Skip to main content
Log in

Control of Neuronal Synchrony by Nonlinear Delayed Feedback

  • Original Paper
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

We present nonlinear delayed feedback stimulation as a technique for effective desynchronization. This method is intriguingly robust with respect to system and stimulation parameter variations. We demonstrate its broad applicability by applying it to different generic oscillator networks as well as to a population of bursting neurons. Nonlinear delayed feedback specifically counteracts abnormal interactions and, thus, restores the natural frequencies of the individual oscillatory units. Nevertheless, nonlinear delayed feedback enables to strongly detune the macroscopic frequency of the collective oscillation. We propose nonlinear delayed feedback stimulation for the therapy of neurological diseases characterized by abnormal synchrony.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahissar E (1998) Temporal-code to rate-code conversion by neuronal phase-locked loops. Neural Comput 10:597–650

    Article  PubMed  CAS  Google Scholar 

  • Ahissar E, Vaadia E (1990) Oscillatory activity of single units in a somatosensory cortex of an awake monkey and their possible role in texture analysis. Proc Natl Acad Sci USA 87:8935–8939

    Article  PubMed  CAS  Google Scholar 

  • Alberts WW, Wright EJ, Feinstein B (1969) Cortical potentials and parkinsonian tremor. Nature 221:670–672

    Article  PubMed  CAS  Google Scholar 

  • Atay FM (2003) Distributed delays facilitate amplitude death of coupled oscillators. Phys Rev Lett 91:094101

    Article  PubMed  CAS  Google Scholar 

  • Atay FM, Jost J, Wende A (2004) Delays, connection topology, and synchronization of coupled chaotic maps. Phys Rev Lett 92:144101

    Article  PubMed  CAS  Google Scholar 

  • Bellman R, Cooke KL (1963) Differential-difference equations. Academic, New York

    Google Scholar 

  • Benabid AL, Pollak P, Louveau A, Henry S, de Rougemont J (1987) Combined (thalamotomy and stimulation) stereotactic surgery of the vim thalamic nucleus for bilateral parkinson’s disease. Appl Neurophysiol 50:344–346

    Article  PubMed  CAS  Google Scholar 

  • Benabid AL, Pollak P, Gervason C, Hoffmann D, Gao DM, Hommel M, Perret JE, de Rougemount J (1991) Longterm suppression of tremor by chronic stimulation of ventral intermediate thalamic nucleus. The Lancet 337:403–406

    Article  CAS  Google Scholar 

  • Benabid AL, Benazzous A, Pollak P (2002) Mechanisms of deep brain stimulation. Mov Disord 17:73–74

    Article  Google Scholar 

  • Daido H (1997) Order function theory of macroscopic phase-locking in globally and weakly coupled limit-cycle oscillators. Int J Bifurcat Chaos 7(4):807–829

    Article  Google Scholar 

  • Dolan K, Witt A, Spano ML, Neiman A, Moss F (1999) Surrogates for finding unstable periodic orbits in noisy data sets. Phys Rev E 59:5235–5241

    Article  CAS  Google Scholar 

  • Eckhorn R, Bauer R, Jordan W, Brosch M, Kruse W, Munk M, Reitboeck HJ (1988) Coherent oscillations: a mechanism of feature linking in the visual cortex? Multiple electrode and correlation analyses in the cat. Biol Cybern 60(2):121–130

    Article  PubMed  CAS  Google Scholar 

  • Ernst U, Pawelzik K, Geisel T (1995) Synchronization induced by temporal delays in pulse-coupled oscillators. Phys Rev Lett 74:1570–1573

    Article  PubMed  CAS  Google Scholar 

  • Ernst U, Pawelzik K, Geisel T (1998) Delay-induced multistable synchronization of biological oscillators. Phys Rev E 57:2150–2162

    Article  CAS  Google Scholar 

  • Filali M, Hutchison WD, Palter VN, Lozano AM, Dostrovsky JO (2004) Stimulation-induced inhibition of neuronal firing in human subthalamic nucleus. Exp Brain Res 156(3):274–281

    Article  PubMed  Google Scholar 

  • Garcia L, Audin J, D’Alessandro G, Bioulac B, Hammond C (2003) Dual effect of high-frequency stimulation on subthalamic neuron activity. J Neurosci 23:8743–8751

    PubMed  CAS  Google Scholar 

  • Gray CM, Singer W (1989) Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex. Proc Natl Acad Sci USA 86(5):1698–1702

    Article  PubMed  CAS  Google Scholar 

  • Grill WM, McIntyre CC (2001) Extracellular excitation of central neurons: implications for the mechanisms of deep brain stimulation. Thalamus Relat Syst 1:269–277

    Article  Google Scholar 

  • Hansel D, Mato G, Meunier C (1993) Phase dynamics of weakly coupled Hodgkin–Huxley neurons. Europhys Lett 23:367–372

    Article  CAS  Google Scholar 

  • Hauptmann C, Mackey MC (2003) Stimulus dependent onset latency of the inhibitory recurrent activity. Biol Cybern 88:459–467

    PubMed  CAS  Google Scholar 

  • Hauptmann C, Popovych O, Tass PA (2005a) Delayed feedback control of synchronization in locally coupled neuronal networks. Neurocomputing 65–66:759–767

    Google Scholar 

  • Hauptmann C, Popovych O, Tass PA (2005b) Effectively desynchronizing deep brain stimulation based on a coordinated delayed feedback stimulation via several sites: a computational study. Biol Cybern 93:463–470

    Article  CAS  Google Scholar 

  • Hauptmann C, Popovych O, Tass PA (2005c) Multisite coordinated delayed feedback for an effective desynchronization of neuronal networks. Stochast Dyn 5(2):307–319

    Article  Google Scholar 

  • Hellwig B (2000) A quantitative analysis of the local connectivity between pyramidal neurons in layers 2/3 of the rat visual cortex. Biol Cybern 82:111–121

    Article  PubMed  CAS  Google Scholar 

  • Hoppensteadt FC (1997) An introduction to the mathematics of neurons: modeling in the frequency domain. Cambridge University Press, Cambridge

    Google Scholar 

  • Kim S, Park SH, Ryu CS (1997) Multistability in coupled oscillator systems with time delay. Phys Rev Lett 79:2911–2914

    Article  CAS  Google Scholar 

  • Kumar R, Lozano AM, Sime E, Lang AE (2003) Long-term follow-up of thalamic deep brain stimulation for essential and parkinsonian tremor. Neurology 61(11):1601–1604

    PubMed  Google Scholar 

  • Kuramoto Y (1984) Chemical oscillations, waves, and turbulence. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Kuznetsov YuA (1998) Elements of applied bifurcation theory. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Lenz FA, Kwan HC, Martin RL, Tasker RR, Dostrovsky JO, Lenz YE (1994) Single unit analysis of the human ventral thalamic nuclear group. Tremor-related activity in functionally identified cells Brain 117:531–543

    Google Scholar 

  • Luhmann HJ, Mudrick-Donnon LA, Mittmann T, Heinemann U (1995) Ischaemia-induced long-term hyperexcitability in rat neocortex. Eur J Neurosci 7:180–191

    Article  PubMed  CAS  Google Scholar 

  • Maistrenko Yu, Popovych O, Burylko O, Tass PA (2004) Mechanism of desynchronization in the finite-dimensional Kuramoto model. Phys Rev Lett 93:084102

    Article  PubMed  CAS  Google Scholar 

  • Matthews PC, Strogatz SH (1990) Phase diagram for the collective behavior of limit-cycle oscillators. Phys Rev Lett 65:1701–1704

    Article  PubMed  Google Scholar 

  • McIntyre CC, Grill WM (1999) Excitation of central nervous system neurons by nonuniform electric fields. Biophys J 76:878–888

    PubMed  CAS  Google Scholar 

  • McIntyre CC, Savasta M, Kerkerian-Le, Goff L, Vitek JL (2004) Uncovering the mechanism(s) of action of deep brain stimulation: activation, inhibition, or both. Clin Neurophysiol 115(6):1239–1248

    Article  PubMed  Google Scholar 

  • Meissner W, Leblois A, Hansel D, Bioulac B, Gross CE, Benazzouz A, Boraud T (2005) Subthalamic high frequency stimulation resets subthalamic firing and reduces abnormal oscillations. Brain 128:2372–2382

    Article  PubMed  Google Scholar 

  • Morris C, Lecar H (1981) Voltage oscillations in the barnacle giant muscle fiber. Biophys J 35:193–213

    Article  PubMed  CAS  Google Scholar 

  • Nini A, Feingold A, Slovin H, Bergmann H (1995) Neurons in the globus pallidus do not show correlated activity in the normal monkey, but phase-locked oscillations appear in the MPTP model of parkinsonism. J Neurophysiol 74:1800–1805

    PubMed  CAS  Google Scholar 

  • Nowak LG, Bullier J (1998a) Axons, but not cell bodies, are activated by electrical stimulation in cortical gray matter I evidence from chronaxie measurements. Exp Brain Res 118:477–488

    Article  CAS  Google Scholar 

  • Nowak LG, Bullier J (1998b) Axons, but not cell bodies, are activated by electrical stimulation in cortical gray matter II evidence from selective inactivation of cell bodies and axon initial segments. Exp Brain Res 118:489–500

    Article  CAS  Google Scholar 

  • Nunez PL (1981) Electric fields of the brain. Oxford University Press, New York

    Google Scholar 

  • Pare D, Curro’Dossi R, Steriade M (1990) Neuronal basis of the parkinsonian resting tremor: a hypothesis and its implications for treatment. Neuroscience 35:217–226

    Article  PubMed  CAS  Google Scholar 

  • Pikovsky AS, Rosenblum MG, Kurths J (1996) Synchronization in a population of globally coupled chaotic oscillators. Europhys Lett 34(3):165–170

    Article  CAS  Google Scholar 

  • Pikovsky A, Rosenblum M, Kurths J (2001) Synchronization, a universal concept in nonlinear sciences. Cambridge University Press, Cambridge

    Google Scholar 

  • van der Pol B (1920) A theory of the amplitude of free and forced triode vibration. Radio Rev 1:704–754

    Google Scholar 

  • van der Pol B (1927) Forced oscillations in a circuit with non-linear resistance. Phil Mag Ser 7 3:65–80

    Google Scholar 

  • van der Pol B, van der Mark J (1928) The heartbeat considered as a relaxation oscillation, and an electrical model of the heart. Phil Mag Suppl 6:763–775

    Google Scholar 

  • Popovych OV, Hauptmann C, Tass PA (2005a) Effective desynchronization by nonlinear delayed feedback. Phys Rev Lett 94:164102

    Article  CAS  Google Scholar 

  • Popovych OV, Maistrenko YuL, Tass PA (2005b) Phase chaos in coupled oscillators. Phys Rev E 71:065201(R)

    Article  MathSciNet  CAS  Google Scholar 

  • Pyragas K (1992) Continuous control of chaos by self-controlling feedback. Phys Lett A 170:421–428

    Article  Google Scholar 

  • Ranck JB (1975) Which elements are excited in electrical stimulation of mammalian central nervous system: a review. Brain Res 98:417–468

    Article  PubMed  Google Scholar 

  • Reddy DVR, Sen A, Johnston GL (1998) Time delay induced death in coupled limit cycle oscillators. Phys Rev Lett 80:5109–5112

    Article  Google Scholar 

  • Reddy DVR, Sen A, Johnston GL (1999) Time delay effects on coupled limit cycle oscillators at Hopf bifurcation. Physica D 129(1–2):15–34

    Article  Google Scholar 

  • Reddy DVR, Sen A, Johnston GL (2000) Experimental evidence of time-delay-induced death in coupled limit-cycle oscillators. Phys Rev Lett 85:3381–3384

    Article  PubMed  Google Scholar 

  • Rinzel J, Ermentrout GB (1989) Analysis of neural excitability and oscillations. In: Koch CH, Segev I (eds) Methods in neuronal modelling from synapses to networks. MIT Press, Cambridge, pp 135–169

    Google Scholar 

  • Rodriguez-Oroz MC, Obeso JA, Lang AE, Houeto J-L, Pollak P, Rehncrona S, Kulisevsky J, Albanese A, Volkmann J, Hariz MI, , Speelman JD, Guridi J, Zamarbide I, Gironell A, Molet J, Pascual-Sedano B, Pidoux B, Bonnet AM, Agid Y, Xie J, Benabid A-L, Lozano AM, Saint-Cyr J, Romito L, Contarino MF, Scerrati M, Van Blercom N (2005) Bilateral deep brain stimulation in parkinson’s disease: a multicentre study with 4 years follow-up. Brain 128(10):2240–2249

    Article  PubMed  CAS  Google Scholar 

  • Rosenblum MG, Pikovsky AS (2004a) Controlling synchronizatio n in an ensemble of globally coupled oscillators. Phys Rev Lett 92:114102

    Article  CAS  Google Scholar 

  • Rosenblum MG, Pikovsky AS (2004b) Delayed feedback control of collective synchrony: an approach to suppression of pathological brain rhythms. Phys Rev E 70:041904

    Article  CAS  Google Scholar 

  • Rosenblum MG, Pikovsky AS, Kurths J (1996) Phase synchronization of chaotic oscillators. Phys Rev Lett 76(11):1804–1807

    Article  PubMed  CAS  Google Scholar 

  • Rössler OE (1976) An equation for continuous chaos. Phys Lett A 57:397–398

    Article  Google Scholar 

  • Schuster HG, Wagner P (1989) Mutual entrainment of two limit cycle oscillators with time delayed coupling. Prog Theor Phys 81:939–945

    Article  Google Scholar 

  • Singer W, Gray CM (1995) Visual feature integration and the temporal correlation hypothesis. Annu Rev Neurosci 18:555–586

    Article  PubMed  CAS  Google Scholar 

  • Steriade M, Jones EG, Llinas RR (1990) Thalamic oscillations and signaling. Wiley, New York

    Google Scholar 

  • Tass PA (1999) Phase resetting in medicine and biology: stochastic modelling and data analysis. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Tass PA (2001a) Desynchronizing double-pulse phase resetting and application to deep brain stimulation. Biol Cybern 85:343–354

    Article  CAS  Google Scholar 

  • Tass PA (2001b) Effective desynchronization by means of double-pulse phase resetting. Europhys Lett 53:15–21

    Article  CAS  Google Scholar 

  • Tass PA (2001c) Effective desynchronization with a resetting pulse train followed by a single pulse. Europhys Lett 55:171–177

    Article  CAS  Google Scholar 

  • Tass PA (2002a) Desynchronization of brain rhythms with soft phase-resetting techniques. Biol Cybern 87:102–115

    Article  Google Scholar 

  • Tass PA (2002b) Effective desynchronization with bipolar double-pulse stimulation. Phys Rev E 66:036226

    Article  CAS  Google Scholar 

  • Tass PA (2003a) A model of desynchronizing deep brain stimulation with a demand-controlled coordinated reset of neural subpopulations. Biol Cybern 89:81–88

    Article  Google Scholar 

  • Tass PA (2003b) Stochastic phase resetting of two coupled phase oscillators stimulated at different times. Phys Rev E 67:051902

    Article  CAS  Google Scholar 

  • Terman D, Rubin JE, Yew AC, Wilson CJ (2002) Activity patterns in a model for the subthalamopallidal network of the basal ganglia. J Neurosci 22:2963–2976

    PubMed  CAS  Google Scholar 

  • Traub RD, Miles R (1991) Neural networks of the hippocampus. Cambridge University Press, Cambridge

    Google Scholar 

  • VanWiggeren GD, Roy R (1998) Communication with chaotic lasers. Science 279(5354):1198–1200

    Article  PubMed  Google Scholar 

  • Volkmann J (2004) Deep brain stimulation for the treatment of Parkinson’s disease. J Clin Neurophysiol 21:6–17

    Article  PubMed  Google Scholar 

  • Wichmann T, Bergman H, Starr PA, Subramanian T, Watts RL, (1999) Comparison of MPTP-induced changes in spontaneous neuronal discharge in the internal pallidal segment and in the substantia nigra pars reticulata in primates. Exp Brain Res 125:397–409

    Article  PubMed  CAS  Google Scholar 

  • Yeung MKS, Strogatz SH (1999) Time delay in the Kuramoto model of coupled oscillators. Phys Rev Lett 82:648–651

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oleksandr V. Popovych.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Popovych, O.V., Hauptmann, C. & Tass, P.A. Control of Neuronal Synchrony by Nonlinear Delayed Feedback. Biol Cybern 95, 69–85 (2006). https://doi.org/10.1007/s00422-006-0066-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-006-0066-8

Keywords

Navigation