Skip to main content

Computational Models of Closed–Loop Deep Brain Stimulation

  • Chapter
  • First Online:
Validating Neuro-Computational Models of Neurological and Psychiatric Disorders

Part of the book series: Springer Series in Computational Neuroscience ((NEUROSCI,volume 14))

  • 878 Accesses

Abstract

Deep Brain Stimulation (DBS) is a neurosurgical intervention that sends electrical signals to the brain to effectively alleviate the symptoms of neurological disorders such as Parkinson’s disease. Although the conventional high frequency DBS shows remarkable therapeutic success, it is desirable to overcome the downsides of such a form of open–loop DBS. Using computational models, we explore a closed–loop DBS paradigm, multi–site delayed feedback stimulation (MDFS), that may potentially overcome the drawbacks of constant high frequency DBS. We first develop a biological-faithful computational network model of basal ganglia and thalamus in parkinsonian conditions. The model mimics the pathological neuronal activity observed in the basal ganglia in parkinsonian conditions, such as increased firing rate, bursting patterns, and synchronization. We then evaluate the outcome of closed–loop MDFS being applied to the parkinsonian network by examining both quantitative measures of neurons in the basal ganglia and the relay error of thalamocortical (TC) neurons. Our computational results show that closed–loop MDFS significantly diminish TC relay error by breaking the bursting pattern and desynchronizing the synchronized clusters in the basal ganglia. The design of MDFS suggests that it is superior to open–loop stimulation in that not only the stimulation signal is guided by changes in neuronal activities specific to disorders being treated, but also MDFS shows much lower energy consumption compared with the conventional high frequency DBS. To support the computational results and feasibility of closed–loop DBS, we further review some previous work that validates the evaluation measure of TC relay error and some recent experimental studies that validate the on–demand type of DBS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alexander GE, Crutcher MD, DeLong MR. Basal ganglia thalamo-cortical circuits: parallel substrates for motor, oculomotor, “prefrontal” and “limbic” functions. Prog Brain Res 1990;85:119–46.

    Article  CAS  PubMed  Google Scholar 

  2. Andrews RJ. Neuroprotection at the nanolevel—part ii nanodevices for neuromodulation—deep brain stimulation and spinal cord injury. Ann N Y Acad Sci. 2007;1122:185–96.

    Article  CAS  PubMed  Google Scholar 

  3. Andrews RJ. Neuromodulation: advances in the next five years. Ann N Y Acad Sci. 2010;1199:204–11.

    Article  PubMed  Google Scholar 

  4. Bergman H, Wichmann T, Karmon B, DeLong M. The primate subthalamic nucleus. ii. Neuronal activity in the mptp model of Parkinsonism. J Neurophysiol. 1994;72:507–20.

    CAS  PubMed  Google Scholar 

  5. Best J, Park C, Terman D, Wilson C. Transitions between irregular and rhythmic firing patterns in excitatory-inhibitory neuronal networks. J Comput Neurosci. 2007;23:217–35.

    Article  PubMed  Google Scholar 

  6. Beuter A, Lefaucheur J-P, Modolo J. Closed-loop cortical neuromodulation in Parkinson's disease: an alternative to deep brain stimulation? Clin Neurophysiol. 2014;125:874–85.

    Article  PubMed  Google Scholar 

  7. Bevan MD, Jeremy AF, Jérôme B. Cellular principles underlying normal and pathological activity in the subthalamic nucleus. Curr Opin Neurobiol. 2006;16:621–8.

    Article  CAS  PubMed  Google Scholar 

  8. Boraud T, Bezard E, Guehl D, Bioulac B, Gross C. Effects of l-dopa on neuronal activity of the globus pallidus externalis (gpe) and globus pallidus internalis (gpi) in the mptp-treated monkey. Brain Res. 1998;787:157–60.

    Article  CAS  PubMed  Google Scholar 

  9. Brown P, Oliviero A, Mazzone P, Insola A, Tonali P, Lazzaro VD. Dopamine dependency of oscillations between subthalmaic nucleus and pallidum in Parkinson's disease. J Neurosci. 2001;21:1033–8.

    CAS  PubMed  Google Scholar 

  10. Buzsáki G, Anastassiou CA, Koch C. The origin of extracellular fields and currents—eeg, ecog, lfp and spikes. Nat Rev Neurosci. 2012;13(6):407–20.

    Article  PubMed  Google Scholar 

  11. Cagnan H, Meijer HGE, van Gils SA, Krupa M, Heida T, Rudolph M, Wadman WJ, Martens HCF. Frequency-selectivity of a thalamocortical relay neuron during Parkinson's disease and deep brain stimulation: a computational study. Eur J Neurosci. 2009;30:1306–17.

    Article  PubMed  Google Scholar 

  12. Carron R, Chaillet A, Filipchuk A, Pasillas-Lépine W, Hammond C. Closing the loop of deep brain stimulation. Front Syst Neurosci. 2013;7(112):1–18.

    Google Scholar 

  13. Castro-Alamancos M, Calcagnotto M. High-pass filtering of corticothalamic activity by neuromodulators released in the thalamus during arousal: in vitro and in vivo. J Neurophysiol. 2001;85:1489–97.

    CAS  PubMed  Google Scholar 

  14. Chen CC, Pogosyana A, Zrinzoa UL, Tischa S, Limousina P, Ashkana K, Yousry T, Hariza MI, Brown P. Intra-operative recordings of local field potentials can help localize the subthalamic nucleus in Parkinson's disease surgery. Exp Neurol. 2006;198:214–21.

    Article  PubMed  Google Scholar 

  15. Degos B, Deniau J, Thierry A, Glowinski J, Pezard L, Maurice N. Neuroleptic-induced catalepsy: electrophysiological mechanisms of functional recovery induced by high-frequency stimulation of the subthalamic nucleus. J. Neurosci. 2005;25(33):7687–96.

    Article  CAS  PubMed  Google Scholar 

  16. DeLong MR, Wichmann T. Circuits and circuit disorders of the basal ganglia. Arch Neurol. 2007;64(1):20–4.

    Article  PubMed  Google Scholar 

  17. DeVito JL, Anderson ME. An autoradiographic study of the efferent connections of the globus pallidus in macaca mullata. Brain Res. 1982;46:107–17.

    Article  CAS  Google Scholar 

  18. Dovzhenok A, Park C, Worth RM, Rubchinsky LL. Failure of delayed feedback deep brain stimulation for intermittent pathological synchronization in Parkinson's disease. PLoS ONE. 2013;8(3):1–10.

    Article  Google Scholar 

  19. Feng X, Shea-Brown E, Rabitz H, Greenwald B, Kosut R. Optimal deep brain stimulation of the subthalamic nucleus—a computational study. J Comput Neurosci. 2007a;23(3):265–82.

    Article  PubMed  Google Scholar 

  20. Gorzeli P, Schiff SJ, Sinha A. Model-based rational feedback controller design for closed-loop deep brain stimulation of Parkinson's disease. J Neural Eng. 2013;10(2):1–16.

    Google Scholar 

  21. Graupe D, Basu DI, Tuninetti D, Vannemreddy P, Slavin KV. Adaptively controlling deep brain stimulation in essential tremor patient via surface electromyography. Neurol Res. 2010;32:899–904.

    Article  PubMed  Google Scholar 

  22. Guillery R, Sherman SM. The role of thalamus in the flow of information to the cortex. Philos Trans R Soc Lond B Biol Sci. 2002a;357:1695–708.

    Article  PubMed Central  PubMed  Google Scholar 

  23. Guillery R, Sherman SM. The thalamus as a monitor of motor outputs. Philos Trans R Soc Lond B Biol Sci. 2002b;357:1809–21.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Guillery R, Sherman SM. Thalamic relay functions and their role in corticocortical communication: generalizations from the visual system. Neuron. 2002c;33:163–75.

    Article  CAS  PubMed  Google Scholar 

  25. Guo Y, Rubin JE. Multi-site stimulation of subthalamic nucleus diminishes thalamocortical relay errors in a biophysical network model. Neural Netw. 2011;24(6):602–16.

    Article  PubMed  Google Scholar 

  26. Guo Y, Rubin JE, McIntyre CC, Vitek JL, Terman D. Thalamocortical relay fidelity varies across subthalamic nucleus deep brain stimulation protocols in a data-driven computational model. J Neurophysiol. 2008;99:1477–92.

    Article  PubMed  Google Scholar 

  27. Guo Y, Park C, Worth RM, Rubchinsky LL. Basal ganglia modulation of thalamocortical relay in Parkinson's disease and dystonia. Front Comput Neurosci. 2013;7(124):1–11.

    Google Scholar 

  28. Haber S. The primate basal ganglia: parallel and integrative networks. J Chem Neuroanat. 2003;2:317–30.

    Article  Google Scholar 

  29. Hahn PJ, McIntyre CC. Modeling shifts in the rate and pattern of subthalamopallidal network activity during deep brain stimulation. J Comput Neurosci. 2010;28(3):425–41.

    Article  PubMed Central  PubMed  Google Scholar 

  30. Halliday GM. Thalamic changes in Parkinson's disease. Parkinsonism Relat Disord. 2009;15(S3):S152–5.

    Article  PubMed  Google Scholar 

  31. Halliday GM, Macdonald V, Henderson JM. A comparison of degeneration in motor thalamus and cortex between progressive supranuclear palsy and Parkinson's disease. Brain. 2005 Oct;128(10):2272–80.

    Article  PubMed  Google Scholar 

  32. Hamani C, Saint-Cyr JA, Fraser J, Kaplitt M, Lozano AM. The subthalamic nucleus in the context of movement disorders. Brain 2004;127(1):4–20.

    Article  PubMed  Google Scholar 

  33. Hammond C, Ammari R, Bioulac B, Garcia L. Latest view on the mechanism of action of deep brain stimulation. Mov Disord. 2008;23(15):2111–21.

    Article  PubMed  Google Scholar 

  34. Hauptmann C, Popovych O, Tass PA. Effectively desynchronizing brain stimulation based on a coordinated delayed feedback stimulation via serveral sites: a computational study. Biol Cybern. 2005;93:463–70.

    Article  CAS  PubMed  Google Scholar 

  35. Hauptmann C, Omel‘chenko OO, Popovych OV, Maistrenko Y, Tass PA. Control of spatially patterned synchrony with multisite delayed feedback. Phys Rev E. 2007 Dec;76(6):066209.

    Article  CAS  Google Scholar 

  36. Hauptmann C, Omel’chenko O, Popovych OV, Maistrenko Y, Tass PA. Desynchronizing the abnormally synchronized neural activity in the subthalamic nucleus: a modeling study. Expert Rev Med Devices. 2008 Sept;4(5):633–50.

    Article  Google Scholar 

  37. Holt GR, Koch C. Electrical interactions via the extracellular potential near cell bodies. J Comput Neurosci. 1998;6(2):169–84.

    Article  Google Scholar 

  38. Hurtado J, Rubchinsky L, Sigvardt K, Wheelock V, Pappas C. Temporal evolution of oscillations and synchrony in gpi/muscle pairs in Parkinson's disease. J Neurophysiol. 2005;93:1569–84, 2005.

    Google Scholar 

  39. Jolliffe IT. Principal component analysis. New York: Springer; 1986.

    Book  Google Scholar 

  40. Kelly RM, Strick PL. Macro-architecture of basal ganglia loops with the cerebral cortex: use of rabies virus to reveal multisynaptic circuits. Prog Brain Res. 2004;143:449–59.

    PubMed  Google Scholar 

  41. Lee JYK, Deogaonkar M, Rezai A. Deep brain stimulation of globus pallidus internus for dystonia. Parkinsonism Relat Disord. 2007;13(5):261–5.

    Article  PubMed  Google Scholar 

  42. Leung LWS. Field potentials in the central nervous system: recording, analysis, and modeling. In neurophysiological techniques: applications to neural systems. Neuromethods. 1990;15:277–312.

    Google Scholar 

  43. Levy R, Hutchison W, Lozano A, Dostrovsky J. High-frequency synchronization of neuronal activity in the subthalamic nucleus of parkinsonian patients with limb tremor. J Neurosci. 2003;20:7766–75.

    Google Scholar 

  44. Little S, Pogosyan A, Neal S, Zavala B, Zrinzo L, Hariz M, Foltynie T, Limousin P, Ashkan K, FitzGerald J, Green AL, Aziz TZ, Brown P. Adaptive deep brain stimulation in advanced Parkinson disease. Ann Neurol. 2013;74(3):449–57.

    Article  PubMed Central  PubMed  Google Scholar 

  45. Lourens M. Neural network dynamics in Parkinson's disease. Ph. D. Thesis, University of Twente; 2013.

    Google Scholar 

  46. Lozano AM, Hamani C. The future of deep brain stimulation. J Clin Neurophysiol. 2004;21(1):68–9.

    Article  PubMed  Google Scholar 

  47. Magnin M, Morel A, Jeanmonod D. Single-unit analysis of the pallidum, thalamus, and subthalamic nucleus in parkinsonian patients. Neuroscience. 2000;96:549–64.

    Article  CAS  PubMed  Google Scholar 

  48. Marceglia S, Rossi L, Foffani G, Bianchi A, Cerutti S, Priori A. Basal ganglia local field potentials: applications in the development of new deep brain stimulation devices for movement disorder. Expert Rev Med Devices. 2007;4(5):610–4.

    Article  Google Scholar 

  49. McFarland NR, Haber SN. Thalamic relay nuclei of the basal ganglia form both reciprocal and nonreciprocal cortical connections, linking multiple frontal cortical areas. J Neurosci. 2002;22(18):8117–32.

    CAS  PubMed  Google Scholar 

  50. Middleton FA, Strick PL. Basal ganglia output and cognition: evidence from anatomical, behavioral, and clinical studies. Brain Cogn. 2000;42:183–200.

    Article  CAS  PubMed  Google Scholar 

  51. Mitzdorf U. Current source-density method and application in cat cerebral cortex: investigation of evoked potentials and EEG phenomena. Physiol Rev. 1985;65(1):37–100.

    CAS  PubMed  Google Scholar 

  52. Modolo J, Beuter A. Linking brain dynamics, neural mechanisms, and deep brain stimulation in Parkinson's disease: an integrated perspective. Med Eng Phys. 2009 July;31(6):615–23

    Article  PubMed  Google Scholar 

  53. Modolo J, Beuter A, Thomas AW, Legros A. Using “smart stimulators” to treat Parkinson's disease: re-engineering neurostimulation devices. Front Comput Neurosci. 2012;6:69:1–3.

    Google Scholar 

  54. Nini A, Feingold A, Slovin H, Bergman H. Neurons in the globus pallidus do not show correlated activity in the normal monkey, but phase-locked oscillations appear in the mptp model of Parkinsonism. J Neurophysiol. 1995;74:1800–5.

    CAS  PubMed  Google Scholar 

  55. Nunez PL. Electric fields of the brain. New York: Oxford University Press; 1981.

    Google Scholar 

  56. Obeso JA, Marin C, Rodriguez-Oroz C, Blesa J, Benitez-Temiño B, Mena-Segovia J, Rodríguez M, Olanow CW. The basal ganglia in Parkinson's disease: current concepts and unexplained observations. Ann Neurol. 2008;64(S2):S30–46.

    Article  PubMed  Google Scholar 

  57. O’Connor S, Angelo K, Jacob TJ. Burst firing versus synchrony in a gap junction connected olfactory bulb mitral cell network model. Front Comput Neurosc. 2012;6(75):1–18.

    Google Scholar 

  58. Pirini M, Rocchiand L, Sensi M, Chiari L. A computational approach to investigate different targets in deep brain stimulation for Parkinson's disease. J Comp Neurosci. 2009;26:91–107.

    Article  Google Scholar 

  59. Plenz D, Kitai S. A basal ganglia pacemaker formed by the subthalamic nucleus and external globus pallidus. Nature. 1999;400:677–82.

    Article  CAS  PubMed  Google Scholar 

  60. Popovych OV, Hauptmann C, Tass PA. Control of neuronal sychrony by nonlinear delayed feedback. Biol Cybern. 2006;95:69–85.

    Article  PubMed  Google Scholar 

  61. Raz A, Vaadia E, Bergman H. Firing patterns and correlations of spontaneous discharge of pallidal neurons in the normal and tremulous 1-methyl-4-phenyl-1,2,3,6 tetrahydropyridine vervet model of parkinsonism. J Neurosci. 2000;20:8559–71.

    CAS  PubMed  Google Scholar 

  62. Rinzel J. Bursting oscillations in an excitable membrane model. In: Sleeman B, Jarvis R, editors. Ordinary and partial differential equations. New York: Springer; 1985. pp. 304–16.

    Google Scholar 

  63. Rosenblum MG, Pikovsky AS. Controlling synchronization in an ensemble of globally coupled oscillators. Phys Rev Lett. 2004a March;92(11):114102.

    Article  PubMed  Google Scholar 

  64. Rosenblum MG, Pikovsky AS. Delayed feedback control of collective synchrony: An approach to suppression of pathological brain rhythms. Phys Rev E. 2004b;70(4):041904.

    Article  Google Scholar 

  65. Rosin B, Slovik M, Mitelman R, Rivlin-Etzion M, Haber SN, Israel E, Vaadia Z, Bergman H. Closed-loop deep brain stimulation is superior in ameliorating Parkinsonism. Neuron. 2011;72(2):370–84.

    Article  CAS  PubMed  Google Scholar 

  66. Rubin JE, Terman D. High frequency stimulation of the subthalamic nucleus eliminaties pathological thalamic rythmicity in a computational model. J Comput Neurosci. 2004;16:211–35.

    Article  PubMed  Google Scholar 

  67. Rubin J, McIntyre CC, Turner RS, Wichmann T. Basal ganglia activity patterns in Parkinsonism and computational modeling of their downstream effects. Eur J Neurosci. 2012;36(2):2213–28.

    Article  PubMed Central  PubMed  Google Scholar 

  68. Sabato S, Grill WM, Glielmo L, Fiengo G. Closed-loop control of deep brain stimulation: a simulation study. Trans Neurol Syst Rehabil Eng. 2011;19:15–25.

    Article  Google Scholar 

  69. Schiff SJ. Towards model-based control of Parkinson's disease. Phil Trans R Soc A. 2010;368:2269–308.

    Article  PubMed Central  PubMed  Google Scholar 

  70. Seebens H, Einsle U, Straile D. Devaiations from syn- chrony: spatio-temporal variability of zooplankton community dynamics in a large lake. J Plankt Res. 20120(0):1–11.

    Google Scholar 

  71. Silberstein P, Kühn AA, Kupsch A, Trottenberg T, Krauss JK, Wöhrle JC, Mazzone P, Insola A, Di Lazzaro V, Oliviero A, Aziz T, Brown P. Patterning of globus pallidus local field potentials differs between Parkinson's disease and dystonia. Brain. 2003;126:2597–608.

    Article  PubMed  Google Scholar 

  72. Sommer MA. The role of the thalamus in motor control. Curr Opin Neurobiol. 2003;13(6):663–70.

    Article  CAS  PubMed  Google Scholar 

  73. Starr PA, Rau GM, Davis V, Marks Jr WJ, Ostrem JL, Simmons D, Lindsey N, Turner RS. Spontaneous pallidal neuronal activity in human dystonia: comparison with Parkinson's disease and normal macaque. J Neurophysiol. 2005;93:3165–76.

    Article  PubMed  Google Scholar 

  74. Tass PA. A model of desynchronizing deep brain stimulation with a demand-controlled coordinated reset of neural subpopulations. Biol Cybern. 2003;89:81–8.

    Article  PubMed  Google Scholar 

  75. Tass PA, Qin L, Hauptmann C, Dovero S, Bezard E, Boraud T, Meissner WG. Coordinated reset has sustained aftereffects in Parkinsonian monkeys. Ann Neurol. 2012;72(5):816–20.

    Article  PubMed  Google Scholar 

  76. Terman D, Rubin JE, Yew AC, Wilson CJ. Activity patterns in a model for the subthalamopallidal network of the basal ganglia. J Nerurosci. 2002;2002(7):2963–76.

    Google Scholar 

  77. Tukhlina N, Rosenblum M, Pikovsky A, Kurths J. Feedback suppression of neural synchrony by vanishing stimulation. Phys RevE. 2007;75:011918.

    Google Scholar 

  78. Urbain N, Gervasoni D, Souliere F, Lobo L, Rentero N, Windels F, Astier B, Savasta M, Fort P, Renaud B. Unrelated course of subthalamic nucleus and globus pallidus neuronal activities across vigilance states in the rat. Eur J Neurosci. 2000;12:3361–74.

    Article  CAS  PubMed  Google Scholar 

  79. Urbain N, Rentero N, Gervasoni D, Renaud B, Chouvet G. The switch of subthalamic neurons from an irregular to a bursting pattern does not solely depend on their gabaergic inputs in the anesthetic-free rat. J Neurosci. 2002;22:8665–75.

    CAS  PubMed  Google Scholar 

  80. Vitek JL. Pathophysiology of dystonia: a neuronal model. Mov Disord. 2002;17:S49–62.

    Article  PubMed  Google Scholar 

  81. Volkmann J. Deep brain stimulation for the treatment of Parkinson's disease. J Clin Neurophys. 2004;21:6–17.

    Article  Google Scholar 

  82. Wichmann T, DeLong MR. Deep brain stimulation for neurologic disorders. Neuron. 2006;52:197–204.

    Article  CAS  PubMed  Google Scholar 

  83. Wichmann T, Soares J. Neuronal firing before and after burst discharges in the monkey basal ganglia is predictably patterned in the normal state and altered in parkinsonism. J Neurophysiol. 2006;95:2120–33.

    Article  PubMed  Google Scholar 

  84. Wichmann T, Bergman H, Starr P, Subramanian T, Watts R, DeLong M. Comparison of mptp-induced changes in spontaneous neuronal discharge in the internal pallidal segment and in the substantia nigra pars reticulata in primates. Exp Brain Res. 1999;125:397–409.

    Article  CAS  PubMed  Google Scholar 

  85. Yoshida M, Rabin A, Anderson ME. Monosynaptic inhibition of pallidal neurons by axon collaterals of caudatonigral fibers. Exp Brain Res. 1972;15:333–47.

    Article  CAS  PubMed  Google Scholar 

  86. Yoshida F, Martinez-Torres I, Pogosyan A, Holl E, Petersen E, Chen CC, Foltynie T, Limousin P, Zrinzo LU, Hariz MI, Brown P. Value of subthalamic nucleus local field potentials recordings in predicting stimulation parameters for deep brain stimulation in Parkinson's disease. J Neurol Neurosurg Psychiatry. 2010;81(8):885–9.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Yixin Guo received support from NSF awards DMS 1226180.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yixin Guo PhD .

Editor information

Editors and Affiliations

Appendix

Appendix

In the following text, we use \({{g}_{i}}\) to denote conductance in \(mS/c{{m}^{2}}\) and \({{v}_{i}}\) or \({{V}_{i}}\) to denote reversal potentials in \(mV\), where the subscript \(i\) are from the set \(\left\{L,Na,K,Ca,AHP,T,E,Gi,Ge\to Ge,Ge\to Sn,Ge\to Gi,Sn\to Ge,Sn\to Gi \right\}\). \(\tau \) with a subscript or both a superscript and a subscript is a time constant in units of msec. All \(\alpha \) and \(\beta \) with subscripts are rate constants in units of ms−1 \(^{-1}\). Other parameters either are constants without units or with units given in the following text.

Functions for TC neurons in system (4.1):

$$ {{m}_{\infty }}(v)=1/(1+{{e}^{-(v+37)/7}}),\ {{p}_{\infty }}(v)=1/(1+{{e}^{-(v+60)/6.2}}), $$
$$ {{h}_{\infty }}(v)=1/(1+{{e}^{(v+41)/4}}),\ {{r}_{\infty }}(v)=1/(1+{{e}^{(v+84)/4}}), $$
$$ {{\tau }_{h}}(v)=1/({{a}_{h}}(v)+{{b}_{h}}(v)),\ {{\tau }_{r}}(v)=0.4(28+{{e}^{-(v+25)/10.5}}), $$
$$ {{a}_{h}}(v)=0.128{{e}^{-(46+v)/18}},\ {{b}_{h}}(v)=4/(1+{{e}^{-(23+v)/5}}), $$

Parameters for TC neurons:

$$ {{g}_{L}}=0.14,\ {{g}_{Na}}=3,\ {{g}_{K}}=5,\ {{g}_{T}}=5,\ {{g}_{E}}=0.018,\ {{g}_{Gi}}=.009, $$
$$ {{v}_{L}}=-72,\ {{v}_{Na}}=50,\ {{v}_{K}}=-90,\ {{v}_{T}}=90,\ {{v}_{E}}=0,\ {{V}_{Gi}}=-85, $$
$$ p=50\,\text{ms,}\ d=5\,\text{ms,}\ wi{{n}_{off}}=12\,\text{ms}. $$

GPi currents:

$$ {{I}_{L}}(v)={{g}_{L}}(v-{{v}_{L}}),\ {{I}_{Na}}={{g}_{Na}}(m_{\infty }^{3}(v))h(v-{{v}_{Na}}),\ {{I}_{K}}={{g}_{K}}{{n}^{4}}(v-{{v}_{K}}), $$
$$ {{I}_{T}}={{g}_{T}}a_{\infty }^{3}(v)r(v-{{v}_{Ca}}),\ {{I}_{Ca}}={{g}_{Ca}}s_{\infty }^{2}(v)(v-{{v}_{Ca}}) $$
$$ {{I}_{AHP}}={{g}_{AHP}}(v-{{v}_{K}})([Ca]/([Ca]+k)), $$
$$ {{I}_{Sn\to Gi}}={{g}_{Sn\to Gi}}{{s}_{Sn\to Gi}}(v-{{v}_{Sn\to Gi}}), $$

where \({{s}_{Sn\to Gi}}\) is listed under STN equations,

and

$$ {{I}_{Ge\to Gi}}={{g}_{Ge\to Gi}}{{s}_{Ge\to Gi}}(v-{{v}_{Ge\to Gi}}), $$

where \({{s}_{Ge\to Gi}}\) is listed under GPe equations.

\({{I}_{appi}}=-1\,{}\mu\text{A}\) is a constant applied current.

GPi equations and functions:

$$ {n}'={{\varphi }_{n}}({{n}_{\infty }}(v)-n)/{{\tau }_{n}}(v),\ {h}'={{\varphi }_{h}}({{h}_{\infty }}(v)-h)/{{\tau }_{h}}(v),\ {r}'=\varphi ({{r}_{\infty }}(v)-r)/{{\tau }_{r}}, $$
$$ [Ca{]}'=\varepsilon (-{{I}_{Ca}}-{{I}_{T}}-{{k}_{Ca}}[Ca]),\ {{s}_{Gi}}'=\alpha (1-{{s}_{Gi}}){{S}_{\infty }}(v)-{{\beta }_{Gi}}{{s}_{Gi}}, $$

where \({{S}_{\infty }}(v)\) is given in section “Model Equations for STN, GPe and GPi Neurons”.

$$ {{X}_{\infty }}(v)=1/(1+{{e}^{-(v-{{\theta }_{X}})/{{\sigma }_{X}}}}), $$

where \(X=m,n,h,r,a,s\),

and

$$ {{\tau }_{X}}(v)=\tau_{X}^{0}+\tau_{X}^{1}/(1+{{e}^{-(v-\theta_{X}^{\tau })/\sigma_{X}^{\tau }}}), $$

where \(X=n,h\).

GPi parameters:

$$ {{g}_{L}}=0.1,\ {{g}_{Na}}=120,\ {{g}_{K}}=30,\ {{g}_{T}}=0.5,\ {{g}_{Ca}}=0.1,\ {{g}_{AHP}}=30,\ {{g}_{Sn\to Gi}}=0.5,\ {{g}_{Ge\to Gi}}=1, $$
$$ {{v}_{L}}=-55,\ {{v}_{Na}}=55,\ {{v}_{K}}=-80,\ {{v}_{Ca}}=120,\ {{v}_{Ge\to Gi}}=-100,\ {{v}_{Sn\to Gi}}=0, $$
$$ \tau_{n}^{0}=0.05,\ \tau_{n}^{1}=0.27,\ \tau_{h}^{0}=0.05,\ \tau_{h}^{1}=0.27,\ {{\tau }_{r}}=30, $$
$$ {{\phi }_{r}}=1,\ {{\phi }_{n}}=0.1,\ {{\phi }_{h}}=0.05 $$
$$ {{k}_{1}}=30,\ {{k}_{Ca}}=15,\ \varepsilon =0.0001\,\text{m}{{\text{s}}^{-1}},$$
$$ {{\theta }_{r}}=-70,\ {{\theta }_{m}}=-37,\ {{\theta }_{n}}=-50,\ {{\theta }_{h}}=-58,\ {{\theta }_{a}}=-57,\ {{\theta }_{s}}=-35,\ \alpha =2,\ \theta_{n}^{\tau }=-40,\ \theta_{h}^{\tau }=-40, $$
$$ {{\sigma }_{m}}=10,\ {{\sigma }_{n}}=14,\ {{\sigma }_{h}}=-12,\ {{\sigma }_{r}}=-2,\ {{\sigma }_{a}}=2,\ {{\sigma }_{s}}=2,\ \sigma_{n}^{\tau }=-12,\ \sigma_{h}^{\tau }=-12, $$
$$ {{\beta }_{Gi}}=.08,\ {{k}_{Ca}}=15. $$

STN currents:

\({{I}_{L}}\), \({{I}_{Na}}\), \({{I}_{K}}\), \({{I}_{Ca}}\), \({{I}_{AHP}}\) are as given above for the GPi neuron, and \({{I}_{T}}={{g}_{T}}a_{\infty }^{3}(v){{b}_{\infty }}(r)(v-{{v}_{Ca}})\). The synaptic currents from GPe to STN are the following:

\({{I}_{Ge\to Sn}}={{g}_{Ge\to Sn}}\sum\nolimits_{j\in \Lambda }{}s_{Ge\to Sn}^{j}(v-{{v}_{Sn\to Ge}})\), where \(\Lambda \) is a subgroup of GPe cells and \({{s}_{Ge\to Sn}}\) is given in GPe equations.

For the stimulation current \({{I}^{stim}}\), see details in sections “Generation of Stimulation Current from Feedback” and “Comparison Between Open–Loop and Closed–Loop Stimulations”.

STN equations and functions:

\(n\), \(h\), \(r\), \([Ca]\) equations and functions \({{X}_{\infty }}(v),{{\tau }_{X}}(v)\) are the same as given above for GPi neuron, except there is no \({{r}_{\infty }}(v)\) used and we introduce \({{b}_{\infty }}(r)=1/(1+{{e}^{(r-{{\theta }_{b}})/{{\sigma }_{b}}}})-1/(1+{{e}^{-{{\theta }_{b}}/{{\sigma }_{b}}}})\).

The synaptic input from STN to GPe and GPi is described as:

$$ {{s}_{Sn\to Ge}}'={{\alpha }_{Sn\to Ge}}(1-{{s}_{Sn\to Ge}}){{s}_{\infty }}(v-30)-{{\beta }_{Sn\to Ge}}{{s}_{Sn\to Ge}}, $$
$$ {{s}_{Sn\to Gi}}'={{\alpha }_{Sn\to Gi}}(1-{{s}_{Sn\to Gi}}){{s}_{\infty }}(v-30)-{{\beta }_{Sn\to Gi}}{{s}_{Sn\to Gi}}. $$

STN Parameters:

$$ {{g}_{L}}=2.25,\ {{g}_{Na}}=37.5,\ {{g}_{K}}=45,\ {{g}_{T}}=0.5,\ {{g}_{Ca}}=0.5,\ {{g}_{AHP}}=9,\ {{g}_{Ge\to Sn}}=0.9, $$
$$ {{v}_{L}}=-60,\ {{v}_{Na}}=55,\ {{v}_{K}}=-80,\ {{v}_{Ca}}=140,\ {{v}_{Ge\to Sn}}=-100, $$
$$ \tau_{n}^{0}=1,\ \tau_{n}^{1}=100,\ \tau_{h}^{0}=1,\ \tau_{h}^{1}=500,\ \tau_{r}^{0}=7.1,\ \tau_{r}^{1}=17.5, $$
$$ {{\phi }_{r}}=0.5,\ {{\phi }_{n}}=0.75,\ {{\phi }_{h}}=0.75, $$
$$ {{k}_{1}}=15,\ {{k}_{Ca}}=22.5,\ \varepsilon =5\times {{10}^{-5}}, $$
$$ {{\theta }_{r}}=-67,\ {{\theta }_{m}}=-30,\ {{\theta }_{n}}=-32,\ {{\theta }_{h}}=-39,\ {{\theta }_{a}}=-63,\ {{\theta }_{s}}=-39,\ {{\theta }_{b}}=0.25, $$
$$ \theta_{n}^{\tau }=-80,\ \theta_{h}^{\tau }=-57,\ \theta_{r}^{\tau }=68 $$
$$ {{\sigma }_{m}}=15,\ {{\sigma }_{n}}=8,\ {{\sigma }_{h}}=-3.1,\ {{\sigma }_{r}}=-2,\ {{\sigma }_{a}}=7.8,\ {{\sigma }_{s}}=8,\ {{\sigma }_{b}}=0.07 $$
$$ \sigma_{n}^{\tau }=-26,\ \sigma_{h}^{\tau }=-3,\ \sigma_{r}^{\tau }=-2.2, $$
$$ {{\alpha }_{Sn\to Ge}}=5,\ {{\alpha }_{Sn\to Gi}}=1,\ {{\beta }_{Sn\to Ge}}=1,\ {{\beta }_{Sn\to Gi}}=0.05,\ wk=0.45. $$

GPe currents:

\({{I}_{L}}\), \({{I}_{Na}}\), \({{I}_{K}}\), \({{I}_{Ca}}\), \({{I}_{AHP}}\) are modeled as given above for the GPi neuron. The synaptic currents to GPe are:

\({{I}_{Sn\to Ge}}={{g}_{Sn\to Ge}}\sum\nolimits_{j\in \Lambda }{}{{s}_{Sn\to Ge}}(v-{{v}_{Sn\to Ge}})\), where \(\Lambda \) is a subgroup of STN neurons and \({{s}_{Sn\to Ge}}\) is given under STN equations.

\({{I}_{Ge\to Ge}}={{g}_{Ge\to Ge}}\sum\nolimits_{j\in \Lambda }{}{{s}_{Ge\to Ge}}(v-{{v}_{Ge\to Ge}})\) where \(\Lambda \) is a subgroup of STN neurons and \({{s}_{Ge\to Ge}}\) is the same as \({{s}_{Ge\to Sn}}\) given under GPe equations.

\({{I}_{app}}=-1.2\) is a constant applied current.

GPe equations and functions:

\(n\), \(h\), \(r\), \([Ca]\) equations and function \({{X}_{\infty }}(v),{{\tau }_{X}}(v)\) are as given above for the GPi neuron.

The synaptic input from STN to GPe and GPi is described as:

$$ {{s}_{Ge\to Sn}}'={{\alpha }_{Ge\to Sn}}(1-{{s}_{Ge\to Sn}}){{s}_{\infty }}(v-20)-{{\beta }_{Ge\to Sn}}{{s}_{Ge\to Sn}}, $$
$$ {{s}_{Ge\to Gi}}'={{\alpha }_{Ge\to Gi}}(1-{{s}_{Ge\to Gi}}){{s}_{\infty }}(v-20)-{{\beta }_{Ge\to Gi}}{{s}_{Ge\to Gi}}. $$

GPe parameters:

Most parameters for GPe are the same as those for GPi. We only list those that have different values and the additional ones not present in the GPi model.

$$ {{g}_{Sn\to Ge}}=0.18,\ {{g}_{Ge\to Ge}}=0.01,\ {{v}_{Sn\to Ge}}=0,\ {{v}_{Ge\to Ge}}=-80, $$
$$ {{\alpha }_{Ge\to Sn}}=2,\ {{\alpha }_{Ge\to Gi}}=1 $$
$$ {{\beta }_{Ge\to Sn}}=0.04,\ {{\beta }_{Ge\to Gi}}=0.1. $$

CRS parameters: \(\rho =0.7\), \({{a}_{1}}=0.9\), \({{a}_{0}}=58\), \({{\tau }_{0}}=30\), which is the phase shift in \({{f}_{k}},\) \(k=1,2,3,4\).

MDFS parameters: \(a=0.0025,\),\(b=0.00136,\),\(\mu =0.0002\), \(\tau =25.\)

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Guo, Y., Toppin, K. (2015). Computational Models of Closed–Loop Deep Brain Stimulation. In: Bhattacharya, B., Chowdhury, F. (eds) Validating Neuro-Computational Models of Neurological and Psychiatric Disorders. Springer Series in Computational Neuroscience, vol 14. Springer, Cham. https://doi.org/10.1007/978-3-319-20037-8_4

Download citation

Publish with us

Policies and ethics