Skip to main content

Abstract

Selenium (Se) is a naturally occurring metalloid element which occurs nearly in all environments in the universe. The common sources of Se in earth crust occurs in association with sulfide minerals as metal selenide whereas, it is rarely seen in elemental form (Se0). Furthermore, Se is considered a finite and non-renewable resource on earth, and has been found to be an essential element for humans, animals, micro-organisms and some other eukaryotes; but as yet its essentiality to plants is in dispute. Thus, plants vary considerably in their physiological and biochemical response to Se. Therefore, this review focuses on of the physiological importance of Se for higher plants, especially plant growth, uptake, transport, metabolism and interaction of selenium with other minerals. Biogeochemistry of Se, its relationship with S, application of Se-containing fertilizers, Se in edible plants and finally, red elemental Se nanoparticles in higher plants will be highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

APS:

Adenosine 5′-phosphosulphate

APSe:

Adenosine 5′-phosphoselenate

Cys:

Cysteine

Cysth:

Cystathione

DMS:

Dimethylsulphide

DMSP:

Dimethylproprionate

DMSe:

Dimethylselenide

DMDSe:

Dimethyldiselenide

DMSeP:

Dimethylselenioproprionate

GPX:

Glutathione peroxidase

GSH:

Glutathione

GSSeSG:

Selenodiglutathione

HAST:

High affinity sulphate transporter

LAST:

Low affinity sulphate transporter

MeCys:

S-methylcysteine

MeSeCys:

S-methylselenocysteine

MeSeCysSeO:

Methylselenocysteine seleno-oxide

Met:

Methionine

S:

Sulphur

Se:

Selenium

SeCys:

Selenocysteine

Secysth:

Selenocystathione

SeGSH:

Selenoglutathione

Sehocys:

Selenohomocysteine

SEM:

SeCys + MeSeCys

SeMeSeCys:

Selenomethylselenocysteine

SeMet:

Selenomethionine

SeMMet:

Selenomethylmethionine

SeCys:

Selenocysteine

References

  • Abrams MM, Shennan C, Zazoski J, Burau RG (1990) Selenomethionine uptake by wheat seedlings. Agron J 82:1127–1130

    Article  CAS  Google Scholar 

  • Axley MJ, Boeck A, Stadtman TC (1991) Catalytic properties of an Escherichia coli formate dehydrogenase mutant in which sulphur replaces selenium. Proc Natl Acad Sci U S A 88:8450–8454

    Article  CAS  Google Scholar 

  • Amweg EL, Stuart DL, Weston DP (2003) Comparative bioavailability of selenium to aquatic organisms after biological treatment of agricultural drainage water. Aquat Toxicol 63:13–25

    Article  CAS  Google Scholar 

  • Archer FC (1983) Agriculture group symposium. Trace elements in soils, crops and forages. J Sci Food Agric 34:49–61

    Article  Google Scholar 

  • Arnér ESJ (2012) History of selenium research. In: Hatfield DL, Berry MJ, Gladyshev VN (eds) Selenium: its molecular biology and role in human health. Springer, New York/Dordrecht/Heidelberg/London, pp 1–19. doi:10.1007/978-1-4614-1025-6

    Google Scholar 

  • Arvy MP (1993) Selenate and selenite uptake and translocation in bean-plants (Phaseolus vulgaris). J Exp Bot 44:1083–1087

    Article  CAS  Google Scholar 

  • Arvy MP (1997) Selenate and selenite uptake and translocation in bean plants (Phaseolus vulgaris). J Exp Bot 44:1083–1087

    Article  Google Scholar 

  • Aslam M, Harbit KB, Huffaker RC (1990) Comparative effects of selenite and selenate on nitrate assimilation in barley seedlings. Plant Cell Environ 13:773–782

    Article  CAS  Google Scholar 

  • Bailey RT, Hunter WJ, Gates TK (2012) The influence of nitrate on selenium in irrigated agricultural groundwater systems. J Environ Qual 41:783–792. doi:10.2134/jeq2011.0311

    Article  CAS  Google Scholar 

  • Baker AJM, Brookes RR (1989) Terrestrial higher plants which accumulate metallic elements – a review of their distribution, ecology and phytochemistry. Biorecovery 1:81–126

    CAS  Google Scholar 

  • Baker AJM, McGrath SP, Reeves RD, Smith JAC (2000) Metal hyperaccumulator plants: a review of the ecology and physiology of a biological resource for phytoremediation of metal polluted soils. In: Terry N, Banuelos GS (eds) Phytoremediation of contaminated soil and water. CRC Press, Boca Raton, pp 85–107

    Google Scholar 

  • Banuelos GS, Zayed A, Terry N, Wu L, Akohoue S (1996) Accumulation of selenium by different plant species grown under increasing sodium and calcium chloride salinity. Plant Soil 183:49–59

    Article  CAS  Google Scholar 

  • Beath OA (1982) The story of selenium in Wyoming. Univ Wyo Agric Exp Stat Bull 774:1–35

    Google Scholar 

  • Beath OA, Gilbert CS, Eppson HF (1939) The use of indicator plants in locating seleniferous areas in Western United States. I. General. Am J Bot 26:257–269

    Article  CAS  Google Scholar 

  • Berzelius JJ (1818) Undersökning af en ny Mineral-kropp, funnen i de orenare sorterna af deti Falun tillverkade svafl et. Afhandlingar i fysik, kemi och mineralogi 6:42

    Google Scholar 

  • Birringer M, Pilawa S, Flohe I (2002) Trends in selenium biochemistry. Nat Prod Rep 19:693–718

    Article  CAS  Google Scholar 

  • Bosma W, Svchupp R, De Kok LJ, Rennenberg H (1991) Effect of selenate on assimilatory sulfate reduction and thiol content in spruce needles. Plant Physiol Biochem 29:131–138

    CAS  Google Scholar 

  • Bourgis F, Roje S, Nuccio ML, Fischer DB, Tarczynski MC, Li C, Herschback C, Rennenberg H, Pimenta MJ, Shen T-L, Gage DA, Hanson AD (1999) S-methylmethionine plays a major role in phloem sulphur transport and is synthesised by a novel type of methyltransferase. Plant Cell 11:1485–1497

    Article  CAS  Google Scholar 

  • Boyd RS (2010) Heavy metal pollutants and chemical ecology: exploring new frontiers. J Chem Ecol 36:46–58

    Article  CAS  Google Scholar 

  • Broadley MR, White PJ, Bryson RJ, Meacham MC, Bowen HC, Johnson SE, Hawkesford MJ, McGrath SP, Zhao F-J, Breward N, Harriman M, Tucker M (2006) Biofortification of U.K. food crops with selenium (Se). Proc Nutr Soc 65:169–181

    Article  CAS  Google Scholar 

  • Broadley MR, Alcock J, Alford J, Cartwright P, Foot I, Fairweather-Tait SJ, Hart DJ, Hurst R, Knott P, McGrath SP, Meacham MC, Norman K, Mowat H, Scott P, Stroud JL, Tovey M, Tucker M, White PJ, Young SD, Zhao F-J (2010) Selenium biofortification of high-yielding winter wheat (Triticum aestivum L.) by liquid or granular Se fertilisation. Plant Soil 332:5–18. doi:10.1007/s11104-009-0234-4

    Article  CAS  Google Scholar 

  • Brown TA, Shrift A (1982) Selenium: toxicity and tolerance in higher plants. Biol Rev 57:59–84

    Article  CAS  Google Scholar 

  • Broyer TC, Johnson CM, Hudson RP (1972) Selenium and nutrition of Astragalus I: effects of selenite or selenate supply on growth and selenium content. Plant Soil 36:635–649

    Article  CAS  Google Scholar 

  • Byers HG (1936) Selenium occurrence in certain soils in the United States, with a discussion of certain topics. US Department of Agriculture technical bulletin, no. 530. USDA, Washington, DC, pp 1–8

    Google Scholar 

  • Cartes P, Gianfera L, Mora ML (2005) Uptake of selenium and its antioxidative activity in ryegrass when applied a selenate and selenite forms. Plant Soil 276:359–367

    Article  CAS  Google Scholar 

  • Cartes P, Gianfreda L, Paredes C, Mora ML (2010) The effect of seed pelletization with selenite on the yield and selenium uptake of ryegrass cultivars. 19th world congress of soil science, soil solutions for a changing world, Brisbane, Australia. Published on CDROM, 1–6 August 2010, Pp 310–313

    Google Scholar 

  • Carvalho KM, Gallardo-Williams MT, Benson RF, Martin DF (2003) Effects of selenium supplementation on four agricultural crops. J Agric Food Chem 51:704–709

    Article  CAS  Google Scholar 

  • Chasteen TG, Bentley R (2002) Biomethylation of selenium and tellurium: microorganisms and plants. Chem Rev 103:1–25

    Article  CAS  Google Scholar 

  • Chen CC, Sung JM (2001) Priming bitter gourd seeds with selenium solution enhances germinability and antioxidative responses under sub-optimal temperature. Physiol Plant 111:9–16

    Article  CAS  Google Scholar 

  • Chen L, Yang F, Xu J, Hu Y, Hu Q, Zhang Y, Pan G (2002) Determination of selenium concentration of rice in China and eff ect of fertilization of selenite and selenate on selenium content of rice. J Agric Food Chem 50:5128–5130

    Article  CAS  Google Scholar 

  • Cherest H, Davidian J-C, Thomas D, Benes V, Ansorge W, Surdin-Kerjan Y (1997) Molecular charecterisation of two high affinity sulphate transporters in Saccharomyces cervisiae. Genetics 145:627–635

    CAS  Google Scholar 

  • Combs GF, Combs SB (1986) The role of selenium in nutrition. Academic, Orlando, p 535

    Google Scholar 

  • Combs GF, Garbisu C, Yee BC, Yee A, Carlson DE, Smith NR, Magyarosy AC, Leighton T, Buchanan BB (1996) Bioavailability of selenium accumulated by selenitereducing bacteria. Biol Trace Elem Res 52:209–225

    Article  CAS  Google Scholar 

  • Davda J, Labhasetwar V (2002) Characterization of nanoparticle uptake by endothelial cells. Int J Pharm 233:51–59

    Article  CAS  Google Scholar 

  • De Filippis LF (2010) Biochemical and molecular aspects in phytoremediation of selenium. In: Ashraf M, Ozturk M, Ahmad MSA (eds) Plant adaptation and phytoremediation. Springer, Dordrecht/Heidelberg/London/New York. doi:10.1007/978-90-481-9370-7_10

    Google Scholar 

  • de Souza MP, Chu D, Zhao M, Zayed AM, Ruzin SE, Schichnes D, Terry N (1998) Rhizosphere bacteria enhance selenium accumulation and volatilization by Indian mustard. Plant Physiol 119:565–574

    Article  Google Scholar 

  • De Souza MP, Pilon-Smits EAH, Terry N (1999) The physiology and biochemistry of selenium volatilisation by plants. In: Ruskin I, Ensley BD (eds) Phytoremediation of toxic metals. Wiley, New York

    Google Scholar 

  • Dhillon KS, Dhillon SK (2009) Accumulation and distribution of selenium in some vegetable crops grown in selenate-Se treated clay loam soil. Front Agric China 3(4):366–373. doi:10.1007/s11703-009-0070-6

    Article  Google Scholar 

  • Di Gregorio S (2008) Selenium: a versatile trace element in life and environment. In: Prasad AS (ed) Trace elements in human health and disease, vol 2. Academic Press, New York, pp 593–622

    Google Scholar 

  • Djanaguiraman M, Devi DD, Shanker AK, Sheeba A, Bangarusamy U (2005) Selenium -an antioxidative protectant in soybean during senescence. Plant Soil 272:77–86

    Article  CAS  Google Scholar 

  • Djujic I, Jozanov-Stankov O, Milovac M, Bosnic O, Djermanovic V (2001) The impact of consuming wheat naturally enriched with selenium on trace elements and antioxidant defense in humans. 3rd international symposium on trace elements in human, New Perspec. Athens, pp 281–304

    Google Scholar 

  • Domokos-Szabolcsy E, Marton L, Sztrik A, Babka B, Prokisch J, Fari M (2012) Accumulation of red elemental selenium nanoparticles and their biological effects in Nicotinia tabacum. Plant Growth Regul 68:525–531. doi:10.1007/s10725-012-9735-x

    Article  CAS  Google Scholar 

  • Domokos-Szabolcsy E, Abdalla N, Alshaal T, Sztrik A, Márton L, El-Ramady H (2014) In vitro comparative study of two Arundo donax L. ecotypes’ selenium tolerance. Int J Hortic Sci 20(3–4):119–122. ISSN 1585–0404

    Google Scholar 

  • Ducsay L, Ložek O (2006) Effect of selenium foliar application on its content in winter wheat grain. Plant Soil Environ 52:78–82

    CAS  Google Scholar 

  • Duscay L, Ložek O, Varga L, Lošák T (2006) Wheat supplementation with selenium. Chem Listy 100:519–521 (in Slovakien, cited from Kabata-Pendias 2011)

    Google Scholar 

  • Ekholm P, Ylinen M, Koivistoinen P, Varo P (1994) Selenium concentration of Finnish foods: effects of reducing the amount of selenate in fertilizers. Agric Sci Finl 4:377–384

    Google Scholar 

  • Ekholm P, Reinivuo H, Mattila P, Pakkala H, Koponen J, Happonen A, Hellstrom J, Ovaskainen ML (2007) Changes in the mineral and trace element contents of cereals, fruits and vegetables in Finland. J Food Compos Anal 20:487–495

    Article  CAS  Google Scholar 

  • El Mehdawi AF, Pilon-Smits EAH (2012) Ecological aspects of plant selenium hyperaccumulation. Plant Biol 14:1–10. doi:10.1111/j.1438-8677.2011.00535.x

    Article  CAS  Google Scholar 

  • El Mehdawi AF, Quinn CF, Pilon-Smits EAH (2011) Effects of selenium hyperaccumulation on plant–plant interactions: evidence for elemental allelopathy. New Phytol 191:120–131

    Article  CAS  Google Scholar 

  • El Mehdawi AF, Cappa JJ, Fakra SC, Self J, Pilon-Smits EAH (2012) Interactions of selenium hyperaccumulators and nonaccumulators during cocultivation on seleniferous or nonseleniferous soil – the importance of having good neighbors. New Phytol 194:264–277. doi:10.1111/j.1469-8137.2011.04043.x

    Article  CAS  Google Scholar 

  • Ellis DR, Salt DE (2003) Plants, selenium and human health. Curr Opin Plant Biol 6:273–279

    Article  CAS  Google Scholar 

  • El-Ramady HR, Domokos-Szabolcsy E, Marton L, Sztrik A, Gabriella A, Prokisch J, Fari M (2013) Selenium tolerance of somatic embryo derived Arundo donax L. clusters comparising two ecotypes. The XIX conference “Plant breeding scientific days, Book abstract pages 85–86, on March 7, 2013, Pannon University, Georgikon Faculty, Keszthely, Hungary

    Google Scholar 

  • El-Ramady H, Domokos-Szabolcsy É, Abdalla NA, Alshaal TA, Shalaby TA, Sztrik A, Prokisch J, Fári M (2014) Selenium and nano-selenium in agroecosystems. Environ Chem Lett 12(4):495–510. doi:10.1007/s10311-014-0476-0

    Article  CAS  Google Scholar 

  • El-Ramady H, Alshaal T, Abdalla N, Prokisch J, Sztrik A, Fári M, Domokos-Szabolcsy É (2015) Selenium and nano-selenium biofortified sprouts using micro-farm system. In: The 4th international conference of the International Society for Selenium Research (ISSR) on “Selenium in the environment and human health”, 18–21 October 2015, Sao Paulo, Brazil

    Google Scholar 

  • El-Ramady H, Abdalla N, Alshaal T, Domokos-Szabolcsy É, Elhawat N, Prokisch J, Sztrik A, Fári M, El-Marsafawy S, Shams MS (2015a) Selenium in soils under climate change, implication for human health. Environ Chem Lett 13(1):1–19. doi:10.1007/s10311-014-0480-4

  • El-Ramady HR, Domokos-Szabolcsy E, Shalaby TA, Prokisch J, Fari M (2015b) Selenium in agriculture: water, air, soil, plants, food, animals and nanoselenium. In: Lichtfouse E (ed) CO2 sequestration, biofuels and depollution. Environmental chemistry for a sustainable world, vol 5. Springer, Dordrecht, pp 155–232. doi:10.1007/978-3-319-11906-9_5

  • El-Rashidi MA, Adriano DC. Lindsay WL (1989) Solubility, speciation, and transformation of selenium in soils. In: Jacobs LW (ed) Selenium in agriculture and the environment. SSSA Special publications 23. ASA and SSSA, Madison, p. 233

    Google Scholar 

  • Eurola M, Alfthan G, Aro A, Ekholm P, Hietaniemi V, Rainio H, Rankanen R, Venalainen E-R (2003) Results of the Finnish selenium monitoring program 2000–2001. Agrifood research reports 36. MTT Agrifood Research Finland. ISBN 951-729-805-6

    Google Scholar 

  • Fairweather-Tait SJ, Bao Y, Broadley MR, Collings R, Ford D, Hesketh JE, Hurst R (2011) Selenium in human health and disease. Antioxid Redox Sign 14:1338–1383

    Article  CAS  Google Scholar 

  • Fan TWM, Teh SJ, Hinton DE, Higashi RM (2002) Selenium biotransformations into proteinaceous forms by foodweb organisms of selenium-laden drainage waters in California. Aquat Toxicol 57:101–113

    Google Scholar 

  • Farnham MW, Hale AJ, Grusak MA, Finley JW (2007) Genotypic and environmental effects on selenium concentration of broccoli heads without supplemental selenium. Plant Breed 126:195–200

    Article  CAS  Google Scholar 

  • Feist LJ, Parker DR (2001) Ecotypic variation in selenium accumulation among populations of Stanleya pinnata. New Phytol 149:61–69

    Article  CAS  Google Scholar 

  • Fernández-Martínez A, Charlet ĆL (2009) Selenium environmental cycling and bioavailability: a structural chemist point of view. Rev Environ Sci Biotechnol 8:81–110. doi:10.1007/s11157-009-9145-3

    Article  CAS  Google Scholar 

  • Ferretti RJ, Levander OA (1974) Effect of milling and processing on the selenium content of grains and cereal products. J Agric Food Chem 22:1049–1051

    Article  CAS  Google Scholar 

  • Finley JW, Sigrid-Keck A, Robbins RJ, Hintze KJ (2005) Selenium enrichment of broccoli: interactions between selenium and secondary plant compounds. J Nutr 135:1236–1238

    CAS  Google Scholar 

  • Fordyce FM (2013) Selenium deficiency and toxicity in the environment. In: Selinus O, Alloway B, Centeno JA, Finkelman RB, Fuge R, Lindh U, Smedley P (eds) Essentials of medical geology. Elsevier, London, pp 373–415. doi:10.1007/978-94-007-4375-5_16

    Google Scholar 

  • Fordyce FM, Zhang GD, Green K, Liu XP (2000) Soil, grain and water chemistry in relation to human selenium-responsive diseases in Enshi District. China Appl Geochem 15:117–132

    Article  CAS  Google Scholar 

  • Foyer CH, Lopez-Delgado H, Dat JF, Scot IM (1997) Hydrogen peroxide and glutathione-associated mechanism of acclamatory stress tolerance and signaling. Physiol Plant 100:241–254

    Article  CAS  Google Scholar 

  • Frankenberger WT, Karlson U (1994) Microbial volatilization of selenium from soils and sediments. In: Frankenberger WT, Benson S (eds) Selenium in the environment. Marcel Dekker, New York, pp 369–387

    Google Scholar 

  • Freeman JL, Quinn CF, Marcus MA, Fakra S, Pilon-Smits EAH (2006) Selenium-tolerant diamondback moth disarms hyperaccumulator plant defense. Curr Biol 16:2181–2192

    Article  CAS  Google Scholar 

  • Fu LH, Wang XF, Eyal Y, She YM, Donald LJ, Standing KG, Ben-Hayyim G (2002) A seleno protein in the plant kingdom. J Biol Chem 277:25983–25991

    Article  CAS  Google Scholar 

  • Galeas ML, Zhang LH, Freeman JL, Wegner M, Pilon-Smits EAH (2007) Seasonal fluctuations of selenium and sulfur accumulation in selenium hyperaccumulators and related non-accumulators. New Phytol 173:517–525

    Article  CAS  Google Scholar 

  • Gao XY, Hiroshi M (2005) Peptide-based nanotubes and their applications in bionanotechnology. Adv Mater 17:2037–2050

    Article  CAS  Google Scholar 

  • Gao XY, Zhang JS, Zhang LD (2002) Hollow sphere selenium nanoparticles: their in vitro anti hydroxyl radical effect. Adv Mater 14:290–293

    Article  CAS  Google Scholar 

  • Germ M, Stibilj V (2007) Selenium and plants. Acta Agric Slov 89–1:65–71

    Google Scholar 

  • Germ M, Kreft I, Osvald J (2005) Influence of UV-B exclusion and selenium treatment on photochemical efficiency of photosystem II, yield and respiratory potential in pumpkins (Cucurbita pepo L.). Plant Physiol Biochem 43:445–448

    Article  CAS  Google Scholar 

  • Germ M, Stibilj V, Kreft I (2007) Metabolic importance of selenium for plants. Eur J Plant Sci Biotechnol 1(1):91–97

    Google Scholar 

  • Gissel-Nielsen G, Gupta UC (2004) Agronomic approaches to increase selenium concentration and food crops. In: Welch RM, Ãakmak I (eds) Impacts of agriculture on human health and nutrition, in Encyclopedia of Life Support Systems (EOLSS), Developed under the Auspices of the UNESCO, Eolss Publishers, Oxford, August 25, 2012. http://www.eolss.net/Retrieved

  • Gissel-Nielsen G, Gupta UC, Lamand M, Westermarck T (1984) Selenium in soils and plants and its importance in livestock and human-nutrition. Adv Agron 37:397–460

    Article  CAS  Google Scholar 

  • Gojkovic Ž, Garbayo I, Ariza JLG, Márová I, Vílchez C (2015) Selenium bioaccumulation and toxicity in cultures of green microalgae. Algal Res 7:106–116. http://dx.doi.org/10.1016/j.algal.2014.12.008

  • Gupta U, Gupta S (2000) Selenium in soils and crops, its deficiencies in livestock and humans: implications for management. Commun Soil Sci Plant Anal 31:1791–1807

    Article  CAS  Google Scholar 

  • Gupta UC, MacLeod JA (1994) Effect of various sources of selenium fertilization on the selenium concentration of feed crops. Can J Soil Sci 74:285–290

    Article  CAS  Google Scholar 

  • Gupta UC, Winter KA (1989a) Effect of selenate vs selenite forms of selenium in increasing the selenium concentration in forages and cereals. Can J Soil Sci 69:885–889

    Article  CAS  Google Scholar 

  • Gupta UC, Winter KA (1989b) Effect of selenate vs selenite forms of selenium in increasing the selenium concentration in forages and cereals. Can J Soil Sci 69:885–889

    Article  CAS  Google Scholar 

  • Gupta UC, Winter KA, Sanderson JB (1993) Selenium content of barley as influenced by selenite- and selenate-enriched fertilizers. Commun Soil Sci Plant Anal 24:1165–1170

    Article  CAS  Google Scholar 

  • Hajiboland R (2012) Effect of micronutrient deficiencies on plant stress responses. In: Ahmad P, Prasad MNV (eds) Abiotic stress responses in plants. Springer, New York, pp 283–329. doi:10.1007/978-1-4614-0634-1_16

    Chapter  Google Scholar 

  • Hamilton SJ (2004) Review of selenium toxicity in the aquatic food chain. Sci Total Environ 326:1–31

    Article  CAS  Google Scholar 

  • Hartikainen H (2005) Biogeochemistry of selenium and its impact on food chain quality and human health. J Trace Elem Med Biol 18:309–318. doi:10.1016/j.jtemb.2005.02.009

    Article  CAS  Google Scholar 

  • Hartikainen H, Ekholm P, Piironen V, Xue T, Koivu T, Yli-Halla M (1997) Quality of the ryegrass and lettuce yields as affected by selenium fertilization. Agric Food Sci Finl 6:381–387

    CAS  Google Scholar 

  • Hartikainen H, Xue T, Piironen V (2000) Selenium as an anti-oxidant and pro-oxidant in ryegrass. Plant Soil 225:193–200

    Article  CAS  Google Scholar 

  • Hasanuzzaman M, Hossain MA, Fujita M (2010) Selenium in higher plants: physiological role, antioxidant metabolism and abiotic stress tolerance. J Plant Sci 5:354–375. doi:10.3923/jps.2010.354.375

    Article  CAS  Google Scholar 

  • Hathaway RL, Pirelli GJ, Mosher WD, Oldfield JE, Pulsipher GD (2004) Selenium fertilization to prevent selenium deficiency, pp 1–15. http://www.sheeporegon.com/_fileCabinet/Selenium_Fertilization.pdf/20.4.2013

  • Hawkesford MJ (2005) Sulphur. In: Broadley MR, White PJ (eds) Plant nutritional genomics. Blackwell, Oxford, pp 87–111

    Google Scholar 

  • Hawkesford MJ, De Kok LJ (2006) Managing sulphur metabolism in plants. Plant Cell Environ 29:382–395

    Article  CAS  Google Scholar 

  • Hawkesford MJ, Zhao FJ (2007) Strategies for increasing the selenium content of wheat. J Cereal Sci 46:282–292

    Article  CAS  Google Scholar 

  • Hawrylak-Nowak B (2009) Beneficial effects of exogenous selenium in cucumber seedlings subjected to salt stress. Biol Trace Elem Res 132:259–269

    Article  CAS  Google Scholar 

  • Hawrylak-Nowak B (2013) Comparative effects of selenite and selenate on growth and selenium accumulation in lettuce plants under hydroponic conditions. Plant Growth Regul 70(2):149–157. doi:10.1007/s10725-013-9788-5

    Article  CAS  Google Scholar 

  • Hell R (1997) Molecular physiology of plant sulfur metabolism. Planta 202:138–148

    Article  CAS  Google Scholar 

  • Hlušek J, Juzl M, Cepl J, Lošak T (2006) Effect of foliar applications of selenium in potato. Ecol Chem Eng 13:907–913

    Google Scholar 

  • Hopper JL, Parker DR (1999) Plant availability of selenite and selenate as influenced by the competing ions phosphate and sulfate. Plant and Soil 210:199–207

    Article  CAS  Google Scholar 

  • Hossain MA, Fujita M (2009) Exogenous glycinebetaine and proline modulate antioxidant defense and methylglyoxal detoxification systems and reduce drought-induced damage in mung bean seedlings (Vigna radiata L.). In: Proceedings of the 3rd international conference on integrated approaches to improve crop production under drought-prone environments, Shanghai, China, October 11–16, pp 138–138

    Google Scholar 

  • Hossain MA, Fujita M (2010) Evidence for a role of exogenous glycinebetaine and proline in antioxidant defense and methylglyoxal detoxification systems in mung bean seedlings under salt stress. Physiol Mol Biol Plants 16:19–29

    Article  CAS  Google Scholar 

  • Hu Q, Xu J, Pang G (2003) Effect of selenium on the yield and quality of green tea leaves harvested in early spring. http://www.aseanfood.info/Articles/11019553.pdf

  • Hu CH, Li YL, Xiong L, Zhang HM, Song J, Xia MS (2012) Comparative effects of nano elemental selenium and sodium selenite on selenium retention in broiler chickens. Anim Feed Sci Technol 177:204–210

    Article  CAS  Google Scholar 

  • Huang B, Zhang J, Hou J, Chen C (2003) Free radical scavenging efficiency of nano-Se in vitro. Free Radic Biol Med 35:805–813. doi:10.1016/S0891-5849(03)00428-3

  • Huang Y, Wang Q, Gao J, Lin Z, Bañuelos GS, Yuan L, Yin X (2013) Daily dietary selenium intake in a high selenium area of Enshi, China. Nutrients 5:700–710. doi:10.3390/nu5030700

    Article  CAS  Google Scholar 

  • Hunter WJ, Manter DK (2009) Reduction of Selenite to Elemental Red Selenium by Pseudomonas sp. Strain CA5. Curr Microbiol 58:493–498. doi:10.1007/s00284-009-9358-2

    Article  CAS  Google Scholar 

  • Hurd-Karrer AM (1937) Selenium absorption by crop plants as related to their sulphur requirement. J Agric Res 54:601–608

    Google Scholar 

  • Ip C, Birringer M, Block E, Kotrebai M, Tyson JF, Uden PC, Lisk DJ (2000) Chemical speciation influences comparative activity of seleniumenriched garlic and yeast in mammary cancer prevention. J Agric Food Chem 48:2062–2070

    Article  CAS  Google Scholar 

  • Kabata-Pendias E (2011) Trace elements in soils and plants, 4th edn. CRC Press/Taylor & Francis Group, LLC, Boca Raton

    Google Scholar 

  • Kápolna E, Fodor P (2006) Speciation analysis of selenium enriched green onions (Allium fistulosum) by HPLC–ICP-MS. Microchem J 84:56–62

    Article  CAS  Google Scholar 

  • Kápolna E, Laursen KH, Husted S, Larsen EH (2012) Bio-fortification and isotopic labelling of Se metabolites in onions and carrots following foliar application of Se and 77Se. Food Chem 133:650–657. doi:10.1016/j.foodchem.2012.01.043

    Article  CAS  Google Scholar 

  • Khan MS, Hell R (2008) A future crop biotechnology view of sulfur and selenium. In: Joseph J (ed) Sulfur: a missing link between soils, crops, and nutrition, Agronomy monograph 50. American Society of Agronomy/Crop Science Society of America/Soil Science Society of America, Madison, pp 293–311

    Google Scholar 

  • Khedr AA, Abbas MA, Abdel Wahid AA, Quick WP, Abogadallah GM (2003) Proline induces the expression of salt-stress-responsive proteins and may improve the adaptation of Pancratium maritimum L. to salt-stress. J Exp Bot 54:2553–2562

    Google Scholar 

  • Laszlo R, Csaba H (2004) Iodine and selenium intake from soil to cultivated mushrooms, 2nd international symposium – trace elements in food, Brussels, Belgium, 7–8 October, Abstracts, European Commission Joint Research Centre, Brussels, Belgium, p 21

    Google Scholar 

  • Lemly AD (1993) Guidelines for evaluating selenium data from aquatic monitoring and assessment studies. Environ Monit Assess 28:83–100

    Google Scholar 

  • Lemly AD, Finger SE, Nelson MK (1993) Sources and impacts of irrigation drainwater contaminants in arid wetlands. Environ Toxicol Chem 12:2265–2279

    Google Scholar 

  • Li HF, McGrath SP, Zhao FJ (2008) Selenium uptake, translocation and speciation in wheat supplied with selenate or selenite. New Phytol 178:92–102. doi:10.1111/j.1469-8137.2007.02343.x

    Article  CAS  Google Scholar 

  • Li SJ, Li W, Hu X, Yang LS, Xirao RD (2009) Soil selenium concentration and Kashin-Beck disease prevalence in Tibet. China Front Environ Sci Eng China 3:62–68

    Article  CAS  Google Scholar 

  • Liao CD, Hung WL, Jan KC, Yeh AI, Ho CT, Hwang LS (2010) Nano/sub-microsized lignan glycosides from sesame meal exhibit higher transport and absorption efficiency in Caco-2 cell monolayer. Food Chem 119:896–902

    Article  CAS  Google Scholar 

  • Lin Z-Q (2011) Biogenic volatilization of selenium in soil and plant systems. In: Bañuelos GS, Lin Z.-Q, Yin Xuebin, Duan Ning (eds) Selenium: global perspectives of impacts on humans, animals and the environment. University of Science and Technology of China Press, Hefei, ISBN 978-7-312-02929-5, pp 11–12

    Google Scholar 

  • Lindblom SD, Valdez-Barillas JR, Fakra SC, Marcus MA, Wangeline AL, Pilon-Smits EAH (2012) Influence of microbial associations on selenium localization and speciation in roots of Astragalus and Stanleya hyperaccumulators. Environ Exp Bot doi:10.1016/j.envexpbot.2011.12.011

  • Lindstrom K (1983) Selenium as a growth factor for plankton algae in laboratory experiments and in some Swedish lakes. Hydrobiologia 101:35–48. doi:10.1007/BF00008655

    Article  Google Scholar 

  • Lobanov AW, Fomenko DE, Zhang Y, Sengupta A, Hatfield DL, Gladyshev VN (2007) Evolutionary dynamics of eukaryotic selenoproteomes: large selenoproteomes may asscociate with aquatic life small with terrestrial life. Genome Biol 8:R182–R198

    Article  CAS  Google Scholar 

  • Low SC, Berry MJ (1996) Knowing when not to stop: selenocysteine incorporation in eukaryotes. Trends Biochem Sci 21:203–208

    Article  CAS  Google Scholar 

  • Lyi SM, Heller LI, Rutzke M, Welch RM, Kochian LV, Li L (2005) Molecular and biochemical characterization of the selenocysteine Se-methyltranferase gene and Se-methylselenocysteine synthesis in broccoli. Plant Physiol 138:409–420

    Article  CAS  Google Scholar 

  • Lyi SM, Zhou X, Kochian LV, Li L (2007) Biochemical and molecular characterization of the homocysteine S-methyltransferase from broccoli (Brassica oleraceae var. italica). Phytochemistry 68:1112–1119

    Article  CAS  Google Scholar 

  • Lyons GH, Stangoulis JCR, Graham RD (2005) Tolerance of wheat (Triticum aestivum L.) to high soil and solution selenium levels. Plant Soil 270:179–188. doi:10.1007/s11104-004-1390-1

    Article  CAS  Google Scholar 

  • Lyons GH, Genc Y, Soole K, Stangoulis JCR, Liu F, Graham RD (2009) Selenium increases seed production in Brassica. Plant Soil 318:73–80. doi:10.1007/s11104-008-9818-7

    Article  CAS  Google Scholar 

  • Maier KJ, Foe CG, Knight AW (1993) Comparative toxicity of selenate, selenite, seleno-dl-methionine and seleno-dlcystine to Daphnia–Magna. Environ Toxicol Chem 12:755–763

    Article  CAS  Google Scholar 

  • Malagoli M, Schiavon M, Dall’Acqua S, Pilon-Smits EAH (2015) Implications of selenium biofortification in food nutritional quality. Front Plant Sci 6(280):1–5. doi:10.3389/fpls.2015.00280

    Google Scholar 

  • Mao DJ, Zheng BS, Su HC (1997) The medical geography characteristics of Se-poisoning in Yutangba. Endemic Dis Bull 12:59–61

    Google Scholar 

  • Maruyama-Nakashita A, Nakamura Y, Yamaya T, Takahashi H (2004) A novel regulatory pathway of sulfate uptake in Arabidopsis roots: implication of CRE1/WOL/AHK4-mediated cytokinin-dependent regulation. Plant J 38:779–789

    Article  CAS  Google Scholar 

  • McNeal JM, Balistrieri LS (1990) Geochemistry and occurrence of selenium: an overview. In: Jacobs LW (ed) Selenium in agriculture and the environment. American Society of Agronomy, Inc./Soil Science Society of America, Inc, Madison

    Google Scholar 

  • Mikkelsen RL, Haghnia GH, Page AL (1987) Effects of pH and selenium oxidation state on the selenium accumulation and yield of alfalfa. J Plant Nutr 10:937–950

    Article  CAS  Google Scholar 

  • Mikkelsen RL, Page AL, Bingham FT (1989) Factors affecting selenium accumulation by agricultural crops. In: Selenium in agriculture and the environment, Soil Sci Soc Am J, Special publication 23, pp 65–94

    Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    Article  CAS  Google Scholar 

  • Montes-Bayon M, LeDuc DL, Terry N, Caruso JA (2003) Selenium speciation in wild-type and genetically modified Se accumulating plants with HPLC separation and ICP-MS/ES-MS detection. J Anal At Spectrom 17:872–879

    Article  CAS  Google Scholar 

  • Moxon AL, Olson OE (1974) Selenium in agriculture. In: Selenium. Van Nostrand, New York, p 675

    Google Scholar 

  • Moxon AL, Rhian M (1943) Selenium poisoning. Physiol Rev 23:305–337

    CAS  Google Scholar 

  • Munne-Bosch S (2005) The role of α-tocopherol in plant stress tolerance. J Plant Physiol 162:743–748

    Article  CAS  Google Scholar 

  • Nahar K, Hasanuzzaman M (2009) Germination, growth, nodulation and yield performance of three mungbean varieties under different levels of salinity stress. Green Farm 2:825–829

    Google Scholar 

  • Nakamaru YM, Altansuvd J (2014) Speciation and bioavailability of selenium and antimony in non-flooded and wetland soils: a review. Chemosphere 111:366–371

    Article  CAS  Google Scholar 

  • Nancharaiah YV, Lens PNL (2015) Ecology and biotechnology of selenium-respiring bacteria. Microbiol Mol Biol Rev 79:61–80. doi:10.1128/MMBR.00037-14

    Article  CAS  Google Scholar 

  • Neuhierl B, Bock A (1996) On the mechanism of selenium tolerance in selenium-accumulating plants: purification and characterization of a specific selenocysteine methyltransferase from cultured cells of Astragalus bisulcatus. Eur J Biochem 239:235–238

    Article  CAS  Google Scholar 

  • Nigam SN, Tu J-I, McConnell WB (1969) Distribution of selenomethylcysteine and some other amino acids in species of Astragalus, with special reference to their distribution during the growth of A. bisulcatus. Phytochemistry 8:1161–1165

    Article  CAS  Google Scholar 

  • Novoselov SV, Rao M, Onoshoko NV, Zhi H, Kryukov GV, Xiang Y, Weeks DP, Hatfield DL, Gladyshev VN (2002) Selenoproteins and selenocysteine insertion in the model plant system, Chlamydomonas reinhardii. EMBO J 21:3681–3693

    Article  CAS  Google Scholar 

  • Nowak J, Kaklewski K, Ligocki M (2004) Influence of selenium on oxidoreductive enzymes activity in soil and in plants. Soil Biol Biochem 36:1553–1558

    Article  CAS  Google Scholar 

  • Nrigau JO (1989) Global cycle of selenium. In: Inhat M (ed) Occurrence and distribution of selenium. CRC Press, Boca Raton, pp 327–340

    Google Scholar 

  • Padmaja K, Prasad DDK, Prasad ARK (1989) Effect of selenium on chlorophyll biosynthesis in mung bean seedlings. Phytochemistry 28:3321–3324

    Article  CAS  Google Scholar 

  • Parker DR, Feist LJ, Varel TW, Thomason DN, Zhang YQ (2003) Selenium phytoremediation potential of Stanleya pinnata. Plant Soil 249:157–165

    Article  CAS  Google Scholar 

  • Pasricha NS, Abrol YP (2003) Food production and plant nutrient sulfur. In Abrol YP, Ahmad A (eds) Sulfur in plants. Kluwer Academic Press, Dordrecht, p 29–44

    Google Scholar 

  • Pedrero Z, Madrid Y, Hartikainen H, Camara C (2008) Protective effect of selenium in broccoli (Brassica oleracea) plants subjected to cadmium exposure. J Agric Food Chem 56:266–271

    Article  CAS  Google Scholar 

  • Peng XL, Liu YY, Luo SG (2002) Effects of selenium on lipid peroxidation and oxidizing ability of rice roots under ferrous stress. J Northeast Agric Univ 19:9–15

    Google Scholar 

  • Pennanen A, Xue T, Hartikainen H (2002) Protective role of selenium in plant subjected to severe UV irradiation stress. J Appl Bot 76:66–76

    CAS  Google Scholar 

  • Piepponen S, Liukkonen-Lilja H, Kunsi T (1983) The selenium content of edible mushrooms in Finland. Zeitschrift für Lebensmitteluntersuchung und-Forschung 177:257–260

    Article  CAS  Google Scholar 

  • Pilon-Smits EAH (2005) Phytoremediation. Annu Rev Plant Biol 56:15–39

    Article  CAS  Google Scholar 

  • Pilon-Smits EAH (2015) Selenium in plants. In: Luettge U, Beyschlag W (eds) Progress in botany 76. Springer International Publishing, Cham, pp 93–107. doi:10.1007/978-3-319-08807-5_4

  • Pilon-Smits EAH, Quinn CF (2010) Selenium metabolism in plants. In: Hell R, Mendel R-R (eds) Cell biology of metals and nutrients. Plant cell monographs, vol 17. Springer, Berlin, pp 225–241. doi:10.1007/978-3-642-10613-2_10

  • Pilon-Smits EAH, Bañuelos GS, Parker DR (2014) Uptake, metabolism, and volatilization of selenium by terrestrial plants. In: Chang AC, Brawer Silva D (eds) Science, technology, and policy, global issues in water policy, vol 5. Springer, Dordrecht, pp 147–164

    Google Scholar 

  • Pilon-Smits EAH, Quinn CF, Tapken W, Malagoli M, Schiavon M (2009) Physiological functions of beneficial elements. Curr Opin Plant Biol 12:267–274

    Article  CAS  Google Scholar 

  • Prasad T, Arora SP (1980) Studies on 75Se accumulation in rice plants and its effect on yield. J Nucl Agric Biol 9:77–78

    CAS  Google Scholar 

  • Premarathna HL, McLaughlin MJ, Kirby JK, Hettiarachchi GM, Beak D, Samuel S, Chittleborough D (2010) Potential availability of fertilizer selenium in field capacity and submerged soils. Soil Sci Soc Am J 74:1589–1596

    Article  CAS  Google Scholar 

  • Price NL, Thompson PA, Harrison PJ (1987) Selenium: an essential element for growth of the coastal marine diatom Thalassiosira pseudonana (Bacillariophyceae). J Phycol 23:1–9. doi:10.1111/j.1529-8817.1987.tb04493.x

    Article  CAS  Google Scholar 

  • Prokisch J, Szeles E, Kovacs B, Daroczy L, Zommara M (2008) Formation of metal selenium nanospheres in bacteria: is it a possible detoxification mechanism? Cer Res Comm 36:947–995

    CAS  Google Scholar 

  • Pyrzynska K (1995) Solid phase extraction for preconcentration and separation of selenium. Solv Ext Ion Exchan 13:369–389

    Article  CAS  Google Scholar 

  • Quinn CF, Freeman JL, Reynolds RJB, Cappa JJ, Fakra SC, Marcus MA, Lindblom SD, Quinn EK, Bennett LE, Pilon-Smits EAH (2010) Selenium hyperaccumulation offers protection from cell disruptor herbivores. Plant Physiol 153:1630–1652

    Article  CAS  Google Scholar 

  • Quinn CF, Prins CN, Freeman JL, Gross AM, Hantzis LJ, Reynolds RJB, Yang S, Covey PA, Banuelos GS, Pickering IJ, Fakra SC, Matthew A, Arathi MHS, Pilon-Smits EAH (2011) Selenium accumulation in flowers and its effects on pollination. New Phytol 192:727–737. doi:10.1111/j.1469-8137.2011.03832.x

    Article  CAS  Google Scholar 

  • Rani N, Dhillon KS, Dhillon SK (2005) Critical levels of selenium in different crops grown in an alkaline silty loam soil treated with selenite-Se. Plant Soil 277:367–374

    Article  CAS  Google Scholar 

  • Reeder RJ, Schoonen MAA, Lanzirotti A (2006) Metal speciation and its role in bioaccessibility and bioavailability. In: Rosso JJ (ed) The emergent field of medical mineralogy and geochemistry, 1st edn. Mineralogical Society of America and the Geochemical Society, Washington, DC, pp 59–113

    Google Scholar 

  • Reilly C (2006) Selenium in food and health, 2nd edn. Springer, New York

    Google Scholar 

  • Ríos JJ, Blasco B, Cervilla LM, Rosales MA, Sanchez-Rodriguez E, Romero L, Ruiz JM (2009) Production and detoxification of H2O2 in lettuce plants exposed to selenium. Ann Appl Biol 154:107–116

    Article  CAS  Google Scholar 

  • Sappington KG (2002) Development of aquatic life criteria for selenium: a regulatory perspective on critical issues and research needs. Aquat Toxicol 57:101–113

    Article  CAS  Google Scholar 

  • Schubert A, Holden JM, Wolf WR (1987) Selenium content of a core group of foods based on a critical evaluation of published analytical data. J Am Diet Assoc 87:285–299

    CAS  Google Scholar 

  • Shanker AK (2006) Countering UV-B stress in plants: does selenium have a role? Plant Soil 282:21–26

    Article  CAS  Google Scholar 

  • Sharma N, Prakash R, Srivastava A, Sadana US, Acharya R, Prakash NT, Reddy AVR (2009) Profile of selenium in soil and crops in seleniferous area of Punjab, India by neutron activation analysis. J Radioanal Nucl Chem 281:59–62

    Article  CAS  Google Scholar 

  • Sharma VK, McDonald TJ, Sohn M, Anquandah GAK, Pettine M, Zboril R (2015) Biogeochemistry of selenium: a review. Environ Chem Lett 13:49–58. doi:10.1007/s10311-014-0487-x

    Article  CAS  Google Scholar 

  • Sharmasarkar S, Vance GF (2002) Soil and plant selenium at a reclaimed uranium mine. J Environ Qual 31:1516–1521

    Article  CAS  Google Scholar 

  • Shennan C, Schachtman DP, Cramer GR (1990) Variation in [75Se] selenate uptake and partitioning among tomato cultivars and wild species. New Phytol 115:523–530

    Article  CAS  Google Scholar 

  • Shrift A (1969) Aspects of selenium metabolism in higher plants. Annu Rev Plant Physiol 20:475–494

    Article  CAS  Google Scholar 

  • Shrift A, Ulrich JM (1976) Transport of selenate and selenite into Astragalus roots. Plant Physiol 44:893–896

    Article  Google Scholar 

  • Sies H, Cadenas E (1985) Oxidative stress: damage to intact cells and organs. Philos Trans R Soc Lond B Biol Sci 311:617–631

    Article  CAS  Google Scholar 

  • Simon L, Szeles E, Balazsy S, Biro B (2007) Selenium phytoextraction, speciation and microbial groups in Se-contaminated soils. In: Zhu Y, Lepp N, Naidu R (eds) Biogeochemistry of trace elements :environmental protection, remediation and human health. Tsinghua University Press, Beijing, pp 554–555

    Google Scholar 

  • Singh M, Singh H, Bhandari DK (1980) Interaction of selenium and sulphur on the growth and chemical composition of raya. Soil Sci 129:238–244

    Article  CAS  Google Scholar 

  • Smith GS, Watkinson JH (1984) Selenium toxicity in perennial ryegrass and white clover. New Phytol 97:557–564

    Article  CAS  Google Scholar 

  • Smrkolj P, Germ M, Kreft I, Stibilj V (2006) Respiratory potential and Se compounds in pea (Pisum sativum L.) plants grown from Se-enriched seeds. J Exp Bot 57:3595–3600

    Google Scholar 

  • Somer G, Caliskan AC (2007) Selenium and trace elements distribution in astragalus plants: developing a differential pulse polarographic method for their determination. Turk J Chem 31:411–422

    CAS  Google Scholar 

  • Sors TG, Ellis DR, Na GN, Lahner B, Lee S, Leustek T, Pickering IJ, Salt DE (2005a) Analysis of sulfur and selenium assimilation in Astragalus plants with varying capacities to accumulate selenium. Plant J 42:785–797

    Article  CAS  Google Scholar 

  • Sors TG, Ellis DR, Salt DE (2005b) Selenium uptake, translocation, assimilation and metabolic fate in plants. Photosynth Res 86:373–389. doi:10.1007/s11120-005-5222-9

    Article  CAS  Google Scholar 

  • Spadoni M, Voltaggio M, Carcea M, Coni E, Raggi A, Cubadda F (2007) Bioaccessible selenium in Italian agricultural soils: comparison of the biogeochemical approach with a regression model based on geochemical and pedoclimatic variables. Sci Total Environ 376:160–177

    Article  CAS  Google Scholar 

  • Stadlober M, Sager M, Irgolic KJ (2001) Effects of selenate supplemented fertilisation on the selenium level of cereals – identification and quantification of selenium compounds by HPLC-ICP-MS. Food Chem 73:357–366

    Article  CAS  Google Scholar 

  • Stadtman TC (1990) Selenium biochemistry. Annu Rev Biochem 59:111–128

    Article  CAS  Google Scholar 

  • Stadtman TC (1996) Selenocysteine. Annu Rev Biochem 65:83–100. doi:10.1146/annurev.bi.65.070196.000503

    Article  CAS  Google Scholar 

  • Stephen RC, Saville DJ, Watkinson JH (1989) The effects of sodium selenate applications on growth and selenium concentration in wheat. N Z J Crop Hortic Sci 17(3):229–237

    Article  CAS  Google Scholar 

  • Stroud JL, Li HF, Lopez-Bellido FJ, Broadley MR, Foot I, Fairweather-Tait SJ, Hart DJ, Hurst R, Knott P, Mowat H, Norman K, Scott P, Tucker M, White PJ, McGrath SP, Zhao FJ (2010a) Impact of sulphur fertilisation on crop response to selenium fertilisation. Plant and Soil 332(1–2):31–40. doi:10.1007/ s11104-009-0230-8

    Article  CAS  Google Scholar 

  • Stroud JL, Broadley MR, Foot I, Fairweather-Tait SJ, Hart DJ, Hurst R, Knott P, Mowat H, Norman K, Scott P, Tucker M, White PJ, McGrath SP, Zhao FJ (2010b) Soil factors affecting selenium concentration in wheat grain and the fate and speciation of Se fertilisers applied to soil. Plant Soil 332(1–2):19–30. doi:10.1007/s11104-009-0229-1

    Article  CAS  Google Scholar 

  • Tamaoki M, Freeman JL, Pilon-Smits EAH (2008) Cooperative ethylene and jasmonic acid signaling regulates selenite resistance in Arabidopsis1[W][OA]. Plant Physiol 146:1219–1230

    Article  CAS  Google Scholar 

  • Terry N, Carlson C, Raab TK, Zayed AM (1992) Rates of selenium volatilisation amongst crop species. J Environ Qual 21:341–344

    Article  CAS  Google Scholar 

  • Terry N, Lin ZQ (1999) Managing high selenium in agricultural drainage water by agroforestry systems: role of selenium volatilization. DWR B-80665, California Department of Water Resources, Sacramento, CA 95814, 67 pp

    Google Scholar 

  • Terry N, Zayed AM, de Souza MP, Tarun AS (2000) Selenium in higher plants. Annu Rev Plant Physiol Plant Mol Biol 51:401–432

    Article  CAS  Google Scholar 

  • Thavarajah D, Vandenberg A, George GN, Pickering IJ (2007) Chemical forms of selenium in naturally selenium-rich lentils (Lens culinaris L.) from Saskatchewan. J Agric Food Chem 55:7337–7341

    Article  CAS  Google Scholar 

  • Tinggi U, Reilly C, Patterson CM (1992) Determination of selenium in foodstuffs, using spectrofluorimetry and hydride generation atomic absorption spectrometry. J Food Comp Anal 5:269–280

    Article  CAS  Google Scholar 

  • Trelase SF, Trelase HM (1939) Physiological differentiation in Astragalus with reference to selenium. Am J Bot 26:530–535

    Article  Google Scholar 

  • Tripathi N, Misra SG (1974) Uptake of applied selenium by plants. Indian J Agric Sci 44:804–807

    CAS  Google Scholar 

  • Turakainen M (2007) Selenium and its effects on growth, yield and tuber quality in potato. University of Helsinki, Helsinki, pp 50. ISBN:9521034661

    Google Scholar 

  • Turakainen M, Hartikainen H, Seppänen MM (2004) Effects of selenium treatments on potato (Solanum tuberosum L.) growth and concentrations of soluble sugars and starch. J Agric Food Chem 52:5378–5382

    Article  CAS  Google Scholar 

  • UCAIC, University of California Agricultural Issues Center (1988) Selenium, human health and agricultural issues. In: Resources at risk in the San Joaquin Valley. University of California, Davis, pp 1–23

    Google Scholar 

  • Van Hoewyk D, Garifullina GF, Ackley AR, Abdel-Ghany SE, Marcus MA, Fakra S, Ishiyama K, Inoue E, Pilon M, Takahashi H et al (2005) Overexpression of AtCpNifS enhances selenium tolerance and accumulation in Arabidopsis. Plant Physiol 139:1518–1528

    Article  CAS  Google Scholar 

  • Van Hoewyk D, Takahashi H, Inoue E, Hess ATM, Pilon-Smits EAH (2008) Transcriptome analyses give insights into selenium-stress responses and selenium tolerance mechanisms in Arabidopsis. Physiol Plant 132:236–253

    Google Scholar 

  • Vorobets N (2006) Glutatione peroxidase activity in sunflower shoots exposed to lead and selenium. Ann Univ Mariae Curie-SK Lodowska Lublin 19:151–154

    Google Scholar 

  • Wallace A, Mueller RT, Wood RA (1980) Selenate toxicity effects on bush beans grown in solution culture. J Plant Nutr 2:107–109

    Article  CAS  Google Scholar 

  • Wang Z, Gao Y (2001) Biogeochemical cycling of selenium in Chinese environments. Appl Geochem 16:1345–1351

    Article  CAS  Google Scholar 

  • Wang H, Zhang J, Yu H (2007) Elemental selenium at nano size possesses lower toxicity without compromising the fundamental effect on selenoenzymes: comparison with selenomethionine in mice. Free Radic Biol Med 42:1524–1533

    Article  CAS  Google Scholar 

  • Wangeline AL, Valdez JR, Lindblom SD, Bowling KL, Reeves FB, Pilon-Smits EAH (2011) Selenium tolerance in rhizosphere fungi from Se hyperaccumulator and non-hyperaccumulator plants. Am J Bot 98:1139–1147

    Article  Google Scholar 

  • Wells N (1967) Selenium in horizons of soil profiles. NZ J Sci 10:142–153

    CAS  Google Scholar 

  • Werner AR, Beelman RB (2001) Growing selenium-enriched mushrooms as ingredients for functional foods or dietary supplements. Int J Med Mushrooms 3:112–120

    Article  Google Scholar 

  • Whanger PD (2002) Selenocompounds in plants and animals and their biological significance. J Am Coll Nutr 21(3):223–232

    Article  CAS  Google Scholar 

  • White AF, Dubrovsky NM (1994) Chemical oxidation-reduction controls on selenium mobility in groundwater systems. In: Frankenberger WT Jr, Benson S (eds) Selenium in the environment. Marcel Dekker Inc, New York, pp 185–221

    Google Scholar 

  • White PJ, Bowen HC, Parmaguru P, Fritz M, Spracklen WP, Spiby RE, Meacham MC, Mead A, Harriman M, Trueman LJ, Smith BM, Thomas B, Broadley MR (2004) Interactions between selenium and sulphur nutrition in Astragalus thaliana. J Exp Bot 55:1927–1937

    Article  CAS  Google Scholar 

  • White PJ, Broadley MR, Bowen HC, Johnson SE (2007) Selenium and its relationship with sulfur. In: Hawkesford MJ, De Kok LJ (eds) Sulfur in plants – an ecological perspective. Springer, Dordrecht, The Netherlands, pp 225–252

    Chapter  Google Scholar 

  • Williams PN, Lombi E, Sun GX, Scheckel K, Zhu YG, Feng X, Zhu J, Carey AM, Adomako E, Lawgali Y, Deacon C, Meharg AA (2009) Selenium characterisation in the global rice supply chain. Environ Sci Technol 43(15):6024–30. Doi:10.1021/es900671m

  • Winkel LHE, Vriens B, Jones GD, Schneider LS, Pilon-Smits E, Bañuelos GS (2015) Selenium cycling across soil-plant-atmosphere interfaces: a critical review. Nutrients 7:4199–4239. doi:10.3390/nu7064199

    Article  CAS  Google Scholar 

  • Wu L (2004) Review of 15 yearsof research on ecotoxicology and remediation of land contaminated by agricultural drainage sediment rich in selenium. Ecotoxicol Environ Saf 57:257–269. doi:10.1016/S0147-6513(03)00064-2

  • Wu L, Huang ZZ (1991) Chloride and sulfate salinity effects on selenium accumulation by tall fescue. Crop Sci 31:114–118

    Article  CAS  Google Scholar 

  • Wu L, Huang ZZ, Burau RG (1988) Selenium accumulation and selenium-salt co-tolerance in five grass species. Crop Sci 28:517–522

    Article  CAS  Google Scholar 

  • Xue TL, Hartikainen H (2000) Association of antioxidative enzymes with the synergistic effect of selenium and UV irradiation in enhancing plant growth. Agric Food Sci Finl 9:177–186

    CAS  Google Scholar 

  • Xue T, Hartikainen H, Piironen V (2001) Antioxidative and growth-promoting effect of selenium in senescing lettuce. Plant Soil 27:55–61

    Article  Google Scholar 

  • Yang GQ (1991) Diet and naturally-occurring human diseases caused by inadequate intake of essential trace elements. In: Proceedings of the 6th Asian Congress of nutrition, Kuala Lumpur, Malaysia, 16–19 September, pp 79–92

    Google Scholar 

  • Yang GQ, Wang SZ, Zhou RH, Sun SZ, Man RE (1981) Research on the etiology of an endemic disease characterized by loss of nails and hair in Enshi county (in Chinese). J Chin Acad Med 3:1–6

    CAS  Google Scholar 

  • Yang G, Zhou R, Gu L, Yan B, Liu Y, Liu Y, Li X (1989) Studies of safe maximal daily dietary selenium intake in a seleniferous area of China. 1. Selenium intake and tissue selenium levels of the inhabitants. Trace Elem Electrolytes Health Dis 37:77–87

    Google Scholar 

  • Ylaranta T (1985) Increasing the selenium content of cereals and grass crops in Finland. Academic dissertation, Agricultural Research Centre, Institute of Soil Science, Jokioinen. Yliopistopaino, Helsinki, p 72

    Google Scholar 

  • Yu X-Z, Gu J-D (2013) Phyto-transport and assimilation of selenium. In: Gupta DK (ed) Plant-based remediation processes. Soil biology series vol 35. Springer, Berlin/Heidelberg, pp 159–175. doi:10.1007/978-3-642-35564-6_9

  • Yuan L, Yin X, Zhu Y, Li F, Huang Y, Liu Y, Lin Z (2012) Selenium in plants and soils, and selenosis in Enshi, China: implications for selenium biofortification. In: Yin X, Yuan L (eds) Phytoremediation and biofortification. Springer briefs in green chemistry for sustainability, pp 7–31. doi:10.1007/978-94-007-1439-7_2

  • Zayed AM, Terry N (1994) Selenium volatilization in roots and shoots: effects of shoot removal and sulfate level. J Plant Physiol 143:8–14

    Article  CAS  Google Scholar 

  • Zayed AM, Lytle CM, Terry N (1998) Accumulation and volatilization of different chemical species of selenium by plants. Planta 206:284–289

    Article  CAS  Google Scholar 

  • Zhang J (2009) Biological properties of red elemental selenium at nano size (Nano-Se) in vitro and in vivo. In: Sahu SC, Casciano D (eds) Nanotoxicity: from in vivo and in vitro model to health risks. Wiley, West Sussex, pp 97–114

    Chapter  Google Scholar 

  • Zhang Y, Gladyshev VN (2009) Comparative genomics of trace elements: emerg-ing dynamic view of trace element utilization and function. Chem Rev 109:4828–4861

    Article  CAS  Google Scholar 

  • Zhang JS, Gao XY, Zhang LD, Bao YP (2001) Biological effects of a nano red elemental selenium. Biofactors 15:27–38. doi:10.1002/biof.5520150103

    Article  Google Scholar 

  • Zhang L, Shi W, Wang X (2006) Difference in selenite absorption between high and low selenium rice cultivars and its mechanism. Plant Soil 282:183–193

    Article  CAS  Google Scholar 

  • Zhang J, Taylor EW, Wan X, Peng D (2012) Impact of heat treatment on size, structure, and bioactivity of elemental selenium nanoparticles. Int J Nanomed 7:815–825. doi:http://dx.doi.org/10.2147/IJN.S28538

  • Zhang J, Wang H, Yan X, Zhang L (2005) Comparison of short-term toxicity between Nano-Se and selenite in mice. Life Sci 76:1099–1109

    Google Scholar 

  • Zhao C, Ren J, Xue C, Lin E (2005) Study on the relationship between soil selenium and plant selenium uptake. Plant Soil 277:197–206

    Article  CAS  Google Scholar 

  • Zheng BS, Yan LR, Mao DJ, Thornton I (1993) The Se resource in southwestern Hubei province, China, and its exploitation strategy (in Chinese). J Nat Resour 8:204–212

    Google Scholar 

  • Zhu JM, Zheng BS (2001) Distribution of Se in mini-land scape of Yutangba, Enshi, Hubei Province China. Appl Geochem 16:1333–1344

    Article  CAS  Google Scholar 

  • Zhu JM, Wang N, Li SH, Li L, Su HC, Liu CX (2008) Distribution and transport of selenium in Yutangba, China: impact of human activities. Sci Total Environ 392:252–261

    Article  CAS  Google Scholar 

  • Zhu Y-G, Pilon-Smits EAH, Zhao F-J, Williams PN, Meharg AA (2009) Selenium in higher plants: understanding mechanisms for biofortification and phytoremediation. Trends Plant Sci 14(8):436–442. doi:10.1016/j.tplants.2009.06.006

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The writing of this manuscript was supported by the Hungarian Ministry of Education and Culture (Hungarian Scholarship Board, HSB and the Balassi Institute). Authors also thank the outstanding contribution of STDF research teams (Science and Technology Development Fund, Egypt) and MBMF/DLR (the Federal Ministry of Education and Research of the Federal Republic of Germany), (Project ID 5310) for their help. Great support from this German-Egyptian Research Fund (GERF) is gratefully acknowledged. The authors also acknowledge Prof. Eric Lichtfouse for his support and revising this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan El-Ramady .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

El-Ramady, H. et al. (2015). Selenium and its Role in Higher Plants. In: Lichtfouse, E., Schwarzbauer, J., Robert, D. (eds) Pollutants in Buildings, Water and Living Organisms. Environmental Chemistry for a Sustainable World, vol 7. Springer, Cham. https://doi.org/10.1007/978-3-319-19276-5_6

Download citation

Publish with us

Policies and ethics