Skip to main content

Advertisement

Log in

Antidepressant-like cognitive and behavioral effects of acute ketamine administration associated with plasticity in the ventral hippocampus to medial prefrontal cortex pathway

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Acute low-dose administration of the N-methyl-D-aspartate (NMDA) receptor antagonist, ketamine, produces rapid and sustained antidepressant-like effects in humans and rodents. Recently, we found that the long-lasting effect of ketamine on the forced swim test requires ventral hippocampal (vHipp) activity at the time of drug administration. The medial prefrontal cortex (mPFC), a target of the vHipp dysregulated in depression, is important for cognitive flexibility and response strategy selection. Deficits in cognitive flexibility, the ability to modify thoughts and behaviors in response to changes in the environment, are associated with depression. We have shown that chronic stress impairs cognitive flexibility on the attentional set-shifting test (AST) and induces a shift from active to passive response strategies on the shock-probe defensive burying test (SPDB).

Objective

In this study, we tested the effects of ketamine on chronic stress-induced changes in cognitive flexibility and coping behavior on the AST and SPDB, respectively. Subsequently, we investigated vHipp-mPFC plasticity as a potential mechanism of ketamine’s therapeutic action.

Results

Ketamine reversed deficits in cognitive flexibility and restored active coping behavior in chronically stressed rats. Further, high frequency stimulation in the vHipp replicated ketamine’s antidepressant-like effects on the forced swim test and AST, but not on the SPDB.

Conclusion

These results show that ketamine restores cognitive flexibility and coping response strategy compromised by stress. Activity in the vHipp-mPFC pathway may represent a neural substrate for some of the antidepressant-like behavioral effects of ketamine, including cognitive flexibility, but other circuits may mediate the effects of ketamine on coping response strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Austin MP, Mitchell P, Goodwin GM (2001) Cognitive deficits in depression: possible implications for functional neuropathology. Br J Psychiatry 178:200–206

    Article  CAS  PubMed  Google Scholar 

  • Autry AE, Adachi M, Nosyreva E, Na ES, Los MF, Cheng PF, Kavalali ET, Monteggia LM (2011) NMDA receptor blockade at rest triggers rapid behavioural antidepressant responses. Nature 475:91–95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bondi CO, Barrera G, Lapiz MD, Bedard T, Mahan A, Morilak DA (2007) Noradrenergic facilitation of shock-probe defensive burying in lateral septum of rats, and modulation by chronic treatment with desipramine. Prog Neuropsychopharmacol Biol Psychiatry 31:482–495

    Article  CAS  PubMed  Google Scholar 

  • Bondi CO, Rodriguez G, Gould GG, Frazer A, Morilak DA (2008) Chronic unpredictable stress induces a cognitive deficit and anxiety-like behavior in rats that is prevented by chronic antidepressant drug treatment. Neuropsychopharmacology 33:320–331

    Article  CAS  PubMed  Google Scholar 

  • Bondi CO, Jett JD, Morilak DA (2010) Beneficial effects of desipramine on cognitive function of chronically stressed rats are mediated by alpha1-adrenergic receptors in medial prefrontal cortex. Prog Neuropsychopharmacol Biol Psychiatry 34:913–923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carlson PJ, Diazgranados N, Nugent AC, Ibrahim L, Luckenbaugh DA, Brutsche N, Herscovitch P, Manji HK, Zarate CA Jr, Drevets WC (2013) Neural correlates of rapid antidepressant response to ketamine in treatment-resistant unipolar depression: a preliminary positron emission tomography study. Biol Psychiatry 73:1213–1221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caspi A, Sugden K, Moffitt TE, Taylor A, Craig IW, Harrington H, McClay J, Mill J, Martin J, Braithwaite A, Poulton R (2003) Influence of life stress on depression: moderation by a polymorphism in the 5-HTT gene. Science 301:386–389

    Article  CAS  PubMed  Google Scholar 

  • Charney DS (2004) Psychobiological mechanisms of resilience and vulnerability: implications for successful adaptation to extreme stress. Am J Psychiatry 161:195–216

    Article  PubMed  Google Scholar 

  • Conover WJ, Iman RL (1981) Rank transformations as a bridge between parametric and nonparametric statistics. Am Stat 35:124–129

    Google Scholar 

  • Cornwell BR, Salvadore G, Furey M, Marquardt CA, Brutsche NE, Grillon C, Zarate CA Jr (2012) Synaptic potentiation is critical for rapid antidepressant response to ketamine in treatment-resistant major depression. Biol Psychiatry 72:555–561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Diego-Adelino J, Portella MJ, Gomez-Anson B, Lopez-Moruelo O, Serra-Blasco M, Vives Y, Puigdemont D, Perez-Egea R, Alvarez E, Perez V (2013) Hippocampal abnormalities of glutamate/glutamine, N-acetylaspartate and choline in patients with depression are related to past illness burden. J Psychiatry Neurosci 38:107–116

    Article  PubMed  PubMed Central  Google Scholar 

  • Disner SG, Beevers CG, Haigh EA, Beck AT (2011) Neural mechanisms of the cognitive model of depression. Nat Rev Neurosci 12:467–477

    Article  CAS  PubMed  Google Scholar 

  • Fales CL, Barch DM, Rundle MM, Mintun MA, Mathews J, Snyder AZ, Sheline YI (2009) Antidepressant treatment normalizes hypoactivity in dorsolateral prefrontal cortex during emotional interference processing in major depression. J Affect Disord 112:206–211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feyissa AM, Chandran A, Stockmeier CA, Karolewicz B (2009) Reduced levels of NR2A and NR2B subunits of NMDA receptor and PSD-95 in the prefrontal cortex in major depression. Prog Neuropsychopharmacol Biol Psychiatry 33:70–75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gass N, Schwarz AJ, Sartorius A, Schenker E, Risterucci C, Spedding M, Zheng L, Meyer-Lindenberg A, Weber-Fahr W (2014) Sub-anesthetic ketamine modulates intrinsic BOLD connectivity within the hippocampal-prefrontal circuit in the rat. Neuropsychopharmacology 39:895–906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gastambide F, Mitchell SN, Robbins TW, Tricklebank MD, Gilmour G (2013) Temporally distinct cognitive effects following acute administration of ketamine and phencyclidine in the rat. Eur Neuropsychopharmacol 23:1414–1422

    Article  CAS  PubMed  Google Scholar 

  • Godsil BP, Kiss JP, Spedding M, Jay TM (2013) The hippocampal-prefrontal pathway: the weak link in psychiatric disorders? Eur Neuropsychopharmacol 23:1165–1181

    Article  CAS  PubMed  Google Scholar 

  • Grimm S, Luborzewski A, Schubert F, Merkl A, Kronenberg G, Colla M, Heuser I, Bajbouj M (2012) Region-specific glutamate changes in patients with unipolar depression. J Psychiatr Res 46:1059–1065

    Article  PubMed  Google Scholar 

  • Harris T (2001) Recent developments in understanding the psychosocial aspects of depression. Br Med Bull 57:17–32

    Article  CAS  PubMed  Google Scholar 

  • Hasler G, van der Veen JW, Tumonis T, Meyers N, Shen J, Drevets WC (2007) Reduced prefrontal glutamate/glutamine and gamma-aminobutyric acid levels in major depression determined using proton magnetic resonance spectroscopy. Arch Gen Psychiatry 64:193–200

    Article  CAS  PubMed  Google Scholar 

  • Heim C, Nemeroff CB (2001) The role of childhood trauma in the neurobiology of mood and anxiety disorders: preclinical and clinical studies. Biol Psychiatry 49:1023–1039

    Article  CAS  PubMed  Google Scholar 

  • Jett JD, Morilak DA (2013) Too much of a good thing: blocking noradrenergic facilitation in medial prefrontal cortex prevents the detrimental effects of chronic stress on cognition. Neuropsychopharmacology 38:585–595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jett JD, Evans L, Lodge DJ, Morilak DA (2013) Effects of ketamine administration on chronic stress-induced cognitive deficits in rats. Soc Neurosci Abstr Program Number 730:7

    Google Scholar 

  • Kendler KS, Karkowski LM, Prescott CA (1999) Causal relationship between stressful life events and the onset of major depression. Am J Psychiatry 156:837–841

    Article  CAS  PubMed  Google Scholar 

  • Kessler RC, Berglund P, Demler O, Jin R, Koretz D, Merikangas KR, Rush AJ, Walters EE, Wang PS (2003) The epidemiology of major depressive disorder: results from the National Comorbidity Survey Replication (NCS-R). JAMA 289:3095–3105

    Article  PubMed  Google Scholar 

  • Kessler RC, Merikangas KR, Wang PS (2007) Prevalence, comorbidity, and service utilization for mood disorders in the United States at the beginning of the twenty-first century. Annu Rev Clin Psychol 3:137–158

    Article  PubMed  Google Scholar 

  • Kos T, Nikiforuk A, Rafa D, Popik P (2011) The effects of NMDA receptor antagonists on attentional set-shifting task performance in mice. Psychopharmacol (Berlin) 214:911–921

    Article  CAS  Google Scholar 

  • Krystal JH, Karper LP, Seibyl JP, Freeman GK, Delaney R, Bremner JD, Heninger GR, Bowers MB Jr, Charney DS (1994) Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans. Psychotomimetic, perceptual, cognitive, and neuroendocrine responses. Arch Gen Psychiatry 51:199–214

    Article  CAS  PubMed  Google Scholar 

  • Lapiz-Bluhm MD, Bondi CO, Doyen J, Rodriguez GA, Bedard-Arana T, Morilak DA (2008) Behavioural assays to model cognitive and affective dimensions of depression and anxiety in rats. J Neuroendocrinol 20:1115–1137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • LeDoux JE, Gorman JM (2001) A call to action: overcoming anxiety through active coping. Am J Psychiatry 158:1953–1955

    Article  CAS  PubMed  Google Scholar 

  • Lee YA, Goto Y (2011) Chronic stress modulation of prefrontal cortical NMDA receptor expression disrupts limbic structure—prefrontal cortex interaction. Eur J Neurosci 34:426–436

    Article  PubMed  Google Scholar 

  • Li N, Lee B, Liu RJ, Banasr M, Dwyer JM, Iwata M, Li XY, Aghajanian G, Duman RS (2010) mTOR-dependent synapse formation underlies the rapid antidepressant effects of NMDA antagonists. Science 329:959–964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li N, Liu RJ, Dwyer JM, Banasr M, Lee B, Son H, Li XY, Aghajanian G, Duman RS (2011) Glutamate N-methyl-D-aspartate receptor antagonists rapidly reverse behavioral and synaptic deficits caused by chronic stress exposure. Biol Psychiatry 69:754–761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liston C, Miller MM, Goldwater DS, Radley JJ, Rocher AB, Hof PR, Morrison JH, McEwen BS (2006) Stress-induced alterations in prefrontal cortical dendritic morphology predict selective impairments in perceptual attentional set-shifting. J Neurosci 26:7870–7874

    Article  CAS  PubMed  Google Scholar 

  • Lodge DJ, Carreno F, Shah A, Jett JD, Delgado PL, Morilak DA, Frazer A (2012) Neuronal systems underlying the antidepressant response of ketamine. Neuropsychopharmacology 38:S104, Online

    Google Scholar 

  • Machado-Vieira R, Salvadore G, Diazgranados N, Zarate CA Jr (2009) Ketamine and the next generation of antidepressants with a rapid onset of action. Pharmacol Ther 123:143–150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • MacQueen G, Frodl T (2011) The hippocampus in major depression: evidence for the convergence of the bench and bedside in psychiatric research? Mol Psychiatry 16:252–264

    Article  CAS  PubMed  Google Scholar 

  • Maeng S, Zarate CA Jr (2007) The role of glutamate in mood disorders: results from the ketamine in major depression study and the presumed cellular mechanism underlying its antidepressant effects. Curr Psychiatry Rep 9:467–474

    Article  PubMed  Google Scholar 

  • Maeng S, Zarate CA Jr, Du J, Schloesser RJ, McCammon J, Chen G, Manji HK (2008) Cellular mechanisms underlying the antidepressant effects of ketamine: role of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors. Biol Psychiatry 63:349–352

    Article  CAS  PubMed  Google Scholar 

  • Magarinos AM, McEwen BS (1995) Stress-induced atrophy of apical dendrites of hippocampal CA3c neurons: comparison of stressors. Neuroscience 69:83–88

    Article  CAS  PubMed  Google Scholar 

  • Malhi GS, Moore J, McGuffin P (2000) The genetics of major depressive disorder. Curr Psychiatry Rep 2:165–169

    Article  CAS  PubMed  Google Scholar 

  • Malhotra AK, Pinals DA, Adler CM, Elman I, Clifton A, Pickar D, Breier A (1997) Ketamine-induced exacerbation of psychotic symptoms and cognitive impairment in neuroleptic-free schizophrenics. Neuropsychopharmacology 17:141–150

    Article  CAS  PubMed  Google Scholar 

  • Meltzer HY, Rajagopal L, Huang M, Oyamada Y, Kwon S, Horiguchi M (2013) Translating the N-methyl-D-aspartate receptor antagonist model of schizophrenia to treatments for cognitive impairment in schizophrenia. Int J Neuropsychopharmacol 16:2181–2194

    Article  CAS  PubMed  Google Scholar 

  • Moghaddam B, Javitt D (2012) From revolution to evolution: the glutamate hypothesis of schizophrenia and its implication for treatment. Neuropsychopharmacology 37:4–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moghaddam B, Adams B, Verma A, Daly D (1997) Activation of glutamatergic neurotransmission by ketamine: a novel step in the pathway from NMDA receptor blockade to dopaminergic and cognitive disruptions associated with the prefrontal cortex. J Neurosci 17:2921–2927

    CAS  PubMed  Google Scholar 

  • Nierenberg AA, Amsterdam JD (1990) Treatment-resistant depression: definition and treatment approaches. J Clin Psychiatry 51(Suppl):39–47, discussion 48–50

    PubMed  Google Scholar 

  • Nierenberg AA, Wright EC (1999) Evolution of remission as the new standard in the treatment of depression. J Clin Psychiatry 60(Suppl 22):7–11

    PubMed  Google Scholar 

  • Nikiforuk A, Popik P (2014) Ketamine prevents stress-induced cognitive inflexibility in rats. Psychoneuroendocrinology 40:119–122

    Article  CAS  PubMed  Google Scholar 

  • Nikiforuk A, Golembiowska K, Popik P (2010) Mazindol attenuates ketamine-induced cognitive deficit in the attentional set shifting task in rats. Eur Neuropsychopharmacol 20:37–48

    Article  CAS  PubMed  Google Scholar 

  • Nosyreva E, Szabla K, Autry AE, Ryazanov AG, Monteggia LM, Kavalali ET (2013) Acute suppression of spontaneous neurotransmission drives synaptic potentiation. J Neurosci 33:6990–7002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohashi S, Matsumoto M, Otani H, Mori K, Togashi H, Ueno K, Kaku A, Yoshioka M (2002) Changes in synaptic plasticity in the rat hippocampo-medial prefrontal cortex pathway induced by repeated treatments with fluvoxamine. Brain Res 949:131–138

    Article  CAS  PubMed  Google Scholar 

  • Olff M, Langeland W, Gersons BP (2005) Effects of appraisal and coping on the neuroendocrine response to extreme stress. Neurosci Biobehav Rev 29:457–467

    Article  CAS  PubMed  Google Scholar 

  • Paxinos G, Watson C (1998) The rat brain in stereotaxic coordinates, 4th edn. Academic, San Diego

    Google Scholar 

  • Paykel ES, Ramana R, Cooper Z, Hayhurst H, Kerr J, Barocka A (1995) Residual symptoms after partial remission: an important outcome in depression. Psychol Med 25:1171–1180

    Article  CAS  PubMed  Google Scholar 

  • Richards D (2011) Prevalence and clinical course of depression: a review. Clin Psychol Rev 31:1117–1125

    Article  PubMed  Google Scholar 

  • Schobel SA, Chaudhury NH, Khan UA, Paniagua B, Styner MA, Asllani I, Inbar BP, Corcoran CM, Lieberman JA, Moore H, Small SA (2013) Imaging patients with psychosis and a mouse model establishes a spreading pattern of hippocampal dysfunction and implicates glutamate as a driver. Neuron 78:81–93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shah AA, Sjovold T, Treit D (2004a) Inactivation of the medial prefrontal cortex with the GABAA receptor agonist muscimol increases open-arm activity in the elevated plus-maze and attenuates shock-probe burying in rats. Brain Res 1028:112–115

    Article  CAS  PubMed  Google Scholar 

  • Shah AA, Sjovold T, Treit D (2004b) Selective antagonism of medial prefrontal cortex D4 receptors decreases fear-related behaviour in rats. Eur J Neurosci 19:3393–3397

    Article  PubMed  Google Scholar 

  • Siegle GJ, Thompson W, Carter CS, Steinhauer SR, Thase ME (2007) Increased amygdala and decreased dorsolateral prefrontal BOLD responses in unipolar depression: related and independent features. Biol Psychiatry 61:198–209

    Article  PubMed  Google Scholar 

  • White PF, Johnston RR, Pudwill CR (1975) Interaction of ketamine and halothane in rats. Anesthesiology 42:179–186

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge and thank Lauren Evans for her superb technical assistance.

Funding

Funding for this work was provided by research grants MH090067 (DJL), MH053851, and MH072672 (DAM) from the National Institutes of Health and by a University of Texas Health Science Center President’s Council Faculty Scholar Award (DAM).

Conflict of interest

There are no conflicts of interest to report

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. Morilak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jett, J.D., Boley, A.M., Girotti, M. et al. Antidepressant-like cognitive and behavioral effects of acute ketamine administration associated with plasticity in the ventral hippocampus to medial prefrontal cortex pathway. Psychopharmacology 232, 3123–3133 (2015). https://doi.org/10.1007/s00213-015-3957-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-015-3957-3

Keywords

Navigation