  • Liao Y, Smyth GK, Shi W (2013b) The Subread aligner: fast, accurate and scalable read mapping by seed-and-vote. Nucleic Acids Res 41(10), e108

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Lin H, Zhang Z, Zhang MQ (2008) ZOOM! Zillions of oligos mapped. Bioinformatics 24(21):2431–2437

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Liu Y, Schmidt B, Maskell DL (2011) Parallelized short read assembly of large genomes using de Bruijn graphs. BMC Bioinform 12:354

    Article  Google Scholar 

  • Logacheva MD, Kasianov AS, Vinogradov DV (2011) De novo sequencing and characterization of floral transcriptome in two species of buckwheat (Fagopyrum). BMC Genomics 12:30

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lohse M, Bolger AM, Nagel A et al (2012) RobiNA: a user-friendly, integrated software solution for RNA-seq-based transcriptomics. Nucleic Acids Res 40:W622–W627

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lou SK, Ni B, Lo LY et al (2011) ABMapper: a suffix array-based tool for multi-location searching and splice-junction mapping. Bioinformatics 27(3):421–422

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lulin H, Xiao Y, Pei S et al (2012) The first Illumina-based de novo transcriptome sequencing and analysis of safflower flowers. PLoS One 7(6), e38653

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Lunter G, Goodson M (2011) Stampy: a statistical algorithm for sensitive and fast mapping of Illumina sequence reads. Genome Res 21(6):936–939

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Maccallum I, Przybylski D, Gnerre S et al (2009) ALLPATHS 2: small genomes assembled accurately and with high continuity from short paired reads. Genome Biol 10(10):R103

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Mace ES, Tai S, Gilding EK et al (2013) Whole-genome sequencing reveals untapped genetic potential in Africa’s indigenous cereal crop sorghum. Nat Commun 4:2320

    PubMed Central  PubMed  Google Scholar 

  • Magoč T, Salzberg SL (2011) FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27(21):2957–2963

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Marco-Sola S, Sammeth M, Guigó R et al (2012) The GEM mapper: fast, accurate and versatile alignment by filtration. Nat Methods 9(12):1185–1188

    Article  CAS  PubMed  Google Scholar 

  • Mardis ER (2008a) Next-generation DNA sequencing methods. Annu Rev Genom Hum Genet 9:387–402

    Article  CAS  Google Scholar 

  • Mardis ER (2008b) The impact of next-generation sequencing technology on genetics. Trend Genet 24:133–141

    Article  CAS  Google Scholar 

  • Margulies M, Egholm M, Altman WE et al (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437(7057):376–380

    PubMed Central  CAS  PubMed  Google Scholar 

  • Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J North Am 17(1):10–12

    Article  Google Scholar 

  • Martin J, Bruno VM, Fang Z et al (2010) Rnnotator: an automated de novo transcriptome assembly pipeline from stranded RNA-Seq reads. BMC Genomics 11:663

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Maxam AM, Gilbert W (1977) A new method for sequencing DNA. Proc Natl Acad Sci U S A 74(2):560–564

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • McPherson A, Hormozdiari F, Zayed A et al (2011) deFuse: an algorithm for gene fusion discovery in tumor RNA-Seq data. PLoS Comput Biol 7(5), e1001138

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Meacham F, Boffelli D, Dhahbi J et al (2011) Identification and correction of systematic error in high-throughput sequence data. BMC Bioinform 12:451

    Article  Google Scholar 

  • Meyer E, Logan TL, Juenger TE (2012) Transcriptome analysis and gene expression atlas for Panicum hallii var. filipes, a diploid model for biofuel research. Plant J 70(5):879–890

    Article  CAS  PubMed  Google Scholar 

  • Meyers BC, Vu TH, Tej SS (2004) Analysis of the transcriptional complexity of Arabidopsis thaliana by massively parallel signature sequencing. Nat Biotechnol 22(8):1006–1011

    Article  CAS  PubMed  Google Scholar 

  • Mezlini AM, Smith EJ, Fiume M et al (2013) iReckon: simultaneous isoform discovery and abundance estimation from RNA-seq data. Genome Res 23(3):519–529

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Milne I, Bayer M, Cardle L et al (2010) Tablet--next generation sequence assembly visualization. Bioinformatics 26(3):401–402

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Misra S, Harris N (2006) Using Apollo to browse and edit genome annotations. Curr Protoc Bioinform Chapter 9, Unit 9.5

    Google Scholar 

  • Mochida K, Shinozaki K (2010) Genomics and bioinformatics resources for crop improvement. Plant Cell Phys 51(4):497–523

    Article  CAS  Google Scholar 

  • Morgan M, Anders S, Lawrence M (2009) ShortRead. http://bioconductor.org/packages/release/bioc/html/ShortRead.html

  • Mortazavi A, Williams BA, McCue K et al (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5(7):621–628

    Article  CAS  PubMed  Google Scholar 

  • Mudalkar S, Golla R, Ghatty S et al (2014) De novo transcriptome analysis of an imminent biofuel crop, Camelina sativa L. using Illumina GAIIX sequencing platform and identification of SSR markers. Plant Mol Biol 84(1–2):159–171

    Article  CAS  PubMed  Google Scholar 

  • Mullikin JC, Ning Z (2003) The phusion assembler. Genome Res 13(1):81–90

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mundry M, Bornberg-Bauer E, Sammeth M et al (2012) Evaluating characteristics of de novo assembly software on 454 transcriptome data: a simulation approach. PLoS One 7(2), e31410

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Myles S, Chia JM, Hurwitz B et al (2010) Rapid genomic characterization of the genus Vitis. PLoS One 5, e8219

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Nakano M, Nobuta K, Vemaraju K et al (2006) Plant MPSS databases: signature-based transcriptional resources for analyses of mRNA and small RNA. Nucleic Acids Res 34:731–735

    Article  CAS  Google Scholar 

  • Natarajan P, Parani M (2011) De novo assembly and transcriptome analysis of five major tissues of Jatropha curcas L. using GS FLX titanium platform of 454 pyrosequencing. BMC Genomics 12:191

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nicol JW, Helt GA, Blanchard SG Jr et al (2009) The integrated genome browser: free software for distribution and exploration of genome-scale datasets. Bioinformatics 25(20):2730–2731

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nobuta K, Venu RC, Lu C et al (2007) An expression atlas of rice mRNAs and small RNAs. Nat Biotechnol 25(4):473–477

    Article  CAS  PubMed  Google Scholar 

  • Nowrousian M (2010) Next-generation sequencing techniques for eukaryotic microorganisms: sequencing-based solutions to biological problems. Eukaryot Cell 9:1300–1310

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Oinn T, Addis M, Ferris J et al (2004) Taverna: a tool for the composition and enactment of bioinformatics workflows. Bioinformatics 20(17):3045–3054

    Article  CAS  PubMed  Google Scholar 

  • Oono Y, Kobayashi F, Kawahara Y et al (2013) Characterisation of the wheat (Triticum aestivum L.) transcriptome by de novo assembly for the discovery of phosphate starvation-responsive genes: gene expression in Pi-stressed wheat. BMC Genomics 14:77

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ozsolak F, Platt AR, Jones DR et al (2009) Direct RNA sequencing. Nature 461(7265):814–818

    Article  CAS  PubMed  Google Scholar 

  • Pagani I, Liolios K, Jansson J et al (2011) The Genomes OnLine Database (GOLD) v. 4: status of genomic and metagenomic projects and their associated metadata. Nucleic Acids Res 40:D571–D579

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Parra-González LB, Aravena-Abarzúa GA, Navarro-Navarro CS et al (2012) Yellow lupin (Lupinus luteus L.) transcriptome sequencing: molecular marker development and comparative studies. BMC Genomics 13:425

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Passos MA, de Cruz VO, Emediato FL et al (2013) Analysis of the leaf transcriptome of Musa acuminata during interaction with Mycosphaerella musicola: gene assembly, annotation and marker development. BMC Genomics 14:78

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Paterson AH, Bowers JE, Bruggmann R et al (2009) The Sorghum bicolor genome and the diversification of grasses. Nature 457(7229):551–556

    Article  CAS  PubMed  Google Scholar 

  • Paux E, Sourdille P, Mackay I, Feuillet C (2011) Sequence-based marker development in wheat: advances and applications to breeding. Biotechnol Adv 30(5):1071–1088

    Article  PubMed  CAS  Google Scholar 

  • Peng Y, Leung HC, Yiu SM et al (2013) IDBA-tran: a more robust de novo de Bruijn graph assembler for transcriptomes with uneven expression levels. Bioinformatics 29(13):i326–i334

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pennisi E (2007) Genome sequencing. The greening of plant genomics. Science 317(5836):317

    Article  CAS  PubMed  Google Scholar 

  • Pepke S, Wold B, Mortazavi A (2009) Computation for ChIP-seq and RNA-seq studies. Nat Methods 6:S22–S32

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Perkins TT, Tay CY, Thirriot F et al (2013) Choosing a benchtop sequencing machine to characterise Helicobacter pylori genomes. PLoS One 8(6), e67539

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Peterson ES, McCue LA, Schrimpe-Rutledge AC et al (2012) VESPA: software to facilitate genomic annotation of prokaryotic organisms through integration of proteomic and transcriptomic data. BMC Genom 13:131

    Article  CAS  Google Scholar 

  • Pevzner PA, Tang H, Waterman MS (2001) An eulerian path approach to DNA fragment assembly. Proc Natl Acad Sci U S A 98(17):9748–9753

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Philippe N, Salson M, Commes T et al (2013) CRAC: an integrated approach to the analysis of RNA-seq reads. Genome Biol 14(3):R30

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Piazza R, Pirola A, Spinelli R et al (2012) FusionAnalyser: a new graphical, event-driven tool for fusion rearrangements discovery. Nucleic Acids Res 40(16), e123

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pietu G, Mariage-Samson R, Fayein NA et al (1999) The genexpress IMAGE knowledge base of the human brain transcriptome: a prototype integrated resource for functional and computational genomics. Genome Res 9:195–209

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Planet E, Attolini CS, Reina O et al (2012) htSeqTools: high-throughput sequencing quality control, processing and visualization in R. Bioinformatics 28(4):589–590

    Article  CAS  PubMed  Google Scholar 

  • Pop M, Kosack D (2004) Using the TIGR assembler in shotgun sequencing projects. Methods Mol Biol 255:279–294

    CAS  PubMed  Google Scholar 

  • Popendorf K, Sakakibara Y (2012) SAMSCOPE: an OpenGL-based real-time interactive scale-free SAM viewer. Bioinformatics 28(9):1276–1277

    Article  CAS  PubMed  Google Scholar 

  • Qin C, Yu C, Shen Y et al (2014) Whole-genome sequencing of cultivated and wild peppers provides insights into Capsicum domestication and specialization. Proc Natl Acad Sci U S A 111(14):5135–5140

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Qu W, Hashimoto S, Morishita S (2009) Efficient frequency-based de novo short-read clustering for error trimming in next-generation sequencing. Genome Res 19(7):1309–1315

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rasko DA, Webster DR, Sahl JW et al (2011) Origins of the E. coli strain causing an outbreak of hemolytic-uremic syndrome in Germany. N Engl J Med 365:709–717

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rivarola M, Foster JT, Chan AP et al (2011) Castor bean organelle genome sequencing and worldwide genetic diversity analysis. PLoS One 6(7), e21743

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Roberts A, Trapnell C, Donaghey J et al (2011) Improving RNA-Seq expression estimates by correcting for fragment bias. Genome Biol 12(3):R22

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Robertson G, Schein J, Chiu R et al (2010) De novo assembly and analysis of RNA-seq data. Nat Methods 7(11):909–912

    Article  CAS  PubMed  Google Scholar 

  • Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26(1):139–140

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Robinson JT, Thorvaldsdóttir H, Winckler W et al (2011) Integrative genomics viewer. Nat Biotechnol 29(1):24–26

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rothberg JM, Hinz W, Rearick TM et al (2011) An integrated semiconductor device enabling non-optical genome sequencing. Nature 475(7356):348–352

    Article  CAS  PubMed  Google Scholar 

  • Rumble SM, Lacroute P, Dalca AV et al (2009) SHRiMP: accurate mapping of short color-space reads. PLoS Comput Biol 5(5), e1000386

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Rutherford K, Parkhill J, Crook J et al (2000) Artemis: sequence visualization and annotation. Bioinformatics 16(10):944–945

    Article  CAS  PubMed  Google Scholar 

  • Ryan MC, Cleland J, Kim R et al (2012) SpliceSeq: a resource for analysis and visualization of RNA-Seq data on alternative splicing and its functional impacts. Bioinformatics 28(18):2385–2387

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sacomoto GA, Kielbassa J, Chikhi R et al (2012) KISSPLICE: de-novo calling alternative splicing events from RNA-seq data. BMC Bioinform 13(6):S5

    Google Scholar 

  • Sahli M, Shibuya T (2012) Arapan-S: a fast and highly accurate whole-genome assembly software for viruses and small genomes. BMC Res Notes 5:243

    Article  PubMed Central  PubMed  Google Scholar 

  • Salzberg SL, Phillippy AM, Zimin A et al (2012) GAGE: a critical evaluation of genome assemblies and assembly algorithms. Genome Res 22(3):557–567

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A 74(12):5463–5467

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sboner A, Habegger L, Pflueger D et al (2010) FusionSeq: a modular framework for finding gene fusions by analyzing paired-end RNA-sequencing data. Genome Biol 11(10):R104

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schatz MC, Witkowski J, McCombie WR (2012) Current challenges in de novo plant genome sequencing and assembly. Genome Biol 13(4):243

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schmidt B, Sinha R, Beresford-Smith B et al (2009) A fast hybrid short read fragment assembly algorithm. Bioinformatics 17:2279–2280

    Article  CAS  Google Scholar 

  • Schmieder R, Edwards R (2011) Quality control and preprocessing of metagenomic datasets. Bioinformatics 27(6):863–864

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schmutz J, Cannon SB, Schlueter J et al (2010) Genome sequence of the palaeopolyploid soybean. Nature 463(7278):178–183

    Article  CAS  PubMed  Google Scholar 

  • Schnable PS, Ware D, Fulton RS et al (2009) The B73 maize genome: complexity, diversity, and dynamics. Science 326:1112–1115

    Article  CAS  PubMed  Google Scholar 

  • Schulz MH, Zerbino DR, Vingron M et al (2012) Oases: robust de novo RNA-seq assembly across the dynamic range of expression levels. Bioinformatics 28(8):1086–1092

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schuster SC (2008) Next-generation sequencing transforms today’s biology. Nat Methods 5(1):16–18

    Article  CAS  PubMed  Google Scholar 

  • Shen S, Park JW, Huang J et al (2012) MATS: a Bayesian framework for flexible detection of differential alternative splicing from RNA-Seq data. Nucleic Acids Res 40(8), e61

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shendure J, Porreca GJ, Reppas NB (2005) Accurate multiplex polony sequencing of an evolved bacterial genome. Science 309(5741):1728–1732

    Article  CAS  PubMed  Google Scholar 

  • Shulaev V, Sargent DJ, Crowhurst RN (2011) The genome of woodland strawberry (Fragaria vesca). Nat Genet 43(2):109–116

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Simpson JT, Wong K, Jackman SD et al (2009) ABySS: a parallel assembler for short read sequence data. Genome Res 19(6):1117–1123

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Singh D, Orellana CF, Hu Y et al (2011a) FDM: a graph-based statistical method to detect differential transcription using RNA-seq data. Bioinformatics 27(19):2633–2640

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Singh NK, Gupta DK, Jayaswal PK et al (2011b) The first draft of the pigeonpea genome sequence. J Plant Biochem Biotechnol 21:98–112

    Article  PubMed Central  PubMed  Google Scholar 

  • Smeds L, Künstner A (2011) ConDeTri – a content dependent read trimmer for Illumina data. PLoS One 6(10), e26314. doi:10.1371/journal.pone.0026314

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Soderlund C, Nelson W, Willer M et al (2013) TCW: transcriptome computational workbench. PLoS One 8(7), e69401

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Staden R (1979) A strategy of DNA sequencing employing computer programs. Nucleic Acids Res 6(7):2601–2610

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Stein LD (2013) Using GBrowse 2.0 to visualize and share next-generation sequence data. Brief Bioinform 14(2):162–171

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Stenson PD et al (2009) The human gene mutation database: 2008 update. Genome Med 1:13

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Sucher NJ, Hennell JR, Carles MC (2012) DNA fingerprinting, DNA barcoding, and next generation sequencing technology in plants. Methods Mol Biol 862:13–22

    Article  CAS  PubMed  Google Scholar 

  • Sun Q, Zhou G, Cai Y et al (2012a) Transcriptome analysis of stem development in the tumourous stem mustard Brassica juncea var. tumida Tsen et Lee by RNA sequencing. BMC Plant Biol 12:53

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sun X, Zhou S, Meng F et al (2012b) De novo assembly and characterization of the garlic (Allium sativum) bud transcriptome by Illumina sequencing. Plant Cell Rep 31(10):1823–1828

    Article  CAS  PubMed  Google Scholar 

  • Surget-Groba Y, Montoya-Burgos JI (2010) Optimization of de novo transcriptome assembly from next-generation sequencing data. Genome Res 20(10):1432–1440

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tang S, Riva A (2013) PASTA: splice junction identification from RNA-sequencing data. BMC Bioinform 14:116

    Article  Google Scholar 

  • Tarazona S, García-Alcalde F, Dopazo J et al (2011) Differential expression in RNA-seq: a matter of depth. Genome Res 21(12):2213–2223

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • TGI (2012) The tomato genome sequence provides insights into fleshy fruit evolution. Tomato genome consortium. Nature 485(7400):635–641

    Article  CAS  Google Scholar 

  • Thompson JF, Steinmann KE (2010). Single molecule sequencing with a HeliScope genetic analysis system. Curr Protoc Mol Biol Chapter: Unit7.10. doi:10.1002/0471142727. mb0710s92

  • Tippmann HF (2004) Analysis for free: comparing programs for sequence analysis. Brief Bioinform 5(1):82–87

    Article  CAS  PubMed  Google Scholar 

  • Torri F, Dinov ID, Zamanyan A et al (2012) Next generation sequence analysis and computational genomics using graphical pipeline workflows. Genes (Basel) 3(3):545–575

    CAS  Google Scholar 

  • Trapnell C, Pachter L, Salzberg SL (2009) TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25(9):1105–1111

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Trapnell C, Williams BA, Pertea G et al (2010) Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 28(5):511–515

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Treangen TJ, Salzberg SL (2011) Repetitive DNA and next-generation sequencing: computational challenges and solutions. Nat Rev Genet 13:36–46

    PubMed Central  PubMed  Google Scholar 

  • Treangen TJ, Sommer DD, Angly FE et al (2011b) Next generation sequence assembly with AMOS. Curr Protoc Bioinform Chapter 11: Unit 11.8. doi:10.1002/0471250953.bi1108s33

  • Tucker T, Marra M, Friedman JM (2009) Massively parallel sequencing: the next big thing in genetic medicine. Am J Hum Genet 85(2):142–154

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Turro E, Su SY, Gonçalves  et al (2011) Haplotype and isoform specific expression estimation using multi-mapping RNA-seq reads. Genome Biol 12(2):R13

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tuskan GA, Difazio S, Jansson S et al (2006) The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 313(5793):1596–1604

    Article  CAS  PubMed  Google Scholar 

  • Van BH, Stout JM, Cote AG et al (2011) The draft genome and transcriptome of Cannabis sativa. Genome Biol 12(10):R102

    Article  CAS  Google Scholar 

  • Varshney RK, May GD (2012) Next-generation sequencing technologies: opportunities and obligations in plant genomics. Brief Funct Genomics 11(1):1–2

    Article  PubMed  Google Scholar 

  • Varshney RK, Chen W, Li Y et al (2011) Draft genome sequence of pigeonpea (Cajanus cajan), an orphan legume crop of resource-poor farmers. Nat Biotechnol 30(1):83–89

    Article  PubMed  CAS  Google Scholar 

  • Varshney RK, Song C, Saxena RK et al (2013) Draft genome sequence of chickpea (Cicer arietinum) provides a resource for trait improvement. Nat Biotechnol 31(3):240–246

    Article  CAS  PubMed  Google Scholar 

  • Verma P, Shah N, Bhatia S (2013) Development of an expressed gene catalogue and molecular markers from the de novo assembly of short sequence reads of the lentil (Lens culinaris Medik.) transcriptome. Plant Biotechnol J 11(7):894–905

    Article  CAS  PubMed  Google Scholar 

  • Walker DR, Koonin EV (1997) SEALS: a system for easy analysis of lots of sequences. Proc Int Conf Intell Syst Mol Biol 5:333–339

    CAS  PubMed  Google Scholar 

  • Wan L, Sun F (2012) CEDER: accurate detection of differentially expressed genes by combining significance of exons using RNA-Seq. IEEE/ACM Trans Comput Biol Bioinform 9(5):1281–1292

    Article  PubMed Central  PubMed  Google Scholar 

  • Wang K, Singh D, Zeng Z et al (2010a) MapSplice: accurate mapping of RNA-seq reads for splice junction discovery. Nucleic Acids Res 38(18), e178

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Wang L, Feng Z, Wang X et al (2010b) DEGseq: an R package for identifying differentially expressed genes from RNA-seq data. Bioinformatics 26(1):136–138

    Article  PubMed  CAS  Google Scholar 

  • Wang L, Wang X, Wang X et al (2011a) Observations on novel splice junctions from RNA sequencing data. Biochem Biophys Res Commun 409(2):299–303

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Wang H, Wang J et al (2011b) Brassica rapa genome sequencing project consortium. The genome of the mesopolyploid crop species Brassica rapa. Nat Genet 43(10):1035–1039

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Mehta G, Mayani R et al (2011c) RseqFlow: workflows for RNA-Seq data analysis. Bioinformatics 27(18):2598–2600

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wang L, Wang S, Li W (2012a) RSeQC: quality control of RNA-seq experiments. Bioinformatics 28(16):2184–2185

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Zeng X, Iyer NJ et al (2012b) Exploring the switchgrass transcriptome using second-generation sequencing technology. PLoS One 7(3), e34225

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang L, Yu S, Tong C et al (2014) Genome sequencing of the high oil crop sesame provides insight into oil biosynthesis. Genome Biol 15(2):R39

    Article  PubMed Central  PubMed  Google Scholar 

  • Warren RL, Sutton GG, Jones SJ et al (2007) Assembling millions of short DNA sequences using SSAKE. Bioinformatics 23(4):500–501

    Article  CAS  PubMed  Google Scholar 

  • Weese D, Emde AK, Rausch T et al (2009) RazerS-fast read mapping with sensitivity control. Genome Res 19(9):1646–1654

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Weese D, Holtgrewe M, Reinert K (2012) RazerS 3: faster, fully sensitive read mapping. Bioinformatics 28(20):2592–2599

    Article  CAS  PubMed  Google Scholar 

  • Wei X, Zhang X, Shen D et al (2013) Transcriptome analysis of Barbarea vulgaris infested with diamondback moth (Plutella xylostella) larvae. PLoS One 8(5), e64481

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Winfield MO, Wilkinson PA, Allen AM (2012) Targeted re-sequencing of the allohexaploid wheat exome. Plant Biotechnol J 10:733–742

    Article  CAS  PubMed  Google Scholar 

  • Wood DL, Xu Q, Pearson JV et al (2011) X-MATE: a flexible system for mapping short read data. Bioinformatics 27(4):580–581

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wu TD, Nacu S (2010) Fast and SNP-tolerant detection of complex variants and splicing in short reads. Bioinformatics 26(7):873–881

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wu J, Akerman M, Sun S et al (2011) SpliceTrap: a method to quantify alternative splicing under single cellular conditions. Bioinformatics 27(21):3010–3016

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wu J, Anczuków O, Krainer AR et al (2013a) OLego: fast and sensitive mapping of spliced mRNA-Seq reads using small seeds. Nucleic Acids Res 41(10):5149–5163

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wu J, Wang Z, Shi Z et al (2013b) The genome of the pear (Pyrus bretschneideri Rehd.). Genome Res 23(2):396–408

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wu J, Zhang W, Huang S et al (2013c) SOAPfusion: a robust and effective computational fusion discovery tool for RNA-seq reads. Bioinformatics 29(23):2971–2978

    Article  CAS  PubMed  Google Scholar 

  • Xia Z, Wen J, Chang CC (2011a) NSMAP: a method for spliced isoforms identification and quantification from RNA-Seq. BMC Bioinform 12:162

    Article  CAS  Google Scholar 

  • Xia Z, Xu H, Zhai J et al (2011b) RNA-Seq analysis and de novo transcriptome assembly of Hevea brasiliensis. Plant Mol Biol 77(3):299–308

    Article  CAS  PubMed  Google Scholar 

  • Xie C, Tammi MT (2009) CNV-seq, a new method to detect copy number variation using high-throughput sequencing. BMC Bioinform 10:80

    Article  CAS  Google Scholar 

  • Xie Y, Wu G, Tang J (2014) SOAPdenovo-Trans: de novo transcriptome assembly with short RNA-Seq reads. Bioinformatics 30(12):1660–1666. doi:10.1093/bioinformatics/btu077

    Article  CAS  PubMed  Google Scholar 

  • Xu G, Deng N, Zhao Z et al (2011a) SAMMate: a GUI tool for processing short read alignments in SAM/BAM format. Source Code Biol Med 6(1):2

    Article  PubMed Central  PubMed  Google Scholar 

  • Xu X, Pan S, Cheng S, Zhang B et al (2011b) Genome sequence and analysis of the tuber crop potato. Nature 475:189–197

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto T, Nagasaki H, Yonemaru J et al (2010) Fine definition of the pedigree haplotypes of closely related rice cultivars by means of genome-wide discovery of single-nucleotide polymorphisms. BMC Genomics 11:267

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Yan JB, Yang XH, Shah T et al (2010) High-throughput SNP genotyping with the GoldenGate assay in maize. Mol Breed 25:441–451

    Article  CAS  Google Scholar 

  • Yao JQ, Yu F (2011) DEB: a web interface for RNA-seq digital gene expression analysis. Bioinformatics 7(1):44–45

    Google Scholar 

  • Ye C, Ma ZS, Cannon CH et al (2012) Exploiting sparseness in de novo genome assembly. BMC Bioinform 13 Suppl 6:S1. doi:10.1186/1471-2105-13-S6-S1

  • Yu J, Hu S, Wang J et al (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 296(5565):79–92

    Article  CAS  PubMed  Google Scholar 

  • Yu X, Guda K, Willis J et al (2012) How do alignment programs perform on sequencing data with varying qualities and from repetitive regions? BioData Min 5(1):6

    Article  PubMed Central  PubMed  Google Scholar 

  • Zerbino DR, Birney E (2008) Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 18(5):819–821

    Article  CAS  Google Scholar 

  • Zhang J, Liang S, Duan J et al (2012a) De novo assembly and characterisation of the transcriptome during seed development, and generation of genic-SSR markers in peanut (Arachis hypogaea L.). BMC Genomics 13:90

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang Y, Lameijer EW, 't Hoen PA et al (2012b) PASSion: a pattern growth algorithm-based pipeline for splice junction detection in paired-end RNA-Seq data. Bioinformatics 28(4):479–486

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang Z, Huang S, Wang J et al (2013) GeneScissors: a comprehensive approach to detecting and correcting spurious transcriptome inference owing to RNA-seq reads misalignment. Bioinformatics 29(13):i291–i299

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhao W, Liu W, Tian D et al (2011) wapRNA: a web-based application for the processing of RNA sequences. Bioinformatics 27(21):3076–3077

    Article  CAS  PubMed  Google Scholar 

  • Zhou X, Su Z, Sammons RD et al (2009) Novel software package for cross-platform transcriptome analysis (CPTRA). BMC Bioinform 10 (Suppl 11):S16. doi:10.1186/1471-2105-10-S11-S16

  • Zhou YH, Xia K, Wright FA (2011) A powerful and flexible approach to the analysis of RNA sequence count data. Bioinformatics 27(19):2672–2678

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhou A, Breese MR, Hao Y et al (2012) Alt event finder: a tool for extracting alternative splicing events from RNA-seq data. BMC Genomic Suppl 8:S10

    Article  Google Scholar 

  • Zimin AV, Marçais G, Puiu D et al (2013) The MaSuRCA genome assembler. Bioinformatics 29(21):2669–2677

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zytnicki M, Quesneville H (2011) S-MART, a software toolbox to aid RNA-Seq data analysis. PLoS One 6(10), e25988

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vinay K. Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Singh, V.K., Singh, A.K., Singh, S., Singh, B.D. (2015). Next-Generation Sequencing (NGS) Tools and Impact in Plant Breeding. In: Al-Khayri, J., Jain, S., Johnson, D. (eds) Advances in Plant Breeding Strategies: Breeding, Biotechnology and Molecular Tools. Springer, Cham. https://doi.org/10.1007/978-3-319-22521-0_20

Download citation

Publish with us

Policies and ethics