Cell-Based Systems of Depression: An Overview

  • Danuta JantasEmail author


From several years, cellular models have been used solely or in combination with animal studies to investigate the mechanisms of depression and antidepressant drug action. Moreover, such models based on known mechanism could be used as a first screening platform for searching new agents with putative antidepressant activity. For those purposes, primary neuronal cell models (cortical or hippocampal neurons), neuronal cell lines (rat clonal pheochromocytoma PC12, human neuroblastoma SH-SY5Y, mouse hippocampal HT-22), primary glial cell cultures (astrocytes, microglia), and glial cell lines (rat glioma C6, microglial BV2) could be engaged. In this book chapter an overview on the used cellular models in experimental studies of depression will be presented. There will be an attempt to standardize all available protocols for particular cell systems with the emphasis on advantages and limitations of each model.


Primary neuronal and glial cell cultures SH-SY5Y PC12 HT-22 BV2 Antidepressants Natural products Herbs Neuroplasticity Neurogenesis BDNF 



The author is funded by statutory funds of the Institute of Pharmacology Polish Academy of Sciences.

Conflict of Interest: The author confirms that this chapter contents have no conflict of interest.


  1. Abelaira HM, Réus GZ, Petronilho F, Barichello T, Quevedo J. Neuroimmunomodulation in depression: a review of inflammatory cytokines involved in this process. Neurochem Res. 2014;39:1634–9.PubMedCrossRefGoogle Scholar
  2. Adeosun SO, Albert PR, Austin MC, Iyo AH. 17β-estradiol-induced regulation of the novel 5-HT1A-related transcription factors NUDR and Freud-1 in SH SY5Y cells. Cell Mol Neurobiol. 2012;32:517–21.PubMedPubMedCentralCrossRefGoogle Scholar
  3. Agholme L, Lindström T, Kågedal K, Marcusson J, Hallbeck M. An in vitro model for neuroscience: differentiation of SH-SY5Y cells into cells with morphological and biochemical characteristics of mature neurons. J Alzheimers Dis. 2010;20:1069–82.PubMedGoogle Scholar
  4. Akpinar A, Uğuz AC, Nazıroğlu M. Agomelatine and duloxetine synergistically modulates apoptotic pathway by inhibiting oxidative stress triggered intracellular calcium entry in neuronal PC12 cells: role of TRPM2 and voltage-gated calcium channels. J Membr Biol. 2014;247:451–9.PubMedCrossRefGoogle Scholar
  5. Alboni S, Gibellini L, Montanari C, Benatti C, Benatti S, Tascedda F, Brunello N, Cossarizza A, Pariante CM. N-acetyl-cysteine prevents toxic oxidative effects induced by IFN-α in human neurons. Int J Neuropsychopharmacol. 2013;16:1849–65.PubMedCrossRefGoogle Scholar
  6. Alboni S, Montanari C, Benatti C, Sanchez-Alavez M, Rigillo G, Blom JM, Brunello N, Conti B, Pariante MC, Tascedda F. Interleukin 18 activates MAPKs and STAT3 but not NF-κB in hippocampal HT-22 cells. Brain Behav Immun. 2014;40:85–94.PubMedCrossRefGoogle Scholar
  7. al-Damluji S, Krsmanovic LZ, Catt KJ. High-affinity uptake of noradrenaline in postsynaptic neurones. Br J Pharmacol. 1993;109:299–307.PubMedPubMedCentralCrossRefGoogle Scholar
  8. Allaman I, Fiumelli H, Magistretti PJ, Martin JL. Fluoxetine regulates the expression of neurotrophic/growth factors and glucose metabolism in astrocytes. Psychopharmacology (Berl). 2011;216:75–84.CrossRefGoogle Scholar
  9. Alt A, Nisenbaum ES, Bleakman D, Witkin JM. A role for AMPA receptors in mood disorders. Biochem Pharmacol. 2006;71:1273–88.PubMedCrossRefGoogle Scholar
  10. Amaral MD, Pozzo-Miller L. TRPC3 channels are necessary for brain-derived neurotrophic factor to activate a nonselective cationic current and to induce dendritic spine formation. J Neurosci. 2007;27:5179–89.PubMedPubMedCentralCrossRefGoogle Scholar
  11. Anacker C, Cattaneo A, Musaelyan K, Zunszain PA, Horowitz M, Molteni R, Luoni A, Calabrese F, Tansey K, Gennarelli M, Thuret S, Price J, Uher R, Riva MA, Pariante CM. Role for the kinase SGK1 in stress, depression, and glucocorticoid effects on hippocampal neurogenesis. Proc Natl Acad Sci U S A. 2013;110:8708–13.PubMedPubMedCentralCrossRefGoogle Scholar
  12. Anderson G, Kubera M, Duda W, Lasoń W, Berk M, Maes M. Increased IL-6 trans-signaling in depression: focus on the tryptophan catabolite pathway, melatonin and neuroprogression. Pharmacol Rep. 2013;65:1647–54.PubMedCrossRefGoogle Scholar
  13. Andjus PR, Stevic-Marinkovic Z, Cherubini E. Immunoglobulins from motoneurone disease patients enhance glutamate release from rat hippocampal neurones in culture. J Physiol. 1997;504:103–12.PubMedPubMedCentralCrossRefGoogle Scholar
  14. Ang W, Chen G, Xiong L, Chang Y, Pi W, Liu Y, Li C, Zheng J, Zhou L, Yang B, Deng Y, Yang S, Luo Y, Wei Y. Synthesis and biological evaluation of novel naphthalene compounds as potential antidepressant agents. Eur J Med Chem. 2014;82:263–73.PubMedCrossRefGoogle Scholar
  15. Angelucci F, Croce N, Spalletta G, Dinallo V, Gravina P, Bossù P, Federici G, Caltagirone C, Bernardini S. Paroxetine rapidly modulates the expression of brain-derived neurotrophic factor mRNA and protein in a human glioblastoma-astrocytoma cell line. Pharmacology. 2011;87:5–10.PubMedCrossRefGoogle Scholar
  16. Argov M, Kashi R, Peer D, Margalit R. Treatment of resistant human colon cancer xenografts by a fluoxetine–doxorubicin combination enhances therapeutic responses comparable to an aggressive bevacizumab regimen. Cancer Lett. 2009;274:118–25.PubMedCrossRefGoogle Scholar
  17. Aubry JM. CRF system and mood disorders. J Chem Neuroanat. 2013;54:20–4.Google Scholar
  18. Bakunina N, Pariante CM, Zunszain PA. Immune mechanisms linked to depression via oxidative stress and neuroprogression. Immunology. 2015. doi: 10.1111/imm.12443. [Epub ahead of print].Google Scholar
  19. Behl C, Widmann M, Trapp T, Holsboer F. 17-beta estradiol protects neurons from oxidative stress-induced cell death in vitro. Biochem Biophys Res Commun. 1995;216:473–82.PubMedCrossRefGoogle Scholar
  20. Berton O, Nestler EJ. New approaches to antidepressant drug discovery: beyond monoamines. Nat Rev Neurosci. 2006;7:137–51.PubMedCrossRefGoogle Scholar
  21. Biedler JL, Roffler-Tarlov S, Schachner M, Freedman LS. Multiple neurotransmitter synthesis by human neuroblastoma cell lines and clones. Cancer Res. 1978;38:3751–7.PubMedGoogle Scholar
  22. Bilir A, Erguven M, Yazihan N, Aktas E, Oktem G, Sabanci A. Enhancement of vinorelbine-induced cytotoxicity and apoptosis by clomipramine and lithium chloride in human neuroblastoma cancer cell line SH-SY5Y. J Neurooncol. 2010;100:385–95.PubMedCrossRefGoogle Scholar
  23. Blasi E, Barluzzi R, Bocchini V, Mazzolla R, Bistoni F. Immortalization of murine microglial cells by a v-raf/v-myc carrying retrovirus. J Neuroimmunol. 1990;27:229–37.PubMedCrossRefGoogle Scholar
  24. Bleakman D, Alt A, Witkin JM. AMPA receptors in the therapeutic management of depression. CNS Neurol Disord Drug Targets. 2007;6:117–26.PubMedCrossRefGoogle Scholar
  25. Borroto-Escuela DO, Romero-Fernandez W, Mudó G, Pérez-Alea M, Ciruela F, Tarakanov AO, Narvaez M, Di Liberto V, Agnati LF, Belluardo N, Fuxe K. Fibroblast growth factor receptor 1–5-hydroxytryptamine 1A heteroreceptor complexes and their enhancement of hippocampal plasticity. Biol Psychiatry. 2012;71:84–91.PubMedCrossRefGoogle Scholar
  26. Brachman RA, McGowan JC, Perusini JN, Lim SC, Pham TH, Faye C, Gardier AM, Mendez-David I, David DJ, Hen R, Denny CA. Ketamine as a prophylactic against stress-induced depressive-like behavior. Biol Psychiatry. 2015;pii:S0006-3223(15)00360-1. doi: 10.1016/j.biopsych.2015.04.022.Google Scholar
  27. Braun S, Liebetrau W, Berning B, Behl C. Dexamethasone-enhanced sensitivity of mouse hippocampal HT22 cells for oxidative stress is associated with the suppression of nuclear factor-kappaB. Neurosci Lett. 2000;295:101–4.PubMedCrossRefGoogle Scholar
  28. Brewer GJ. Serum-free B27/neurobasal medium supports differentiated growth of neurons from the striatum, substantia nigra, septum, cerebral cortex, cerebellum, and dentate gyrus. J Neurosci Res. 1995;42:674–83.PubMedCrossRefGoogle Scholar
  29. Brewer GJ, Torricelli JR, Evege EK, Price PJ. Optimized survival of hippocampal neurons in B27-supplemented Neurobasal, a new serum-free medium combination. J Neurosci Res. 1993;35:567–76.PubMedCrossRefGoogle Scholar
  30. Brossaud J, Roumes H, Moisan MP, Pallet V, Redonnet A, Corcuff JB. Retinoids and glucocorticoids target common genes in hippocampal HT22 cells. J Neurochem. 2013;125:518–31.PubMedCrossRefGoogle Scholar
  31. Brunn J, Wiroth V, Kowalski M, Runge U, Sabolek M. Valproic acid in normal therapeutic concentration has no neuroprotective or differentiation influencing effects on long term expanded murine neural stem cells. Epilepsy Res. 2014;108:623–33.PubMedCrossRefGoogle Scholar
  32. Cabras S, Saba F, Reali C, Scorciapino ML, Sirigu A, Talani G, Biggio G, Sogos V. Antidepressant imipramine induces human astrocytes to differentiate into cells with neuronal phenotype. Int J Neuropsychopharmacol. 2010;13:603–15.PubMedCrossRefGoogle Scholar
  33. Cattaneo A, Macchi F, Plazzotta G, Veronica B, Bocchio-Chiavetto L, Riva MA, Pariante CM. Inflammation and neuronal plasticity: a link between childhood trauma and depression pathogenesis. Front Cell Neurosci. 2015;31:9–40.Google Scholar
  34. Cavarec L, Vincent L, Le Borgne C, Plusquellec C, Ollivier N, Normandie-Levi P, Allemand F, Salvetat N, Mathieu-Dupas E, Molina F, Weissmann D, Pujol JF. In vitro screening for drug-induced depression and/or suicidal adverse effects: a new toxicogenomic assay based on CE-SSCP analysis of HTR2C mRNA editing in SH-SY5Y cells. Neurotox Res. 2013;23:49–62.PubMedCrossRefGoogle Scholar
  35. Chai L, Guo H, Li H, Wang S, Wang YL, Shi F, Hu LM, Liu Y, Adah D. Scutellarin and caffeic acid ester fraction, active components of Dengzhanxixin injection, upregulate neurotrophins synthesis and release in hypoxia/reoxygenation rat astrocytes. J Ethnopharmacol. 2013;150:100–7.PubMedCrossRefGoogle Scholar
  36. Chang Y, Pi W, Ang W, Liu Y, Li C, Zheng J, Xiong L, Yang T, Luo Y. Synthesis and evaluation of amide side-chain modified Agomelatine analogues as potential antidepressant-like agents. Bioorg Med Chem Lett. 2014;24:1672–6.PubMedCrossRefGoogle Scholar
  37. Chen Q, de Lecea L, Hu Z, Gao D. The hypocretin/orexin system: an increasingly important role in neuropsychiatry. Med Res Rev. 2015;35:152–97.PubMedCrossRefGoogle Scholar
  38. Cheung YT, Lau WK, Yu MS, Lai CS, Yeung SC, So KF, Chang RC. Effects of all-trans-retinoic acid on human SH-SY5Y neuroblastoma as in vitro model in neurotoxicity research. Neurotoxicology. 2009;30:127–35.PubMedCrossRefGoogle Scholar
  39. Choi MR, Oh DH, Kim SH, Jung KH, Das ND, Chai YG. Fluoxetine increases the expression of NCAM140 and pCREB in rat C6 glioma cells. Psychiatry Investig. 2012;9:180–6.PubMedPubMedCentralCrossRefGoogle Scholar
  40. Chu CC, Wang JJ, Chen KT, Shieh JP, Wang LK, Shui HA, Ho ST. Neurotrophic effects of tianeptine on hippocampal neurons: a proteomic approach. J Proteome Res. 2010;9:936–44.PubMedCrossRefGoogle Scholar
  41. Chung HS, Kim H, Bae H. Phenelzine (monoamine oxidase inhibitor) increases production of nitric oxide and proinflammatory cytokines via the NF-κB pathway in lipopolysaccharide-activated microglia cells. Neurochem Res. 2012;37:2117–24.PubMedCrossRefGoogle Scholar
  42. Crochemore C, Lu J, Wu Y, Liposits Z, Sousa N, Holsboer F, Almeida OF. Direct targeting of hippocampal neurons for apoptosis by glucocorticoids is reversible by mineralocorticoid receptor activation. Mol Psychiatry. 2005;10:790–8.PubMedCrossRefGoogle Scholar
  43. Czéh B, Di Benedetto B. Antidepressants act directly on astrocytes: evidences and functional consequences. Eur Neuropsychopharmacol. 2013;23:171–85.PubMedCrossRefGoogle Scholar
  44. Dhami KS, Churchward MA, Baker GB, Todd KG. Fluoxetine and citalopram decrease microglial release of glutamate and D-serine to promote cortical neuronal viability following ischemic insult. Mol Cell Neurosci. 2013;56:365–74.PubMedCrossRefGoogle Scholar
  45. Di Benedetto B, Kühn R, Nothdurfter C, Rein T, Wurst W, Rupprecht R. N-desalkylquetiapine activates ERK1/2 to induce GDNF release in C6 glioma cells: a putative cellular mechanism for quetiapine as antidepressant. Neuropharmacology. 2012;62:209–16.PubMedCrossRefGoogle Scholar
  46. Divish MM, Sheftel G, Boyle A, Kalasapudi VD, Papolos DF, Lachman HM. Differential effect of lithium on fos protooncogene expression mediated by receptor and postreceptor activators of protein kinase C and cyclic adenosine monophosphate: model for its antimanic action. J Neurosci Res. 1991;28:40–8.PubMedCrossRefGoogle Scholar
  47. Doti N, Reuther C, Scognamiglio PL, Dolga AM, Plesnila N, Ruvo M, Culmsee C. Inhibition of the AIF/CypA complex protects against intrinsic death pathways induced by oxidative stress. Cell Death Dis. 2014;5, e993.PubMedPubMedCentralCrossRefGoogle Scholar
  48. Drevets WC, Price JL, Furey ML. Brain structural and functional abnormalities in mood disorders: implications for neurocircuitry models of depression. Brain Struct Funct. 2008;213:93–118.PubMedPubMedCentralCrossRefGoogle Scholar
  49. Drzyzga ŁR, Marcinowska A, Obuchowicz E. Antiapoptotic and neurotrophic effects of antidepressants: a review of clinical and experimental studies. Brain Res Bull. 2009;79:248–57.PubMedCrossRefGoogle Scholar
  50. Du G, Tu H, Li X, Pei A, Chen J, Miao Z, Li J, Wang C, Xie H, Xu X, Zhao H. Daphnetin, a natural coumarin derivative, provides the neuroprotection against glutamate-induced toxicity in HT22 cells and ischemic brain injury. Neurochem Res. 2014;39:269–75.PubMedCrossRefGoogle Scholar
  51. Duman RS. Role of neurotrophic factors in the etiology and treatment of mood disorders. Neuromolecular Med. 2004;5:11–25.PubMedCrossRefGoogle Scholar
  52. Duman RS, Heninger GR, Nestler EJ. A molecular and cellular hypothesis of depression. Arch Gen Psychiatry. 1997;54:597–606.PubMedCrossRefGoogle Scholar
  53. Dunigan CD, Shamoo AE. Li + stimulates ATP-regulated dopamine uptake in PC12 cells. Neuroscience. 1995;65:1–4.PubMedCrossRefGoogle Scholar
  54. Dziedzicka-Wasylewska M, Solich J. Neuronal cell lines transfected with the dopamine D2 receptor gene promoter as a model for studying the effects of antidepressant drugs. Brain Res Mol Brain Res. 2004;128:75–82.PubMedCrossRefGoogle Scholar
  55. Eissa TF, González-Burgos E, Carretero ME, Gómez-Serranillos MP. Phenolic content, antioxidant and astroprotective response to oxidative stress of ethanolic extracts of Mentha longifolia from Sinai. Nat Prod Commun. 2014;9:1479–82.PubMedGoogle Scholar
  56. El Omri A, Han J, Yamada P, Kawada K, Abdrabbah MB, Isoda H. Rosmarinus officinalis polyphenols activate cholinergic activities in PC12 cells through phosphorylation of ERK1/2. J Ethnopharmacol. 2010;131:451–8.PubMedCrossRefGoogle Scholar
  57. Flajolet M, Wang Z, Futter M, Shen W, Nuangchamnong N, Bendor J, Wallach I, Nairn AC, Surmeier DJ, Greengard P. FGF acts as a co-transmitter through adenosine A(2A) receptor to regulate synaptic plasticity. Nat Neurosci. 2008;11:1402–9.PubMedPubMedCentralCrossRefGoogle Scholar
  58. Foreman PJ, Taglialatela G, Jackson GR, Perez-Polo JR. Dexamethasone blocks nerve growth factor induction of nerve growth factor receptor mRNA in PC12 cells. J Neurosci Res. 1992;31:52–7.PubMedCrossRefGoogle Scholar
  59. Foster R, Kandanearatchi A, Beasley C, Williams B, Khan N, Fagerhol MK, Everall IP. Calprotectin in microglia from frontal cortex is up-regulated in schizophrenia: evidence for an inflammatory process? Eur J Neurosci. 2006;24:3561–6.PubMedCrossRefGoogle Scholar
  60. Freudenberg F, Celikel T, Reif A. The role of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors in depression: central mediators of pathophysiology and antidepressant activity? Neurosci Biobehav Rev. 2015;52:193–206.PubMedCrossRefGoogle Scholar
  61. Gabryel B, Bielecka A, Stolecka A, Bernacki J, Langfort J. Cytosolic phospholipase A2 inhibition is involved in the protective effect of nortriptyline in primary astrocyte cultures exposed to combined oxygen-glucose deprivation. Pharmacol Rep. 2010;62:814–26.PubMedCrossRefGoogle Scholar
  62. Gassen NC, Hartmann J, Zschocke J, Stepan J, Hafner K, Zellner A, Kirmeier T, Kollmannsberger L, Wagner KV, Dedic N, Balsevich G, Deussing JM, Kloiber S, Lucae S, Holsboer F, Eder M, Uhr M, Ising M, Schmidt MV, Rein T. Association of FKBP51 with priming of autophagy pathways and mediation of antidepressant treatment response: evidence in cells, mice, and humans. PLoS Med. 2014;11, e1001755.PubMedPubMedCentralCrossRefGoogle Scholar
  63. Giulian D, Baker TJ. Characterization of ameboid microglia isolated from developing mammalian brain. J Neurosci. 1986;6:2163–78.PubMedGoogle Scholar
  64. Golan M, Schreiber G, Avissar S. Antidepressants elevate GDNF expression and release from C6 glioma cells in a β-arrestin1-dependent. CREB interactive pathway. Int J Neuropsychopharmacol. 2011;14:1289–300.PubMedCrossRefGoogle Scholar
  65. González MI, Kazanietz MG, Robinson MB. Regulation of the neuronal glutamate transporter excitatory amino acid carrier-1 (EAAC1) by different protein kinase C subtypes. Mol Pharmacol. 2002;62:901–10.PubMedCrossRefGoogle Scholar
  66. Gramowski A, Jügelt K, Stüwe S, Schulze R, McGregor GP, Wartenberg-Demand A, Loock J, Schröder O, Weiss DG. Functional screening of traditional antidepressants with primary cortical neuronal networks grown on multielectrode neurochips. Eur J Neurosci. 2006;24:455–65.PubMedCrossRefGoogle Scholar
  67. Greene LA, Tischler AS. Establishment of a noradrenergic clonal line of rat adrenalpheochromocytoma cells which respond to nerve growth factor. Proc Natl Acad Sci U S A. 1976;73:2424–8.PubMedPubMedCentralCrossRefGoogle Scholar
  68. Grohm J, Kim SW, Mamrak U, Tobaben S, Cassidy-Stone A, Nunnari J, Plesnila N, Culmsee C. Inhibition of Drp1 provides neuroprotection in vitro and in vivo. Cell Death Differ. 2012;19:1446–58.PubMedPubMedCentralCrossRefGoogle Scholar
  69. Ha E, Jung KH, Choe BK, Bae JH, Shin DH, Yim SV, Baik HH. Fluoxetine increases the nitric oxide production via nuclear factor kappa B-mediated pathway in BV2 murine microglial cells. Neurosci Lett. 2006;397:185–9.PubMedCrossRefGoogle Scholar
  70. Hamby ME, Sofroniew MV. Reactive astrocytes as therapeutic targets for CNS disorders. Neurotherapeutics. 2010;7:494–506.PubMedPubMedCentralCrossRefGoogle Scholar
  71. Han YS, Lee CS. Antidepressants reveal differential effect against 1-methyl-4-phenylpyridinium toxicity in differentiated PC12 cells. Eur J Pharmacol. 2009;604:36–44.PubMedCrossRefGoogle Scholar
  72. Hannan MA, Kang JY, Mohibbullah M, Hong YK, Lee H, Choi JS, Choi IS, Moon IS. Moringa oleifera with promising neuronal survival and neurite outgrowth promoting potentials. J Ethnopharmacol. 2014a;152:142–50.PubMedCrossRefGoogle Scholar
  73. Hannan MA, Mohibbullah M, Hong YK, Nam JH, Moon IS. Gelidium amansii promotes dendritic spine morphology and synaptogenesis, and modulates NMDA receptor-mediated postsynaptic current. In Vitro Cell Dev Biol Anim. 2014b;50:445–52.PubMedCrossRefGoogle Scholar
  74. Hashimoto K. Inflammatory biomarkers as differential predictors of antidepressant response. Int J Mol Sci. 2015;16:7796–801.PubMedPubMedCentralCrossRefGoogle Scholar
  75. Hashioka S. Antidepressants and neuroinflammation: can antidepressants calm glial rage down? Mini Rev Med Chem. 2011;11:555–64.PubMedCrossRefGoogle Scholar
  76. Heiser JH, Schuwald AM, Sillani G, Ye L, Müller WE, Leuner K. TRPC6 channel-mediated neurite outgrowth in PC12 cells and hippocampal neurons involves activation of RAS/MEK/ERK, PI3K, and CAMKIV signaling. J Neurochem. 2013;127:303–13.PubMedCrossRefGoogle Scholar
  77. Henkel AW, Alali H, Devassy A, Alawadi MM, Redzic ZB. Antagonistic interactions between dexamethasone and fluoxetine modulate morphodynamics and expression of cytokines in astrocytes. Neuroscience. 2014;280:318–27.PubMedCrossRefGoogle Scholar
  78. Herr AS, Tsolakidou AF, Yassouridis A, Holsboer F, Rein T. Antidepressants differentially influence the transcriptional activity of the glucocorticoid receptor in vitro. Neuroendocrinology. 2003;78:12–22.PubMedCrossRefGoogle Scholar
  79. Hindley S, Juurlink BH, Gysbers JW, Middlemiss PJ, Herman MA, Rathbone MP. Nitric oxide donors enhance neurotrophin-induced neurite outgrowth through a cGMP-dependent mechanism. J Neurosci Res. 1997;47:427–39.PubMedCrossRefGoogle Scholar
  80. Hisaoka K, Nishida A, Koda T, Miyata M, Zensho H, Morinobu S, Ohta M, Yamawaki S. Antidepressant drug treatments induce glial cell line-derived neurotrophic factor (GDNF) synthesis and release in rat C6 glioblastoma cells. J Neurochem. 2001;79:25–34.PubMedCrossRefGoogle Scholar
  81. Hisaoka K, Takebayashi M, Tsuchioka M, Maeda N, Nakata Y, Yamawaki S. Antidepressants increase glial cell line-derived neurotrophic factor production through monoamine-independent activation of protein tyrosine kinase and extracellular signal-regulated kinase in glial cells. J Pharmacol Exp Ther. 2007;321:148–57.PubMedCrossRefGoogle Scholar
  82. Hisaoka K, Maeda N, Tsuchioka M, Takebayashi M. Antidepressants induce acute CREB phosphorylation and CRE-mediated gene expression in glial cells: a possible contribution to GDNF production. Brain Res. 2008;1196:53–8.PubMedCrossRefGoogle Scholar
  83. Hisaoka K, Tsuchioka M, Yano R, Maeda N, Kajitani N, Morioka N, Nakata Y, Takebayashi M. Tricyclic antidepressant amitriptyline activates fibroblast growth factor receptor signaling in glial cells: involvement in glial cell line-derived neurotrophic factor production. J Biol Chem. 2011;286:21118–28.PubMedPubMedCentralCrossRefGoogle Scholar
  84. Hisaoka-Nakashima K, Miyano K, Matsumoto C, Kajitani N, Abe H, Okada-Tsuchioka M, Yokoyama A, Uezono Y, Morioka N, Nakata Y, Takebayashi M. Tricyclic antidepressant amitriptyline-induced glial cell line-derived neurotrophic factor production involves pertussis toxin-sensitive Gαi/o activation in astroglial cells. J Biol Chem. 2015;pii:jbc.M114.622415.Google Scholar
  85. Hösli E, Hösli L. Autoradiographic studies on the uptake of 3H-noradrenaline and 3H-serotonin by neurones and astrocytes in explant and primary cultures of rat CNS: effects of antidepressants. Int J Dev Neurosci. 1995;13:897–908.PubMedCrossRefGoogle Scholar
  86. Hu Y, Liu MY, Liu P, Dong X, Boran AD. Neuroprotective effects of 3,6'-disinapoyl sucrose through increased BDNF levels and CREB phosphorylation via the CaMKII and ERK1/2 pathway. J Mol Neurosci. 2014a;53:600–7.PubMedCrossRefGoogle Scholar
  87. Hu Y, Zhou XJ, Liu P, Dong XZ, Mu LH, Chen YB, Liu MY, Yu BY. Antidepressant and neuroprotective effect of the Chinese herb kaixinsan against lentiviral shRNA knockdown brain-derived neurotrophic factor-induced injury in vitro and in vivo. Neuropsychobiology. 2014b;69(3):129–1239.PubMedCrossRefGoogle Scholar
  88. Hughes EG, Maguire JL, McMinn MT, Scholz RE, Sutherland ML. Loss of glial fibrillary acidic protein results in decreased glutamate transport and inhibition of PKA-induced EAAT2 cell surface trafficking. Brain Res Mol Brain Res. 2004;124:114–23.PubMedCrossRefGoogle Scholar
  89. Hung CW, Liou YJ, Lu SW, Tseng LM, Kao CL, Chen SJ, Chiou SH, Chang CJ. Stem cell-based neuroprotective and neurorestorative strategies. Int J Mol Sci. 2010;11:2039–55.PubMedPubMedCentralCrossRefGoogle Scholar
  90. Hunsberger JG, Efthymiou AG, Malik N, Behl M, Mead IL, Zeng X, Simeonov A, Rao M. Induced pluripotent stem cell models to enable in vitro models for screening in the central nervous system. Stem Cells Dev. 2015;24(16):1852–64.PubMedCrossRefGoogle Scholar
  91. Iadarola ND, Niciu MJ, Richards EM, Vande Voort JL, Ballard ED, Lundin NB, Nugent AC, Machado-Vieira R, Zarate Jr CA. Ketamine and other N-methyl-D-aspartate receptor antagonists in the treatment of depression: a perspective review. Ther Adv Chronic Dis. 2015;6:97–114.PubMedPubMedCentralCrossRefGoogle Scholar
  92. Inazu M, Takeda H, Ikoshi H, Sugisawa M, Uchida Y, Matsumiya T. Pharmacological characterization and visualization of the glial serotonin transporter. Neurochem Int. 2001;39:39–49.PubMedCrossRefGoogle Scholar
  93. Inkielewicz-Stepniak I, Radomski MW, Wozniak M. Fisetin prevents fluoride- and dexamethasone-induced oxidative damage in osteoblast and hippocampal cells. Food Chem Toxicol. 2012;50:583–9.PubMedCrossRefGoogle Scholar
  94. Ip FC, Ng YP, An HJ, Dai Y, Pang HH, Hu YQ, Chin AC, Harley CB, Wong YH. Ip NYCycloastragenol is a potent telomerase activator in neuronal cells: implications for depression management. Neurosignals. 2014;22:52–63.PubMedCrossRefGoogle Scholar
  95. Ishima T, Fujita Y, Hashimoto K. Interaction of new antidepressants with sigma-1 receptor chaperones and their potentiation of neurite outgrowth in PC12 cells. Eur J Pharmacol. 2014;727:167–73.PubMedCrossRefGoogle Scholar
  96. Ishima T, Futamura T, Ohgi Y, Yoshimi N, Kikuchi T, Hashimoto K. Potentiation of neurite outgrowth by brexpiprazole, a novel serotonin-dopamine activity modulator: a role for serotonin 5-HT1A and 5-HT2A receptors. Eur Neuropsychopharmacol. 2015;25:505–11.PubMedCrossRefGoogle Scholar
  97. Jakobs D, Hage-Hülsmann A, Prenner L, Kolb C, Weiser D, Häberlein H. Downregulation of β1 -adrenergic receptors in rat C6 glioblastoma cells by hyperforin and hyperoside from St John's wort. J Pharm Pharmacol. 2013;65:907–15.PubMedCrossRefGoogle Scholar
  98. Jantas D, Pytel M, Mozrzymas JW, Leskiewicz M, Regulska M, Antkiewicz-Michaluk L, Lason W. The attenuating effect of memantine on staurosporine-, salsolinol- and doxorubicin-induced apoptosis in human neuroblastoma SH-SY5Y cells. Neurochem Int. 2008;52:864–77.PubMedCrossRefGoogle Scholar
  99. Jantas D, Roman A, Kusmierczyk J, Lorenc-Koci E, Konieczny J, Lenda T, Lason W. The extent of neurodegeneration and neuroprotection in two chemical in vitro models related to Parkinson’s disease is critically dependent on cell culture conditions. Neurotox Res. 2013;24:41–54.PubMedCrossRefGoogle Scholar
  100. Jantas D, Krawczyk S, Lason W. The predominant protective effect of tianeptine over other antidepressants in models of neuronal apoptosis: the effect blocked by inhibitors of MAPK/ERK1/2 and PI3-K/Akt pathways. Neurotox Res. 2014a;25:208–25.PubMedPubMedCentralCrossRefGoogle Scholar
  101. Jantas D, Greda A, Golda S, Korostynski M, Grygier B, Roman A, Pilc A, Lason W. Neuroprotective effects of metabotropic glutamate receptor group II and III activators against MPP(+)-induced cell death in human neuroblastoma SH-SY5Y cells: the impact of cell differentiation state. Neuropharmacology. 2014b;83:36–53.PubMedCrossRefGoogle Scholar
  102. Jaworska-Feil L, Jantas D, Leskiewicz M, Budziszewska B, Kubera M, Basta-Kaim A, Lipkowski AW, Lason W. Protective effects of TRH and its analogues against various cytotoxic agents in retinoic acid (RA)-differentiated human neuroblastoma SH-SY5Y cells. Neuropeptides. 2010;44:495–508.PubMedCrossRefGoogle Scholar
  103. Jett JD, Boley AM, Girotti M, Shah A, Lodge DJ, Morilak DA. Antidepressant-like cognitive and behavioral effects of acute ketamine administration associated with plasticity in the ventral hippocampus to medial prefrontal cortex pathway. Psychopharmacology (Berl). 2015;232(17):3123–33.CrossRefGoogle Scholar
  104. Jiang Y, Li Z, Liu Y, Liu X, Chang Q, Liao Y, Pan R. Neuroprotective effect of water extract of Panax ginseng on corticosterone-induced apoptosis in PC12 cells and its underlying molecule mechanisms. J Ethnopharmacol. 2015;159:102–12.PubMedCrossRefGoogle Scholar
  105. Jin ML, Park SY, Kim YH, Park G, Lee SJ. Acanthopanax senticosus exerts neuroprotective effects through HO-1 signaling in hippocampal and microglial cells. Environ Toxicol Pharmacol. 2013;35:335–46.PubMedCrossRefGoogle Scholar
  106. Jirásek P, Amslinger S, Heilmann J. Synthesis of natural and non-natural curcuminoids and their neuroprotective activity against glutamate-induced oxidative stress in HT-22 cells. J Nat Prod. 2014;77:2206–17.PubMedCrossRefGoogle Scholar
  107. Johann S, Kampmann E, Denecke B, Arnold S, Kipp M, Mey J, Beyer C. Expression of enzymes involved in the prostanoid metabolism by cortical astrocytes after LPS-induced inflammation. J Mol Neurosci. 2008;34:177–85.PubMedCrossRefGoogle Scholar
  108. Johnson S, Tazik S, Lu D, Johnson C, Youdim MB, Wang J, Rajkowska G, Ou XM. The New Inhibitor of Monoamine Oxidase, M30, has a Neuroprotective Effect Against Dexamethasone-Induced Brain Cell Apoptosis. Front Neurosci. 2010;4:180.PubMedPubMedCentralCrossRefGoogle Scholar
  109. Karkoulias G, Mastrogianni O, Ilias I, Lymperopoulos A, Taraviras S, Tsopanoglou N, Sitaras N, Flordellis CS. Alpha 2-adrenergic receptors decrease DNA replication and cell proliferation and induce neurite outgrowth in transfected rat pheochromocytoma cells. Ann N Y Acad Sci. 2006;1088:335–45.PubMedCrossRefGoogle Scholar
  110. Kasckow JW, Regmi A, Sheriff S, Mulchahey J, Geracioti Jr TD. Regulation of corticotropin-releasing factor messenger RNA by nicotine in an immortalized amygdalar cell line. Life Sci. 1999;65:2709–14.PubMedCrossRefGoogle Scholar
  111. Kataria H, Wadhwa R, Kaul SC, Kaur G. Water extract from the leaves of Withania somnifera protect RA differentiated C6 and IMR-32 cells against glutamate-induced excitotoxicity. PLoS One. 2012;7, e37080.PubMedPubMedCentralCrossRefGoogle Scholar
  112. Khan RS, Yu C, Kastin AJ, He Y, Ehrensing RH, Hsuchou H, Stone KP, Pan W. Brain activation by peptide Pro-Leu-Gly-NH(2) (MIF-1). Int J Pept. 2010;2010:537639.PubMedPubMedCentralCrossRefGoogle Scholar
  113. Kim WK, Jang PG, Woo MS, Han IO, Piao HZ, Lee K, Lee H, Joh TH, Kim HS. A new anti-inflammatory agent KL-1037 represses proinflammatory cytokine and inducible nitric oxide synthase (iNOS) gene expression in activated microglia. Neuropharmacology. 2004;47:243–52.PubMedCrossRefGoogle Scholar
  114. Kittel-Schneider S, Kenis G, Schek J, van den Hove D, Prickaerts J, Lesch KP, Steinbusch H, Reif A. Expression of monoamine transporters, nitric oxide synthase 3, and neurotrophin genes in antidepressant-stimulated astrocytes. Front Psychiatry. 2012;3:33.PubMedPubMedCentralCrossRefGoogle Scholar
  115. Kling B, Bücherl D, Palatzky P, Matysik FM, Decker M, Wegener J, Heilmann J. Flavonoids, flavonoid metabolites, and phenolic acids inhibit oxidative stress in the neuronal cell line HT-22 monitored by ECIS and MTT assay: a comparative study. J Nat Prod. 2014;77:446–54.PubMedCrossRefGoogle Scholar
  116. Kolla N, Wei Z, Richardson JS, Li XM. Amitriptyline and fluoxetine protect PC12 cells from cell death induced by hydrogen peroxide. J Psychiatry Neurosci. 2005;30:196–201.PubMedPubMedCentralGoogle Scholar
  117. Kong EK, Peng L, Chen Y, Yu AC, Hertz L. Up-regulation of 5-HT2B receptor density and receptor-mediated glycogenolysis in mouse astrocytes by long-term fluoxetine administration. Neurochem Res. 2002;27:113–20.PubMedCrossRefGoogle Scholar
  118. Korecka JA, van Kesteren RE, Blaas E, Spitzer SO, Kamstra JH, Smit AB, Swaab DF, Verhaagen J, Bossers K. Phenotypic characterization of retinoic acid differentiated SH-SY5Y cells by transcriptional profiling. PLoS One. 2013;8, e63862.PubMedPubMedCentralCrossRefGoogle Scholar
  119. Kritis AA, Stamoula EG, Paniskaki KA, Vavilis TD. Researching glutamate - induced cytotoxicity in different cell lines: a comparative/collective analysis/study. Front Cell Neurosci. 2015;9:91.PubMedPubMedCentralCrossRefGoogle Scholar
  120. Krystal JH, Mathew SJ, D'Souza DC, Garakani A, Gunduz-Bruce H, Charney DS. Potential psychiatric applications of metabotropic glutamate receptor agonists and antagonists. CNS Drugs. 2010;24:669–93.PubMedCrossRefGoogle Scholar
  121. Laifenfeld D, Klein E, Ben-Shachar D. Norepinephrine alters the expression of genes involved in neuronal sprouting and differentiation: relevance for major depression and antidepressant mechanisms. J Neurochem. 2002;83:1054–64.PubMedCrossRefGoogle Scholar
  122. Lalmansingh AS, Uht RM. Estradiol regulates corticotropin-releasing hormone gene (crh) expression in a rapid and phasic manner that parallels estrogen receptor-alpha and -beta recruitment to a 3',5'-cyclic adenosine 5'-monophosphate regulatory region of the proximal crh promoter. Endocrinology. 2008;149:346–57.PubMedPubMedCentralCrossRefGoogle Scholar
  123. Lauro C, Di Angelantonio S, Cipriani R, Sobrero F, Antonilli L, Brusadin V, Ragozzino D, Limatola C. Activity of adenosine receptors type 1 Is required for CX3CL1-mediated neuroprotection and neuromodulation in hippocampal neurons. J Immunol. 2008;180:7590–6.PubMedCrossRefGoogle Scholar
  124. Lee MS, Lee J, Kwon DY, Kim MS. Ondamtanggamibang protects neurons from oxidative stress with induction of heme oxygenase-1. J Ethnopharmacol. 2006;108:294–8.PubMedCrossRefGoogle Scholar
  125. Lee YH, Kim SH, Kim Y, Lim Y, Ha K, Shin SY. Inhibitory effect of the antidepressant imipramine on NF-κB-dependent CXCL1 expression in TNFα-exposed astrocytes. Int Immunopharmacol. 2012;12:547–55.PubMedCrossRefGoogle Scholar
  126. Leskiewicz M, Jantas D, Regulska M, Kaczanowska J, Basta-Kaim A, Budziszewska B, Kubera M, Lason W. Antidepressants attenuate the dexamethasone-induced decrease in viability and proliferation of human neuroblastoma SH-SY5Y cells: a involvement of extracellular regulated kinase (ERK1/2). Neurochem Int. 2013;63:354–62.PubMedCrossRefGoogle Scholar
  127. Leuner K, Kazanski V, Müller M, Essin K, Henke B, Gollasch M, Harteneck C, Müller WE. Hyperforin—a key constituent of St. John’s wort specifically activates TRPC6 channels. FASEB J. 2007;21:4101–11.PubMedCrossRefGoogle Scholar
  128. Leuner K, Li W, Amaral MD, Rudolph S, Calfa G, Schuwald AM, Harteneck C, Inoue T, Pozzo-Miller L. Hyperforin modulates dendritic spine morphology in hippocampal pyramidal neurons by activating Ca(2+) -permeable TRPC6 channels. Hippocampus. 2013;23:40–52.PubMedPubMedCentralCrossRefGoogle Scholar
  129. Levkovitz Y, Gil-Ad I, Zeldich E, Dayag M, Weizman A. Differential induction of apoptosis by antidepressants in glioma and neuroblastoma cell lines: evidence for p-c-Jun, cytochrome c, and caspase-3 involvement. J Mol Neurosci. 2005;27:29–42.PubMedCrossRefGoogle Scholar
  130. Li Y, Maher P, Schubert D. A role of 12-lipoxygenase in nerve cell death caused by glutathione depletion. Neuron. 1997;19:453–63.PubMedCrossRefGoogle Scholar
  131. Li YF, Gong ZH, Cao JB, Wang HL, Luo ZP, Li J. Antidepressant-like effect of agmatine and its possible mechanism. Eur J Pharmacol. 2003a;469:81–8.PubMedCrossRefGoogle Scholar
  132. Li YF, Gong ZH, Yang M, Zhao YM, Luo ZP. Inhibition of the oligosaccharides extracted from Morinda officinalis, a Chinese traditional herbal medicine, on the corticosterone induced apoptosis in PC12 cells. Life Sci. 2003b;72:933–42.PubMedCrossRefGoogle Scholar
  133. Li YF, Liu YQ, Huang WC, Luo ZP. Cytoprotective effect is one of common action pathways for antidepressants. Acta Pharmacol Sin. 2003c;24:996–1000.Google Scholar
  134. Li YF, Liu YQ, Yang M, Wang HL, Huang WC, Zhao YM, Luo ZP. The cytoprotective effect of inulin-type hexasaccharide extracted from Morinda officinalis on PC12 cells against the lesion induced by corticosterone. Life Sci. 2004;75:1531–8.PubMedCrossRefGoogle Scholar
  135. Li YF, Zhang YZ, Liu YQ, Wang HL, Cao JB, Guan TT, Luo ZP. Inhibition of N-methyl-D-aspartate receptor function appears to be one of the common actions for antidepressants. J Psychopharmacol. 2006;20:629–35.PubMedCrossRefGoogle Scholar
  136. Li B, Zhang S, Zhang H, Nu W, Cai L, Hertz L, Peng L. Fluoxetine-mediated 5-HT2B receptor stimulation in astrocytes causes EGF receptor transactivation and ERK phosphorylation. Psychopharmacology (Berl). 2008;201:443–58.CrossRefGoogle Scholar
  137. Li B, Zhang S, Li M, Hertz L, Peng L. Chronic treatment of astrocytes with therapeutically relevant fluoxetine concentrations enhances cPLA2 expression secondary to 5-HT2B-induced, transactivation-mediated ERK1/2 phosphorylation. Psychopharmacology (Berl). 2009;207:1–12.CrossRefGoogle Scholar
  138. Li ZY, Guo Z, Liu YM, Liu XM, Chang Q, Liao YH, Pan RL. Neuroprotective effects of total saikosaponins of Bupleurum yinchowense on corticosterone-induced apoptosis in PC12 cells. J Ethnopharmacol. 2013;148:794–803.PubMedCrossRefGoogle Scholar
  139. Li H, Mao S, Wang H, Zen K, Zhang C, Li L. MicroRNA-29a modulates axon branching by targeting doublecortin in primary neurons. Protein Cell. 2014;5:160–9.PubMedPubMedCentralCrossRefGoogle Scholar
  140. Lin CJ, Chen TH, Yang LY, Shih CM. Resveratrol protects astrocytes against traumatic brain injury through inhibiting apoptotic and autophagic cell death. Cell Death Dis. 2014;5, e1147.PubMedPubMedCentralCrossRefGoogle Scholar
  141. Liu J, Li L, Suo WZ. HT-22 hippocampal neuronal cell line possesses functional cholinergic properties. Life Sci. 2009;84:267–71.PubMedCrossRefGoogle Scholar
  142. Liu P, Hu Y, Guo DH, Wang DX, Tu HH, Ma L, Xie TT, Kong LY. Potential antidepressant properties of Radix Polygalae (Yuan Zhi). Phytomedicine. 2010;17:794–9.PubMedCrossRefGoogle Scholar
  143. Liu B, Zhang H, Xu C, Yang G, Tao J, Huang J, Wu J, Duan X, Cao Y, Dong J. Neuroprotective effects of icariin on corticosterone-induced apoptosis in primary cultured rat hippocampal neurons. Brain Res. 2011a;1375:59–67.PubMedCrossRefGoogle Scholar
  144. Liu D, Wang Z, Liu S, Wang F, Zhao S, Hao A. Anti-inflammatory effects of fluoxetine in lipopolysaccharide(LPS)-stimulated microglial cells. Neuropharmacology. 2011b;61:592–9.PubMedCrossRefGoogle Scholar
  145. Liu AJ, Wang SH, Hou SY, Lin CJ, Chiu WT, Hsiao SH, Chen TH, Shih CM. Evodiamine induces transient receptor potential vanilloid-1-mediated protective autophagy in U87-MG astrocytes. Evid Based Complementary Alternat Med. 2013;13:354840.Google Scholar
  146. Liu RP, Zou M, Wang JY, Zhu JJ, Lai JM, Zhou LL, Chen SF, Zhang X, Zhu JH. Paroxetine ameliorates lipopolysaccharide-induced microglia activation via differential regulation of MAPK signaling. J Neuroinflammation. 2014;11:47.PubMedPubMedCentralCrossRefGoogle Scholar
  147. Lodge D, Mercier MS. Ketamine and phencyclidine: the good, the bad and the unexpected. Br J Pharmacol. 2015;172(17):4254–76. doi: 10.1111/bph.13222.PubMedCrossRefGoogle Scholar
  148. Lopes FM, Schröder R, da Frota Jr ML, Zanotto-Filho A, Müller CB, Pires AS, Meurer RT, Colpo GD, Gelain DP, Kapczinski F, Moreira JC, Fernandes Mda C, Klamt F. Comparison between proliferative and neuron-like SH-SY5Y cells as an in vitro model for Parkinson disease studies. Brain Res. 2010;1337:85–94.PubMedCrossRefGoogle Scholar
  149. López V, Martín S, Gómez-Serranillos MP, Carretero ME, Jäger AK, Calvo MI. Neuroprotective and neurological properties of Melissa officinalis. Neurochem Res. 2009;34:1955–61.PubMedCrossRefGoogle Scholar
  150. Lopez-Carballo G, Moreno L, Masia S, Perez P, Barettino D. Activation of the phosphatidylinositol 3-kinase/Akt signaling pathway by retinoic acid is required for neural differentiation of SH-SY5Y human neuroblastoma cells. J Biol Chem. 2002;277:297–304.CrossRefGoogle Scholar
  151. Lopizzo N, Bocchio Chiavetto L, Cattane N, Plazzotta G, Tarazi FI, Pariante CM, Riva MA, Cattaneo A. Gene-environment interaction in major depression: focus on experience-dependent biological systems Front. Psychiatry. 2015;6:68.Google Scholar
  152. Lu YH, Du CB, Liu JW, Hong W, Wei DZ. Neuroprotective effects of Hypericum perforatum on trauma induced by hydrogen peroxide in PC12 cells. Am J Chin Med. 2004;32:397–405.PubMedCrossRefGoogle Scholar
  153. Luchtman DW, Song C. Why SH-SY5Y cells should be differentiated. Neurotoxicology. 2010;31:164–5.PubMedCrossRefGoogle Scholar
  154. Lucki A, Klein E, Karry R, Ben-Shachar D. Dexamethasone in the presence of desipramine enhances MAPK/ERK1/2 signaling possibly via its interference with β-arrestin. J Neural Transm. 2014;121:289–98.PubMedCrossRefGoogle Scholar
  155. Maher P, Davis B. The role of monoamine metabolismin oxidative glutamate toxicity. Neuroscience. 1996;16:6394–401.PubMedGoogle Scholar
  156. Malviya SA, Kelly SD, Greenlee MM, Eaton DC, Duke BJ, Bourke CH, Neigh GN. Estradiol stimulates an anti-translocation expression pattern of glucocorticoid co-regulators in a hippocampal cell model. Physiol Behav. 2013;122:187–92.PubMedCrossRefGoogle Scholar
  157. Malynn S, Campos-Torres A, Moynagh P, Haase J. The pro-inflammatory cytokine TNF-α regulates the activity and expression of the serotonin transporter (SERT) in astrocytes. Neurochem Res. 2013;38:694–704.PubMedCrossRefGoogle Scholar
  158. Mao QQ, Ip SP, Ko KM, Tsai SH, Zhao M, Che CT. Peony glycosides protect against corticosterone-induced neurotoxicity in PC12 cells. Cell Mol Neurobiol. 2009;29:643–7.PubMedCrossRefGoogle Scholar
  159. Mao QQ, Zhong XM, Feng CR, Pan AJ, Li ZY, Huang Z. Protective effects of paeoniflorin against glutamate-induced neurotoxicity in PC12 cells via antioxidant mechanisms and Ca(2+) antagonism. Cell Mol Neurobiol. 2010;30:1059–66.PubMedCrossRefGoogle Scholar
  160. Mao QQ, Zhong XM, Li ZY, Huang Z. Paeoniflorin protects against NMDA-induced neurotoxicity in PC12 cells via Ca2+ antagonism. Phytother Res. 2011;25:681–5.PubMedCrossRefGoogle Scholar
  161. Marrs WR, Blankman JL, Horne EA, Thomazeau A, Lin YH, Coy J, Bodor AL, Muccioli GG, Hu SS, Woodruff G, Fung S, Lafourcade M, Alexander JP, Long JZ, Li W, Xu C, Möller T, Mackie K, Manzoni OJ, Cravatt BF, Stella N. The serine hydrolase ABHD6 controls the accumulation and efficacy of 2-AG at cannabinoid receptors. Nat Neurosci. 2010;13:951–7.PubMedPubMedCentralCrossRefGoogle Scholar
  162. Matsui N, Kido Y, Okada H, Kubo M, Nakai M, Fukuishi N, Fukuyama Y, Akagi M. Phenylbutenoid dimers isolated from Zingiber purpureum exert neurotrophic effects on cultured neurons and enhance hippocampal neurogenesis in olfactory bulbectomized mice. Neurosci Lett. 2012;513:72–7.PubMedCrossRefGoogle Scholar
  163. Matsuoka I, Mizuno N, Kurihara K. Cholinergic differentiation of clonal rat pheochromocytoma cells (PC12) induced by retinoic acid: increase of choline acetyltransferase activity and decrease of tyrosine hydroxylase activity. Brain Res. 1989;502:53–60.PubMedCrossRefGoogle Scholar
  164. Mattson MP. Energy intake and exercise as determinants of brain health and vulnerability to injury and disease. Cell Metab. 2012;16:706–22.PubMedPubMedCentralCrossRefGoogle Scholar
  165. McEwen BS, Chattarji S. Molecular mechanisms of neuroplasticity and pharmacological implications: the example of tianeptine. Eur Neuropsychopharmacol. 2004;14 Suppl 5:S497–502.PubMedCrossRefGoogle Scholar
  166. McEwen BS, Chattarji S, Diamond DM, Jay TM, Reagan LP, Svenningsson P, Fuchs E. The neurobiological properties of tianeptine (Stablon): from monoamine hypothesis to glutamatergic modulation. Mol Psychiatry. 2010;15:237–49.PubMedPubMedCentralCrossRefGoogle Scholar
  167. McKernan DP, Dinan TG, Cryan JF. “Killing the Blues”: a role for cellular suicide (apoptosis) in depression and the antidepressant response? Prog Neurobiol. 2009;88:246–63.PubMedCrossRefGoogle Scholar
  168. McMahon A, Sabban EL. Regulation of expression of dopamine beta-hydroxylase in PC12 cells by glucocorticoids and cyclic AMP analogues. J Neurochem. 1992;59:2040–7.PubMedCrossRefGoogle Scholar
  169. Mercier G, Lennon AM, Renouf B, Dessouroux A, Ramauge M, Courtin F, Pierre M. MAP kinase activation by fluoxetine and its relation to gene expression in cultured rat astrocytes. J Mol Neurosci. 2004;24:207–16.PubMedCrossRefGoogle Scholar
  170. Miller AH, Maletic V, Raison CL. Inflammation and its discontents: the role of cytokines in the pathophysiology of major depression. Biol Psychiatry. 2009;65:732–41.PubMedPubMedCentralCrossRefGoogle Scholar
  171. Miloso M, Villa D, Crimi M, Galbiati S, Donzelli E, Nicolini G, Tredici G. Retinoic acid-induced neuritogenesis of human neuroblastoma SH-SY5Y cells is ERK independent and PKC dependent. J Neurosci Res. 2004;75:241e252.CrossRefGoogle Scholar
  172. Mizuno N, Matsuoka I, Kurihara K. Possible involvements of intracellular Ca2+ and Ca2 + -dependent protein phosphorylation in cholinergic differentiation of clonal rat pheochromocytoma cells (PC12) induced by glioma-conditioned medium and retinoic acid. Brain Res Dev Brain Res. 1989;50:1–10.PubMedCrossRefGoogle Scholar
  173. Moosavi M, Maghsoudi N, Zahedi-Asl S, Naghdi N, Yousefpour M, Trounce IA. The role of PI3/Akt pathway in the protective effect of insulin against corticosterone cell death induction in hippocampal cell culture. Neuroendocrinology. 2008;88:293–8.PubMedCrossRefGoogle Scholar
  174. Morimoto BH, Koshland DE. Induction and expression of long and short term neurosecretory potentiation in a neural cell line. Neuron. 1990;5:875–8.PubMedCrossRefGoogle Scholar
  175. Morita K, Gotohda T, Arimochi H, Lee MS, Her S. Histone deacetylase inhibitors promote neurosteroid-mediated cell differentiation and enhance serotonin-stimulated brain-derived neurotrophic factor gene expression in rat C6 glioma cells. J Neurosci Res. 2009;87:2608–14.PubMedCrossRefGoogle Scholar
  176. Mulchahey JJ, Regmi A, Sheriff S, Balasubramaniam A, Kasckow JW. Coordinate and divergent regulation of corticotropin-releasing factor (CRF) and CRF-binding protein expression in an immortalized amygdalar neuronal cell line. Endocrinology. 1999;140:251–9.PubMedGoogle Scholar
  177. Musazzi L, Rimland JM, Ieraci A, Racagni G, Domenici E, Popoli M. Pharmacological characterization of BDNF promoters I, II and IV reveals that serotonin and norepinephrine input is sufficient for transcription activation. Int J Neuropsychopharmacol. 2014;17:779–91.PubMedCrossRefGoogle Scholar
  178. Nakano M, Osada K, Misonoo A, Fujiwara K, Takahashi M, Ogawa Y, Haga T, Kanai S, Tanaka D, Sasuga Y, Yanagida T, Asakura M, Yamaguchi N. Fluvoxamine and sigma-1 receptor agonists dehydroepiandrosterone (DHEA)-sulfate induces the Ser473-phosphorylation of Akt-1 in PC12 cells. Life Sci. 2010;86:309–14.PubMedCrossRefGoogle Scholar
  179. Nestler EJ. Antidepressant treatments in the 21st century. Biol Psychiatry. 1998;4:526–33.CrossRefGoogle Scholar
  180. Nestler EJ, Barrot M, DiLeone RJ, Eisch AJ, Gold SJ, Monteggia LM. Neurobiology of depression. Neuron. 2002;34:13–25.PubMedCrossRefGoogle Scholar
  181. Newton SS, Duman RS. Regulation of neurogenesis and angiogenesis in depression. Curr Neurovasc Res. 2004;1:261–7.PubMedCrossRefGoogle Scholar
  182. Niciu MJ, Ionescu DF, Richards EM, Zarate Jr CA. Glutamate and its receptors in the pathophysiology and treatment of major depressive disorder. J Neural Transm. 2014;121:907–24.PubMedPubMedCentralCrossRefGoogle Scholar
  183. Nishimura T, Ishima T, Iyo M, Hashimoto K. Potentiation of nerve growth factor-induced neurite outgrowth by fluvoxamine: role of sigma-1 receptors, IP3 receptors and cellular signaling pathways. PLoS One. 2008;3:2558.CrossRefGoogle Scholar
  184. Niswender CM, Conn PJ. Metabotropic glutamate receptors: physiology, pharmacology, and disease. Annu Rev Pharmacol Toxicol. 2010;50:295–322.PubMedPubMedCentralCrossRefGoogle Scholar
  185. Obuchowicz E, Bielecka AM, Paul-Samojedny M, Pudełko A, Kowalski J. Imipramine and fluoxetine inhibit LPS-induced activation and affect morphology of microglial cells in the rat glial culture. Pharmacol Rep. 2014;66:34–43.PubMedCrossRefGoogle Scholar
  186. Okugawa G, Omori K, Suzukawa J, Fujiseki Y, Kinoshita T, Inagaki C. Long-term treatment with antidepressants increases glucocorticoid receptor binding and gene expression in cultured rat hippocampal neurones. J Neuroendocrinol. 1999;11:887–95.PubMedCrossRefGoogle Scholar
  187. Oppermann S, Schrader FC, Elsässer K, Dolga AM, Kraus AL, Doti N, Wegscheid-Gerlach C, Schlitzer M, Culmsee C. Novel N-phenyl-substituted thiazolidinediones protect neural cells against glutamate- and tBid-induced toxicity. J Pharmacol Exp Ther. 2014;350:273–89.PubMedCrossRefGoogle Scholar
  188. Ortega F, Berninger B, Costa MR. Primary culture and live imaging of adult neural stem cells and their progeny. Methods Mol Biol. 2013;1052:1–11.PubMedCrossRefGoogle Scholar
  189. Pace TW, Hu F, Miller AH. Activation of cAMP-protein kinase A abrogates STAT5-mediated inhibition of glucocorticoid receptor signaling by interferon-alpha. Brain Behav Immun. 2011;25:1716–24.PubMedPubMedCentralCrossRefGoogle Scholar
  190. Paez-Pereda M, Hausch F, Holsboer F. Corticotropin releasing factor receptor antagonists for major depressive disorder. Expert Opin Investig Drugs. 2011;20:519–35.PubMedCrossRefGoogle Scholar
  191. Pałucha-Poniewiera A, Wierońska JM, Brański P, Stachowicz K, Chaki S, Pilc A. On the mechanism of the antidepressant-like action of group II mGlu receptor antagonist, MGS0039. Psychopharmacology (Berl). 2010;212:523–35.CrossRefGoogle Scholar
  192. Pałucha-Poniewiera A, Wierońska JM, Brański P, Burnat G, Chruścicka B, Pilc A. Is the mGlu5 receptor a possible target for new antidepressant drugs? Pharmacol Rep. 2013;65:1506–11.PubMedCrossRefGoogle Scholar
  193. Pałucha-Poniewiera A, Szewczyk B, Pilc A. Activation of the mTOR signaling pathway in the antidepressant-like activity of the mGlu5 antagonist MTEP and the mGlu7 agonist AMN082 in the FST in rats. Neuropharmacology. 2014;82:59–68.PubMedCrossRefGoogle Scholar
  194. Pani G, De Vos WH, Samari N, de Saint-Georges L, Baatout S, Van Oostveldt P, Benotmane MA. MorphoNeuroNet: an automated method for dense neurite network analysis. Cytometry A. 2014;85:188–99.PubMedCrossRefGoogle Scholar
  195. Pao LH, Lu SW, Sun GG, Chiou SH, Ma KH. Three Chinese herbal medicines promote neuroproliferation in vitro, and reverse the effects of chronic mild stress on behavior, the HPA axis, and proliferation of hippocampal precursor cell in vivo. J Ethnopharmacol. 2012;144:261–9.PubMedCrossRefGoogle Scholar
  196. Pariante CM, Hye A, Williamson R, Makoff A, Lovestone S, Kerwin RW. The antidepressant clomipramine regulates cortisol intracellular concentrations and glucocorticoid receptor expression in fibroblasts and rat primary neurones. Neuropsychopharmacology. 2003;28:1553–61.PubMedCrossRefGoogle Scholar
  197. Park SY, Jin ML, Kim YH, Kim Y, Lee SJ. Anti-inflammatory effects of aromatic-turmerone through blocking of NF-κB, JNK, and p38 MAPK signaling pathways in amyloid β-stimulated microglia. Int Immunopharmacol. 2012;14:13–20.PubMedCrossRefGoogle Scholar
  198. Partin KM. AMPA receptor potentiators: from drug design to cognitive enhancement. Curr Opin Pharmacol. 2015;20:46–53.PubMedCrossRefGoogle Scholar
  199. Paul IA, Skolnick P. Glutamate and depression: clinical and preclinical studies. Ann N Y Acad Sci. 2003;1003:250–72.PubMedCrossRefGoogle Scholar
  200. Paul RK, Singh NS, Khadeer M, Moaddel R, Sanghvi M, Green CE, O'Loughlin K, Torjman MC, Bernier M, Wainer IW. (R, S)-Ketamine metabolites (R, S)-norketamine and (2S,6S)-hydroxynorketamine increase the mammalian target of rapamycin function. Anesthesiology. 2014;121(1):149–59.PubMedPubMedCentralCrossRefGoogle Scholar
  201. Páv M, Kovárů H, Fiserová A, Havrdová E, Lisá V. Neurobiological aspects of depressive disorder and antidepressant treatment: role of glia. Physiol Res. 2008;57:151–64.PubMedGoogle Scholar
  202. Pepin MC, Beaulieu S, Barden N. Antidepressants regulate glucocorticoid receptor messenger RNA concentrations in primary neuronal cultures. Brain Res Mol Brain Res. 1989;6:77–83.PubMedCrossRefGoogle Scholar
  203. Perisic T, Zimmermann N, Kirmeier T, Asmus M, Tuorto F, Uhr M, Holsboer F, Rein T, Zschocke J. Valproate and amitriptyline exert common and divergent influences on global and gene promoter-specific chromatin modifications in rat primary astrocytes. Neuropsychopharmacology. 2010;35:792–805.PubMedPubMedCentralCrossRefGoogle Scholar
  204. Pfister JA, Ma C, Morrison BE, D'Mello SR. Opposing effects of sirtuins on neuronal survival: SIRT1-mediated neuroprotection is independent of its deacetylase activity. PLoS One. 2008;3, e4090.PubMedPubMedCentralCrossRefGoogle Scholar
  205. Pizzurro DM, Dao K, Costa LG. Diazinon and diazoxon impair the ability of astrocytes to foster neurite outgrowth in primary hippocampal neurons. Toxicol Appl Pharmacol. 2014;274:372–82.PubMedPubMedCentralCrossRefGoogle Scholar
  206. Pochwat B, Pałucha-Poniewiera A, Szewczyk B, Pilc A, Nowak G. NMDA antagonists under investigation for the treatment of major depressive disorder. Expert Opin Investig Drugs. 2014;23:1181–92.PubMedCrossRefGoogle Scholar
  207. Polajnar M, Zerovnik E. Impaired autophagy: a link between neurodegenerative and neuropsychiatric diseases. J Cell Mol Med. 2014;18:1705–11.PubMedPubMedCentralCrossRefGoogle Scholar
  208. Pregi N, Vittori D, Perez G, Pe´rez Leiro’s C, Nesse A. Effect of erythropoietin on staurosporine-induced apoptosis and differentiation of SH-SY5Y neuroblastoma cells. Biochim Biophys Acta. 2006;1763:238–46.PubMedCrossRefGoogle Scholar
  209. Presgraves SP, Tariq A, Borwege S, Joyce JN. Terminally differentiated SHSY5Y cells provide a model system for studying neuroprotective effects of dopamine agonists. Neurotox Res. 2004;5:579–98.PubMedCrossRefGoogle Scholar
  210. Qu WS, Tian DS, Guo ZB, Fang J, Zhang Q, Yu ZY, Xie MJ, Zhang HQ, Lü JG, Wang W. Inhibition of EGFR/MAPK signaling reduces microglial inflammatory response and the associated secondary damage in rats after spinal cord injury. J Neuroinflammation. 2012;9:178.PubMedPubMedCentralCrossRefGoogle Scholar
  211. Quiros I, Mayo JC, Garcia-Suarez O, Hevia D, Martin V, Rodríguez C, Sainz RM. Melatonin prevents glucocorticoid inhibition of cell proliferation and toxicity in hippocampal cells by reducing glucocorticoid receptor nuclear translocation. J Steroid Biochem Mol Biol. 2008;110:116–24.PubMedCrossRefGoogle Scholar
  212. Raedler TJ. Inflammatory mechanisms in major depressive disorder. Curr Opin Psychiatry. 2011;24:519–25.PubMedGoogle Scholar
  213. Rahmat Z, Jose S, Ramasamy R, Vidyadaran S. Reciprocal interactions of mouse bone marrow-derived mesenchymal stem cells and BV2 microglia after lipopolysaccharide stimulation. Stem Cell Res Ther. 2013;4:12.PubMedPubMedCentralCrossRefGoogle Scholar
  214. Rajkowska G, Miguel-Hidalgo JJ. Gliogenesis and glial pathology in depression. CNS Neurol Disord Drug Targets. 2007;6:219–33.PubMedPubMedCentralCrossRefGoogle Scholar
  215. Rantamäki T, Yalcin I. Antidepressant drug action – from rapid changes on network function to network rewiring. Prog Neuropsychopharmacol Biol Psychiatry. 2015;pii:S0278–5846(15)00128-1. doi: 10.1016/j.pnpbp.2015.06.001.Google Scholar
  216. Richardson JS, Hertz L. The effects of antidepressant drugs on adenylyl cyclase linked beta adrenergic binding sites on mouse astrocytes in primary cultures. Prog Neuropsychopharmacol Biol Psychiatry. 1983;7:675–80.PubMedCrossRefGoogle Scholar
  217. Robson MJ, Elliott M, Seminerio MJ, Matsumoto RR. Evaluation of sigma (σ) receptors in the antidepressant-like effects of ketamine in vitro and in vivo. Eur Neuropsychopharmacol. 2012;22:308–17.PubMedCrossRefGoogle Scholar
  218. Sanacora G, Rothman DL, Mason G, Krystal JH. Clinical studies implementing glutamate neurotransmission in mood disorders. Ann N Y Acad Sci. 2003;1003:292–308.PubMedCrossRefGoogle Scholar
  219. Sanacora G, Treccani G, Popoli M. Towards a glutamate hypothesis of depression: an emerging frontier of neuropsychopharmacology for mood disorders. Neuropharmacology. 2012;62:63–77.PubMedPubMedCentralCrossRefGoogle Scholar
  220. Sarkanen JR, Nykky J, Siikanen J, Selinummi J, Ylikomi T, Jalonen TO. Cholesterol supports the retinoic acid-induced synaptic vesicle formation in differentiating human SH-SY5Y neuroblastoma cells. J Neurochem. 2007;102:1941–52.PubMedCrossRefGoogle Scholar
  221. Sasaki K, El Omri A, Kondo S, Han J, Isoda H. Rosmarinus officinalis polyphenols produce anti-depressant like effect through monoaminergic and cholinergic functions modulation. Behav Brain Res. 2013;238:86–94.PubMedCrossRefGoogle Scholar
  222. Saura J, Tusell JM, Serratosa J. High-yield isolation of murine microglia by mild trypsinization. Glia. 2003;44:183–9.PubMedCrossRefGoogle Scholar
  223. Schildkraut JJ. The catecholamine hypothesis of affective disorders: a review of supporting evidence. 1965. J Neuropsychiatry Clin Neurosci. 1995;7:524–33.PubMedCrossRefGoogle Scholar
  224. Schneider L, Giordano S, Zelickson BR, Johnson MS, Benavides GA, Ouyang X, Fineberg N, Darley-Usmar VM, Zhang J. Differentiation of SH-SY5Y cells to a neuronal phenotype changes cellular bioenergetics and the response to oxidative stress. Free Radic Biol Med. 2011;51:2007–17.PubMedPubMedCentralCrossRefGoogle Scholar
  225. Schramm J, Schulte D. A fast and simple differentiation protocol to study the pro-neurogenic activity of soluble factors in neurospheres. Neurosci Lett. 2014;562:69–74.PubMedCrossRefGoogle Scholar
  226. Schwaninger M, Schöfl C, Blume R, Rössig L, Knepel W. Inhibition by antidepressant drugs of cyclic AMP response element-binding protein/cyclic AMP response element-directed gene transcription. Mol Pharmacol. 1995;47:1112–8.PubMedGoogle Scholar
  227. Seo MK, Cho HY, Lee CH, Koo KA, Park YK, Lee JG, Lee BJ, Park SW, Kim YH. Antioxidant and proliferative activities of bupleuri radix extract against serum deprivation in SH-SY5Y cells. Psychiatry Investig. 2013;10:81–8.PubMedPubMedCentralCrossRefGoogle Scholar
  228. Shaul U, Ben-Shachar D, Karry R, Klein E. Modulation of frequency and duration of repetitive magnetic stimulation affects catecholamine levels and tyrosine hydroxylase activity in human neuroblastoma cells: implication for the antidepressant effect of rTMS. Int J Neuropsychopharmacol. 2003;6:233–41.PubMedCrossRefGoogle Scholar
  229. Sheriff S, Dautzenberg FM, Mulchahey JJ, Pisarska M, Hauger RL, Chance WT, Balasubramaniam A, Kasckow JW. Interaction of neuropeptide Y and corticotropin-releasing factor signaling pathways in AR-5 amygdalar cells. Peptides. 2001;22:2083–9.PubMedCrossRefGoogle Scholar
  230. Shimizu M, Nishida A, Hayakawa H, Yamawaki S. Ca2+ release from inositol 1,4,5-trisphosphate-sensitive Ca2+ store by antidepressant drugs in cultured neurons of rat frontal cortex. J Neurochem. 1993;60:595–601.PubMedCrossRefGoogle Scholar
  231. Shirai M, Kawai Y, Yamanishi R, Terao J. Approach to novel functional foods for stress control 5. Antioxidant activity profiles of antidepressant herbs and their active components. J Med Invest. 2005;52(Suppl):249–51.PubMedCrossRefGoogle Scholar
  232. Ślusarczyk J, Trojan E, Głombik K, Budziszewska B, Kubera M, Lasoń W, Popiołek-Barczyk K, Mika J, Wędzony K, Basta-Kaim A. Prenatal stress is a vulnerability factor for altered morphology and biological activity of microglia cells. Front Cell Neurosci. 2015;9:82.PubMedPubMedCentralCrossRefGoogle Scholar
  233. Sofroniew MV. Reactive astrocytes in neural repair and protection. Neuroscientist. 2005;11:400–7.PubMedCrossRefGoogle Scholar
  234. Sofroniew MV, Vinters HV. Astrocytes: biology and pathology. Acta Neuropathol. 2010;119:7–35.PubMedPubMedCentralCrossRefGoogle Scholar
  235. Song JH, Marszalec W, Kai L, Yeh JZ. Narahashi T (2012) Antidepressants inhibit proton currents and tumor necrosis factor-α production in BV2 microglial cells. Brain Res. 2012;1435:15–23.PubMedCrossRefGoogle Scholar
  236. Storch A, Lester HA, Boehm BO, Schwarz J. Functional characterization of dopaminergic neurons derived from rodent mesencephalic progenitor cells. J Chem Neuroanat. 2003;26:133–42.PubMedCrossRefGoogle Scholar
  237. Takahashi K, Yamada M, Ohata H, Honda K, Yamada M. Ndrg2 promotes neurite outgrowth of NGF-differentiated PC12 cells. Neurosci Lett. 2005;388:157–62.PubMedCrossRefGoogle Scholar
  238. Tan S, Wood M, Maher P. Oxidative stress induces a form of programmed cell death with characteristics of both apoptosis and necrosis in neuronal cells. J Neurochem. 1998;71:95–105.PubMedCrossRefGoogle Scholar
  239. Tao L, Zhang F, Hao L, Wu J, Jia J, Liu JY, Zheng LT, Zhen X. 1-O-tigloyl-1-O-deacetyl-nimbolinin B inhibits LPS-stimulated inflammatory responses by suppressing NF-κB and JNK activation in microglia cells. J Pharmacol Sci. 2014;125:364–74.PubMedCrossRefGoogle Scholar
  240. Tazik S, Johnson S, Lu D, Johnson C, Youdim MB, Stockmeier CA, Ou XM. Comparative neuroprotective effects of rasagiline and aminoindan with selegiline on dexamethasone-induced brain cell apoptosis. Neurotox Res. 2009;15:284–90.PubMedPubMedCentralCrossRefGoogle Scholar
  241. Terada K, Kojima Y, Watanabe T, Izumo N, Chiba K, Karube Y. Inhibition of nerve growth factor-induced neurite outgrowth from PC12 cells by dexamethasone: signaling pathways through the glucocorticoid receptor and phosphorylated Akt and ERK1/2. PLoS One. 2014;9, e93223.PubMedPubMedCentralCrossRefGoogle Scholar
  242. Thompson SM, Kallarackal AJ, Kvarta MD, Van Dyke AM, LeGates TA, Cai X. An excitatory synapse hypothesis of depression. Trends Neurosci. 2015;38:279–94.PubMedPubMedCentralCrossRefGoogle Scholar
  243. Tieu K, Zuo DM, Yu PH. Differential effects of staurosporine and retinoic acid on the vulnerability of the SH-SY5Y neuroblastoma cells: involvement of Bcl-2 and p53 proteins. J Neurosci Res. 1999;58:426–35.PubMedCrossRefGoogle Scholar
  244. Tobaben S, Grohm J, Seiler A, Conrad M, Plesnila N, Culmsee C. Bid-mediated mitochondrial damage is a key mechanism in glutamate-induced oxidative stress and AIF-dependent cell death in immortalized HT-22 hippocampal neurons. Cell Death Differ. 2011;18:282–92.PubMedPubMedCentralCrossRefGoogle Scholar
  245. Vialou V, Feng J, Robison AJ, Nestler EJ. Epigenetic mechanisms of depression and antidepressant action. Annu Rev Pharmacol Toxicol. 2013;53:59–87.PubMedPubMedCentralCrossRefGoogle Scholar
  246. Wahane SD, Hellbach N, Prentzell MT, Weise SC, Vezzali R, Kreutz C, Timmer J, Krieglstein K, Thedieck K, Vogel T. PI3K-p110-alpha-subtype signalling mediates survival, proliferation and neurogenesis of cortical progenitor cells via activation of mTORC2. J Neurochem. 2014;130:255–67.PubMedCrossRefGoogle Scholar
  247. Wang CN, Shiao YJ, Lin YL, Chen CF. Nepalolide A inhibits the expression of inducible nitric oxide synthase by modulating the degradation of IkappaB-alpha and IkappaB-beta in C6 glioma cells and rat primary astrocytes. Br J Pharmacol. 1999;128:345–56.PubMedPubMedCentralCrossRefGoogle Scholar
  248. Wang X, Pongrac JL, DeFranco DB. Glucocorticoid receptors in hippocampal neurons that do not engage proteasomes escape from hormone-dependent down-regulation but maintain transactivation activity. Mol Endocrinol. 2002;16:1987–98.PubMedCrossRefGoogle Scholar
  249. Wang X, Wu H, Lakdawala VS, Hu F, Hanson ND, Miller AH. Inhibition of Jun N-terminal kinase (JNK) enhances glucocorticoid receptor-mediated function in mouse hippocampal HT22 cells. Neuropsychopharmacology. 2005;30(2):242–9.PubMedCrossRefGoogle Scholar
  250. Wang Y, Shi X, Qi Z. Hypericin prolongs action potential duration in hippocampal neurons by acting on K+ channels. Br J Pharmacol. 2010;159:1402–7.PubMedPubMedCentralCrossRefGoogle Scholar
  251. Wang H, Zhou X, Huang J, Mu N, Guo Z, Wen Q, Wang R, Chen S, Feng ZP, Zheng W. The role of Akt/FoxO3a in the protective effect of venlafaxine against corticosterone-induced cell death in PC12 cells. Psychopharmacology (Berl). 2013;228:129–41.CrossRefGoogle Scholar
  252. Wang H, Zhang R, Qiao Y, Xue F, Nie H, Zhang Z, Wang Y, Peng Z, Tan Q. Gastrodin ameliorates depression-like behaviors and up-regulates proliferation of hippocampal-derived neural stem cells in rats: involvement of its anti-inflammatory action. Behav Brain Res. 2014;266:153–60.PubMedCrossRefGoogle Scholar
  253. Watson S, Gallagher P, Porter RJ, Smith MS, Herron LJ, Bulmer S; North-East Mood Disorders Clinical Research Group, Young AH, Ferrier IN. A randomized trial to examine the effect of mifepristone on neuropsychological performance and mood in patients with bipolar depression. Biol Psychiatry. 2012;72:943–9.PubMedCrossRefGoogle Scholar
  254. Waxman EA, Baconguis I, Lynch DR, Robinson MB. N-methyl-D-aspartate receptor-dependent regulation of the glutamate transporter excitatory amino acid carrier 1. J Biol Chem. 2007;282:17594–607.PubMedCrossRefGoogle Scholar
  255. Wenker SD, Chamorro ME, Vota DM, Callero MA, Vittori DC, Nesse AB. Differential antiapoptotic effect of erythropoietin on undifferentiated and retinoic acid-differentiated SH-SY5Y cells. J Cell Biochem. 2010;110:151–61.PubMedGoogle Scholar
  256. Willets JM, Lambert DG, Lunec J, Griffiths HR. Studies on the neurotoxicity of 6,7-dihydroxy-1-methyl-1,2,3,4-tetrahydroisoquinoline (salsolinol) in SH-SY5Y cells. Eur J Pharmacol. 1995;293:319–26.PubMedCrossRefGoogle Scholar
  257. Wu F, Li H, Zhao L, Li X, You J, Jiang Q, Li S, Jin L, Xu Y. Protective effects of aqueous extract from Acanthopanax senticosus against corticosterone-induced neurotoxicity in PC12 cells. J Ethnopharmacol. 2013a;148:861–8.PubMedCrossRefGoogle Scholar
  258. Wu Q, Cho JG, Lee DS, Lee DY, Song NY, Kim YC, Lee KT, Chung HG, Choi MS, Jeong TS, Ahn EM, Kim GS, Baek NI. Carbohydrate derivatives from the roots of Brassica rapa ssp. campestris and their effects on ROS production and glutamate-induced cell death in HT-22 cells. Carbohydr Res. 2013b;372:9–14.PubMedCrossRefGoogle Scholar
  259. Wu M, Zhang H, Zhou C, Jia H, Ma Z, Zou Z. Identification of the chemical constituents in aqueous extract of zhi-qiao and evaluation of its antidepressant effect. Molecules. 2015;20:6925–40.PubMedCrossRefGoogle Scholar
  260. Wuwongse S, Cheng SS, Wong GT, Hung CH, Zhang NQ, Ho YS, Law AC, Chang RC. Effects of corticosterone and amyloid-beta on proteins essential for synaptic function: implications for depression and Alzheimer's disease. Biochim Biophys Acta. 2013;1832:2245–56.PubMedCrossRefGoogle Scholar
  261. Xu Y, Zhang C, Wang R, Govindarajan SS, Barish PA, Vernon MM, Fu C, Acharya AP, Chen L, Boykin E, Yu J, Pan J, O'Donnell JM, Ogle WO. Corticosterone induced morphological changes of hippocampal and amygdaloid cell lines are dependent on 5-HT7 receptor related signal pathway. Neuroscience. 2011;182:71–81.PubMedCrossRefGoogle Scholar
  262. Xu SL, Choi RC, Zhu KY, Leung KW, Guo AJ, Bi D, Xu H, Lau DT, Dong TT, Tsim KW. Isorhamnetin, a flavonol aglycone from Ginkgo biloba L, induces neuronal differentiation of cultured PC12 cells: potentiating the effect of nerve growth factor. Evid Based Complementary Alternat Med. 2012;2012:278273.Google Scholar
  263. Xu Z, Wu J, Zheng J, Ma H, Zhang H, Zhen X, Zheng LT, Zhang X. Design, synthesis and evaluation of a series of non-steroidal anti-inflammatory drug conjugates as novel neuroinflammatory inhibitors. Int Immunopharmacol. 2015;25:528–37.PubMedCrossRefGoogle Scholar
  264. Xue R, Jin ZL, Chen HX, Yuan L, He XH, Zhang YP, Meng YG, Xu JP, Zheng JQ, Zhong BH, Li YF, Zhang YZ. Antidepressant-like effects of 071031B, a novel serotonin and norepinephrine reuptake inhibitor. Eur Neuropsychopharmacol. 2013;23:728–41.PubMedCrossRefGoogle Scholar
  265. Yan L, Xu SL, Zhu KY, Lam KY, Xin G, Maiwulanjiang M, Li N, Dong TT, Lin H, Tsim KW. Optimizing the compatibility of paired-herb in an ancient Chinese herbal decoction Kai-Xin-San in activating neurofilament expression in cultured PC12 cells. J Ethnopharmacol. 2015;162:155–62.PubMedCrossRefGoogle Scholar
  266. Yang X, Ewald ER, Huo Y, Tamashiro KL, Salvatori R, Sawa A, Wand GS, Lee RS. Glucocorticoid-induced loss of DNA methylation in non-neuronal cells and potential involvement of DNMT1 in epigenetic regulation of Fkbp5. Biochem Biophys Res Commun. 2012;420:570–5.PubMedPubMedCentralCrossRefGoogle Scholar
  267. Yaniv SP, Ben-Shachar D, Klein E. Norepinephrine-glucocorticoids interaction does not annul the opposite effects of the individual treatments on cellular plasticity in neuroblastoma cells. Eur J Pharmacol. 2008;596:14–24.PubMedCrossRefGoogle Scholar
  268. Yeoh JW, Campbell EJ, James MH, Graham BA, Dayas CV. Orexin antagonists for neuropsychiatric disease: progress and potential pitfalls. Front Neurosci. 2014;8:36.PubMedPubMedCentralCrossRefGoogle Scholar
  269. Yong-Kee CJ, Salomonczyk D, Nash JE. Development and validation of a screening assay for the evaluation of putative neuroprotective agents in the treatment of Parkinson's disease. Neurotox Res. 2011;19:519–26.PubMedCrossRefGoogle Scholar
  270. Yuhas Y, Ashkenazi S, Berent E, Weizman A. Immunomodulatory activity of ketamine in human astroglial A172 cells: possible relevance to its rapid antidepressant activity. J Neuroimmunol. 2015;282:33–8.PubMedCrossRefGoogle Scholar
  271. Zhang S, Li B, Lovatt D, Xu J, Song D, Goldman SA, Nedergaard M, Hertz L, Peng L. 5-HT2B receptors are expressed on astrocytes from brain and in culture and are a chronic target for all five conventional 'serotonin-specific reuptake inhibitors'. Neuron Glia Biol. 2010;6:113–25.PubMedCrossRefGoogle Scholar
  272. Zhang F, Zhou H, Wilson BC, Shi JS, Hong JS, Gao HM. Fluoxetine protects neurons against microglial activation-mediated neurotoxicity. Parkinsonism Relat Disord. 2012a;18 Suppl 1:S213–7.PubMedPubMedCentralCrossRefGoogle Scholar
  273. Zhang H, Liu B, Wu J, Xu C, Tao J, Duan X, Cao Y, Dong J. Icariin inhibits corticosterone-induced apoptosis in hypothalamic neurons via the PI3-K/Akt signaling pathway. Mol Med Rep. 2012b;6:967–72.PubMedGoogle Scholar
  274. Zhang R, Peng Z, Wang H, Xue F, Chen Y, Wang Y, Wang H, Tan Q. Gastrodin ameliorates depressive-like behaviors and up-regulates the expression of BDNF in the hippocampus and hippocampal-derived astrocyte of rats. Neurochem Res. 2014;39:172–9.PubMedCrossRefGoogle Scholar
  275. Zhang GF, Liu WX, Qiu LL, Guo J, Wang XM, Sun HL, Yang JJ, Zhou ZQ. Repeated ketamine administration redeems the time lag for citalopram's antidepressant-like effects. Eur Psychiatry. 2015;30:504–10.PubMedCrossRefGoogle Scholar
  276. Zheng M, Liu C, Pan F, Shi D, Ma F, Zhang Y, Zhang Y. Protective effects of flavonoid extract from Apocynum venetum leaves against corticosterone-induced neurotoxicity in PC12 cells. Cell Mol Neurobiol. 2011;31:421–8.PubMedCrossRefGoogle Scholar
  277. Zhou H, Li X, Gao M. Curcumin protects PC12 cells from corticosterone-induced cytotoxicity: possible involvement of the ERK1/2 pathway. Basic Clin Pharmacol Toxicol. 2009;104:236–40.PubMedCrossRefGoogle Scholar
  278. Zhu WH, Conforti L, Millhorn DE. Expression of dopamine D2 receptor in PC-12 cells and regulation of membrane conductances by dopamine. Am J Physiol. 1997;273:C1143–50.PubMedGoogle Scholar
  279. Zhu W, Ma S, Qu R, Kang D. Antidepressant-like effect of saponins extracted from Chaihu-jia-longgu-muli-tang and its possible mechanism. Life Sci. 2006;79(8):749–56.PubMedCrossRefGoogle Scholar
  280. Zhu KY, Xu SL, Choi RC, Yan AL, Dong TT, Tsim KW. Kai-xin-san, a chinese herbal decoction containing ginseng radix et rhizoma, polygalae radix, acori tatarinowii rhizoma, and poria, stimulates the expression and secretion of neurotrophic factors in cultured astrocytes. Evid Based Complementary Alternat Med. 2013;2013:731385.Google Scholar
  281. Zimmermann N, Zschocke J, Perisic T, Yu S, Holsboer F, Rein T. Antidepressants inhibit DNA methyltransferase 1 through reducing G9a levels. Biochem J. 2012;448:93–102.PubMedCrossRefGoogle Scholar
  282. Zou YP, Lu YH, Wei DZ. Protective effects of a flavonoid-rich extract of Hypericum perforatum L. against hydrogen peroxide-induced apoptosis in PC12 cells. Phytother Res. 2010;24 Suppl 1:S6–10.PubMedCrossRefGoogle Scholar
  283. Zschocke J, Rein T. Antidepressants encounter autophagy in neural cells. Autophagy. 2011;7:1247–8.PubMedCrossRefGoogle Scholar
  284. Zschocke J, Zimmermann N, Berning B, Ganal V, Holsboer F, Rein T. Antidepressant drugs diversely affect autophagy pathways in astrocytes and neurons-dissociation from cholesterol homeostasis. Neuropsychopharmacology. 2011;36:1754–68.PubMedPubMedCentralCrossRefGoogle Scholar
  285. Zusso M, Debetto P, Guidolin D, Giusti P. Cerebellar granular cell cultures as an in vitro model for antidepressant drug-induced neurogenesis. Crit Rev Neurobiol. 2004;16:59–65.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Experimental Neuroendocrinology, Institute of PharmacologyPolish Academy of SciencesKrakowPoland

Personalised recommendations