Skip to main content

Moisture-Driven Landslides and Cascade Hazards in the Himalayan Region: A Synthesis on Predictive Assessment

  • Chapter
  • First Online:
Landslide: Susceptibility, Risk Assessment and Sustainability

Abstract

Moisture-driven landslides (MDL), mainly caused by rain, seriously threaten lives and property, resulting in catastrophic damages and considerable economic losses. In areas with steep topography, the temporal and spatial clustering of long-duration, moderate-to-short-duration high-intensity rainfall contributes to landslides. Shifting precipitation patterns due to climate change, alterations to sub-surface conditions, such as pore-water pressures, retreating glaciers, and permafrost, further increase the risk of landslides. This synthesis apprises the physical drivers associated with MDLs and their complex interplay in triggering MDLs. The added value of this synthesis is multifaceted: (1) to uncover moisture-driven landslide trends and associated cascading hazards across the high-mountain areas of the globe (2) To explore the probability of rain-driven landslide-related mortality rate across different continents using the archived landslide information. (3) To present a systematic review of available physical and statistical tools to identify MDL triggers and highlight the need for updating rain thresholds using observed and projected climate information to address nonstationarities related to climate change and climate variability. Our analysis of archived rainfall-triggered landslides of the global landslide catalogue between 2007 and 2022 shows that global precipitation contributes to more than 60% of landslides. Further, our observational assessments of the fatality versus landslide frequency curves show that high-mountain Asia experiences the most frequent landslides, and its populations are especially vulnerable to such catastrophic events. The contribution of this synthesis paper is to inform scientists and practitioners of the latest developments in MDLs, aiding the translation of scientific understanding into developing resilience policies and adaptation efforts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdollahi M, Vahedifard F, Tracy FT (2023) Post‐wildfire stability of unsaturated hillslopes against rainfall‐triggered landslides. Earth's Future 11(3):e2022EF003213

    Google Scholar 

  • Abraham MT, Pothuraju D, Satyam ND (2019) Rainfall thresholds for prediction of landslides in Idukki, India: an empirical approach. Water 11(10):2113. https://doi.org/10.3390/w11102113

    Article  Google Scholar 

  • Abraham MT, Satyam N, Rosi A, Pradhan B, Segoni S (2021) Usage of antecedent soil moisture for improving the performance of rainfall thresholds for landslide early warning. CATENA 200:105147

    Article  Google Scholar 

  • Akcali E, Arman H, Firat S, Saltabas L, Gunduz Z (2010) Rainfall thresholds for the initiation of landslides in Trabzon province of Turkey. Int J Eng Appl Sci 1(1):1–9

    Google Scholar 

  • Aristizábal E, Vélez JI, Martínez HE, Jaboyedoff M (2016) SHIA_Landslide: a distributed conceptual and physically based model to forecast the temporal and spatial occurrence of shallow landslides triggered by rainfall in tropical and mountainous basins. Landslides 13:497–517

    Article  Google Scholar 

  • Arnone E, Dialynas YG, Noto LV, Bras RL (2016) Accounting for soil parameter uncertainty in a physically based and distributed approach for rainfall-triggered landslides. Hydrol Process 30(6):927–944

    Article  Google Scholar 

  • Belongia MF, Hammond Wagner C, Seipp KQ, Ajami NK (2023) Building water resilience in the face of cascading wildfire risks. Sci Adv 9(37):eadf9534

    Google Scholar 

  • Bertola M, Viglione A, Vorogushyn S, Lun D, Merz B, Blöschl G (2021) Do small and large floods have the same drivers of change? A regional attribution analysis in Europe. Hydrol Earth Syst Sci 25(3):1347–1364

    Article  Google Scholar 

  • Blöschl G, Hall J, Viglione A, Perdigão RA, Parajka J, Merz B, ... , Živković N (2019) Changing climate both increases and decreases European river floods. Nature 573(7772):108–111

    Google Scholar 

  • Bogaard T, Greco R (2018) Invited perspectives: Hydrological perspectives on precipitation intensity-duration thresholds for landslide initiation: proposing hydro-meteorological thresholds. Nat Hazard 18(1):31–39

    Article  Google Scholar 

  • Bradford JM, Ferris JE, Remley PA (1987) Interrill soil erosion processes: I. Effect of surface sealing on infiltration, runoff, and soil splash detachment. Soil Sci Soc Am J 51(6):1566–1571

    Google Scholar 

  • British Geological Survey (2023) Understanding Landslides. Available at https://www.bgs.ac.uk/discovering-geology/earth-hazards/landslides/, Accessed on September 2023.

  • Brunetti MT, Peruccacci S, Rossi M, Luciani S, Valigi D, Guzzetti F (2010) Rainfall thresholds for the possible occurrence of landslides in Italy. Nat Hazard 10(3):447–458

    Article  Google Scholar 

  • Burton A, Bathurst JC (1998) Physically based modelling of shallow landslide sediment yield at a catchment scale. Environ Geol 35:89–99

    Article  Google Scholar 

  • Capecchi F, Focardi P (1988) Rainfall and landslides: research into a critical precipitation coefficient in an area of Italy. In: Bonnard C (ed) Landslides, Proceedings of the 5th International Symposium on Landslides. Balkema, Roterdam, pp 1131–1136.

    Google Scholar 

  • Chang JM, Chen H, Jou BJD, Tsou NC, Lin GW (2017) Characteristics of rainfall intensity, duration, and kinetic energy for landslide triggering in Taiwan. Eng Geol 231:81–87

    Article  Google Scholar 

  • Chen B, Ma C, Krajewski WF, Wang P, Ren F (2020) Logarithmic transformation and peak-discharge power-law analysis. Hydrol Res 51(1):65–76

    Article  Google Scholar 

  • Chen KT, Chen XQ, Hu GS, Kuo YS, Chen HY (2019) Effects of river flow velocity on the formation of landslide dams. J Mt Sci 16(11):2502–2518

    Article  Google Scholar 

  • Chen X, Li D, Tang X, Liu Y (2021) A three-dimensional large-deformation random finite-element study of landslide runout considering spatially varying soil. Landslides 18(9):3149–3162

    Article  Google Scholar 

  • Crosta GB, Frattini PJNH (2003) Distributed modelling of shallow landslides triggered by intense rainfall. Nat Hazard 3:81–93

    Article  Google Scholar 

  • Cruden DM, Varnes DJ (1996) Landslides: investigation and mitigation. Chapter 3-Landslide types and processes. Transportation research board special report, Technical Report no. 247, pp 36–75

    Google Scholar 

  • Culler ES, Livneh B, Rajagopalan B, Tiampo KF (2023) A data-driven evaluation of post-fire landslide susceptibility. Nat Hazard 23(4):1631–1652

    Article  Google Scholar 

  • Central Water Commission (2011) Inventory and Monitoring of Glacial Lakes/Water Bodies in the Himalayan Region of Indian River Basins Report. Retrieved from cwc.gov.in

    Google Scholar 

  • Central Water Commission (2015a). advisory sheet glacial lake outburst flood South Lhonak System in Teesta River Basin. Retrieved from cwc.gov.in

    Google Scholar 

  • Central Water Commission (2015b) Lake outburst flood (GLOF) study of South Lhonak Lake in Sikkim. Retrieved from cwc.gov.in

    Google Scholar 

  • Dash RK, Samanta M, Kanungo DP (2023) debris flow hazard in India: current status, research trends, and emerging challenges. In: Landslides: detection, prediction and monitoring: technological developments. Springer, pp 211–231

    Google Scholar 

  • D’Ippolito A, Lupiano V, Rago V, Terranova OG, Iovine G (2023) An integral assessment of landslide dams generated by the occurrence of rainfall-induced landslide and debris flow hazard chain. Water 15(2):2771

    Google Scholar 

  • Department of Mineral Resources (2010) Knowledge of Landslides (in Thai). Available at: www.dmr.go.th, Retrieved on: October 31, 2021

  • Dikshit A, Satyam DN (2018) Estimation of rainfall thresholds for landslide occurrences in Kalimpong, India. Innov Infrastruct Solut 3:1–10

    Article  Google Scholar 

  • Do HM, Yin KL (2018) Rainfall threshold analysis and Bayesian probability method for landslide initiation based on landslides and rainfall events in the past. Open J Geol 8(7):674–696

    Article  Google Scholar 

  • EM-DAT (2022) International emergency disaster database. Available at: emdat.be. Accessed on: September, 2022

    Google Scholar 

  • Fayaz M, Khader SA, Rafiq M (2022) Landslides in the Himalayas: Causes, Evolution, and Mitigation—A Case Study of National Highway 44, India. In: Disaster management in the complex Himalayan terrains: natural hazard management, methodologies and policy implications. Springer International Publishing, pp 43–58

    Google Scholar 

  • Ferro V, Carollo FG, Serio MA (2020) Establishing a threshold for rainfall-induced landslides by a kinetic energy–duration relationship. Hydrol Process 34(16):3571–3581

    Article  Google Scholar 

  • Fomenko I, Strom A, Zerkal O (2020, July) Possibility of landslide damming in the Vakhsh River catchment and its effect on the hydraulic schemes and population. In: IOP conference series: materials science and engineering, vol 883, no 1. p 012069

    Google Scholar 

  • Froude MJ, Petley DN (2018) Global fatal landslide occurrence from 2004 to 2016. Nat Hazard 18(8):2161–2181

    Article  Google Scholar 

  • Gariano SL, Melillo M, Peruccacci S, Brunetti MT (2020) How much does the rainfall temporal resolution affect rainfall thresholds for landslide triggering? Nat Hazards 100:655–670

    Article  Google Scholar 

  • Gariano SL, Melillo M, Brunetti MT, Kumar S, Mathiyalagan R, Peruccacci S (2023) Challenges in defining frequentist rainfall thresholds to be implemented in a landslide early warning system in India. In: Progress in landslide research and technology, vol 1, no 1, 2022. Springer, pp 409–416

    Google Scholar 

  • Gill JC, Malamud BD (2014) Reviewing and visualizing the interactions of natural hazards. Rev Geophys 52(4):680–722

    Article  Google Scholar 

  • Giorgi F, Im ES, Coppola E, Diffenbaugh NS, Gao XJ, Mariotti L, Shi Y (2011) Higher hydroclimatic intensity with global warming. J Clim 24(20):5309–5324

    Article  Google Scholar 

  • Greco R, Marino P, Bogaard TA (2023) Recent advancements of landslide hydrology. Wiley Interdiscip Rev: Water:e1675

    Google Scholar 

  • Gupta A, Agrawal R (2016) Management issues in Kedarnath Tragedy. Available at: https://www.preventionweb.net/publication/, Accessed on October, 2023

  • Guzzetti F, Peruccacci S, Rossi M, Stark CP (2007) Rainfall thresholds for the initiation of landslides in central and southern Europe. Meteorol Atmos Phys 98:239–267

    Article  Google Scholar 

  • Guzzetti F, Peruccacci S, Rossi M, Stark CP (2008) The rainfall intensity–duration control of shallow landslides and debris flows: an update. Landslides 5:3–17

    Article  Google Scholar 

  • He Z, Zuo R, Zhang D, Ni P, Han K, Xue Z, Wang J, Xu D (2021) A least squares method for identification of unknown groundwater pollution source. Hydrol Res 52(2):450–464

    Article  CAS  Google Scholar 

  • Harilal GT, Madhu D, Ramesh MV, Pullarkatt D (2019) Towards establishing rainfall thresholds for a real-time landslide early warning system in Sikkim India. Landslides 16(12):2395–2408

    Article  Google Scholar 

  • Handwerger AL, Fielding EJ, Sangha SS, Bekaert DP (2022) Landslide sensitivity and response to precipitation changes in wet and dry climates. Geophys Res Lett 49(13):e2022GL099499

    Google Scholar 

  • Hock R, Rasul G, Adler C, Cáceres B, Gruber S, Hirabayashi Y, ... , Steltzer H (2019) high mountain areas. IPCC special report on the ocean and cryosphere in a changing climate. In: The intergovernmental panel on climate change. IPCC, Geneva

    Google Scholar 

  • Hsu Y, Chang Y, Chang C, Yang J, Tung Y (2018) Physical-based rainfall-triggered shallow landslide forecasting. Smart Water 3(3):1–16. https://doi.org/10.1186/s40713-018-0011-8

    Article  Google Scholar 

  • Huang F, Chen J, Liu W, Huang J, Hong H, Chen W (2022) Regional rainfall-induced landslide hazard warning based on landslide susceptibility mapping and a critical rainfall threshold. Geomorphology 408:108236

    Article  Google Scholar 

  • Hugonnet R, McNabb R, Berthier E, Menounos B, Nuth C, Girod L, ... , Kääb A (2021) Accelerated global glacier mass loss in the early twenty-first century. Nature 592(7856):726–731

    Google Scholar 

  • Hungr O, Leroueil S, Picarelli L (2014) The Varnes classification of landslide types, an update. Landslides 11:167–194

    Article  Google Scholar 

  • Immerzeel WW, Lutz AF, Andrade M, Bahl A, Biemans H, Bolch T, ..., Baillie JEM (2020) Importance and vulnerability of the world’s water towers. Nature 577(7790):364–369

    Google Scholar 

  • Iverson RM (2005) Regulation of landslide motion by dilatancy and pore pressure feedback. J Geophys Res: Earth Surf 110(F2). https://doi.org/10.1029/2004JF000268

  • Iverson RM, George DL (2016) Modelling landslide liquefaction, mobility bifurcation and the dynamics of the 2014 Oso disaster. Géotechnique 66(3):175–187

    Article  Google Scholar 

  • Jiang J, Zhou T, Qian Y, Li C, Song F, Li H, Chen X, Zhang W, Chen Z (2023) Precipitation regime changes in High Mountain Asia driven by cleaner air. Nature, 1–6. https://doi.org/10.1038/s41586-023-06619-y

  • Juang CS, Stanley TA, Kirschbaum DB (2019) Using citizen science to expand the global map of landslides: Introducing the Cooperative Open Online Landslide Repository (COOLR). PLoS ONE 14:e0218657

    Article  CAS  Google Scholar 

  • Johnston EC, Davenport FV, Wang L, Caers JK, Muthukrishnan S, Burke M, Diffenbaugh NS (2021) Quantifying the effect of precipitation on landslide hazard in urbanized and non‐urbanized areas. Geophys Res Lett 48(16):e2021GL094038

    Google Scholar 

  • Kanungo DP, Sharma S (2014) Rainfall thresholds for prediction of shallow landslides around Chamoli-Joshimath region, Garhwal Himalayas India. Landslides 11(6):629–638

    Article  Google Scholar 

  • Kappes MS, Keiler M, von Elverfeldt K, Glade T (2012) Challenges of analyzing multi-hazard risk: a review. Nat Hazards 64:1925–1958

    Article  Google Scholar 

  • Kim J, Kim Y, Jeong S, Hong M (2017) Rainfall-induced landslides by deficit field matric suction in unsaturated soil slopes. Environ Earth Sci 76:1–17. https://doi.org/10.1007/s12665-017-7127-2

    Article  Google Scholar 

  • Kim J-H, Kim D-J, Lee J-H, Lee J-W (2020) Effect of antecedent rainfall conditions and their variations on shallow landslide-triggering rainfall thresholds in South Korea. Nat Hazard 20(6):1505–1516

    Google Scholar 

  • Kim SW, Chun KW, Kim M, Catani F, Choi B, Seo JI (2021) Effect of antecedent rainfall conditions and their variations on shallow landslide-triggering rainfall thresholds in South Korea. Landslides 18:569–582

    Article  Google Scholar 

  • Kirschbaum D, Stanley T (2018) Satellite-based assessment of rainfall-triggered landslide hazard for situational awareness. Earth’s Future 6(3):505–523

    Article  Google Scholar 

  • Kirschbaum D, Kapnick SB, Stanley T, Pascale S (2020). Changes in extreme precipitation and landslides over High Mountain Asia. Geophys Res Lett 47(4):e2019GL085347

    Google Scholar 

  • Lacroix P, Handwerger AL, Bièvre G (2020) Life and death of slow-moving landslides. Nat Rev Earth & Environ 1(8):404–419

    Article  Google Scholar 

  • Larsen MC, Simon A (1993) A rainfall intensity-duration threshold for landslides in a humid-tropical environment, Puerto Rico. Geogr Ann Ser B 75(1–2):13–23

    Article  Google Scholar 

  • Lazzari M, Piccarreta M, Manfreda S (2018) The role of antecedent soil moisture conditions on rainfall-triggered shallow landslides. Nat Hazards Earth Syst Sci Discuss 2018:1–11. https://doi.org/10.5194/nhess-2018-371

    Article  Google Scholar 

  • Lee E, Carrivick JL, Quincey DJ, Cook SJ, James WH, Brown LE (2021) Accelerated mass loss of Himalayan glaciers since the Little Ice Age. Sci Rep 11(1):24284. Provide https://doi.org/10.1038/s41598-021-03805-8

  • Lei Q, Sornette D, Yang H, Loew S (2023) Real‐time forecast of catastrophic landslides via dragon‐king detection. Geophys Res Lett 50(6):e2022GL100832

    Google Scholar 

  • Lehmann P, von Ruette J, Or D (2019) Deforestation effects on rainfall-induced shallow landslides: Remote sensing and physically-based modelling. Water Resour Res 55(11):9962–9976

    Article  Google Scholar 

  • Leonard M, Westra S, Phatak A, Lambert M, van den Hurk B, McInnes K, ... , Stafford‐Smith M (2014) A compound event framework for understanding extreme impacts. Wiley Interdiscip Rev: Clim Chang 5(1):113–128

    Google Scholar 

  • Lee WL, Martinelli M, Shieh CL (2021b) An investigation of rainfall-induced landslides from the pre-failure stage to the post-failure stage using the material point method. Front Earth Sci 9:764393

    Article  Google Scholar 

  • Lévy S, Jaboyedoff M, Locat J, Demers D (2012) Erosion and channel change as factors of landslides and valley formation in Champlain Sea Clays: The Chacoura River, Quebec, Canada. Geomorphology 145:12–18

    Article  Google Scholar 

  • Li BV, Jenkins CN, Xu W (2022) Strategic protection of landslide vulnerable mountains for biodiversity conservation under land-cover and climate change impacts. Proc Natl Acad Sci 119(2):e2113416118

    Article  CAS  Google Scholar 

  • Li Y, Chen Y, Wang F, He Y, Li Z (2020) Evaluation and projection of snowfall changes in High Mountain Asia based on NASA’s NEX-GDDP high-resolution daily downscaled dataset. Environ Res Lett 15(10):104040

    Article  Google Scholar 

  • Lin GW, Chen H (2012) The relationship of rainfall energy with landslides and sediment delivery. Eng Geol 125:108–118

    Article  Google Scholar 

  • Liu J, Wu Y, Gao X (2021) Increase in occurrence of large glacier-related landslides in the high mountains of Asia. Sci Rep 11(1):1635. https://doi.org/10.1038/s41598-021-81212-9

    Article  CAS  Google Scholar 

  • Maina FZ, Kumar SV (2023) diverging trends in rain‐on‐snow over high Mountain Asia. Earth's Future 11(3):e2022EF003009

    Google Scholar 

  • Mani PA, Allen SK, Evans SG, Kargel J, Mergili M, Petrakov DA, Stoffel M (2022) Geomorphic process chains in high-mountain regions ─ A review and classification approach for natural hazards assessment. Rev Geophys. https://doi.org/10.1029/2022RG000791

    Article  Google Scholar 

  • Marino P, Peres DJ, Cancelliere A, Greco R, Bogaard TA (2020) Soil moisture information can improve shallow landslide forecasting using the hydrometeorological threshold approach. Landslides 17:2041–2054

    Article  Google Scholar 

  • Marra F (2019) Rainfall thresholds for landslide occurrence: systematic underestimation using coarse temporal resolution data. Nat Hazards 95(3):883–890

    Article  Google Scholar 

  • Masson-Delmotte V, Zhai P, Pirani A, et al (2021) Climate change 2021: the physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change. Cambridge University Press, UK

    Google Scholar 

  • Mathew J, Babu DG, Kundu S, Kumar KV, Pant CC (2014) Integrating intensity–duration-based rainfall threshold and antecedent rainfall-based probability estimate towards generating early warning for rainfall-induced landslides in parts of the Garhwal Himalaya, India. Landslides 11:575–588

    Article  Google Scholar 

  • Meena V, Kumari S, Shankar V (2022, June) Physically based modelling techniques for landslide susceptibility analysis: a comparison. In: IOP conference series: earth and environmental science, vol 1032, no 1. IOP Publishing, p 012033

    Google Scholar 

  • Merzdorf J (2020, February 11) Climate change could trigger more landslides in high Mountain Asia. In: NASA’s Goddard Space Flight Center, Available at climate.nasa.gov, Accessed on September 2023

    Google Scholar 

  • Modugno S, Johnson SCM, Borrelli P, Alam E, Bezak N, Balzter H (2022) Analysis of human exposure to landslides with a GIS multiscale approach. Nat Hazards 112(1):387–412

    Article  Google Scholar 

  • Mondini AC, Guzzetti F, Melillo M (2023) Deep learning forecast of rainfall-induced shallow landslides. Nat Commun 14(1):2466

    Article  CAS  Google Scholar 

  • LHASA (2023) LHASA. GitHub Repository. Available at: https://github.com/nasa/LHASA, Accessed from: https://gpm.nasa.gov/landslides/projects.html#LHASA

  • Neto JMDSR, Bhandary NP (2023) Influence of localized rainfall patterns on landslide occurrence—a case study of Southern Hiroshima with eXtended Radar Information Network Data during the July 2018 Heavy Rain Disasters. Geosciences 13(8):245

    Article  Google Scholar 

  • Nie W, Feng D, Lohpaisankrit W, Li C, Yuan J, Chen Y (2019) A dynamic Bayesian network-based model for evaluating rainfall-induced landslides. Bull Eng Geol Env 78(5):2069–2080

    Article  Google Scholar 

  • Nolasco-Javier D, Kumar L (2018) Deriving the rainfall threshold for shallow landslide early warning during tropical cyclones: a case study in northern Philippines. Nat Hazards 90:921–941

    Article  Google Scholar 

  • Ombadi M, Risser MD, Rhoades AM, Varadharajan C (2023) A warming-induced reduction in snow fraction amplifies rainfall extremes. Nature 619(7969):305–310

    Article  CAS  Google Scholar 

  • Oosterbaan RJ, Nijland HJ, Ritzema HP (1994) Drainage principles and applications. International Institute for Land Reclamation and Improvement (ILRI, Wageningen, The Netherlands), pp 1–1124

    Google Scholar 

  • Ortiz-Giraldo L, Botero BA, Vega J (2023) An integral assessment of landslide dams generated by the occurrence of rainfall-induced landslide and debris flow hazard chain. Front Earth Sci, 1–11. https://doi.org/10.3389/feart.2023.1157881

  • Ozturk U, Bozzolan E, Holcombe EA, Shukla R, Pianosi F, Wagener T (2022) How climate change and unplanned urban sprawl bring more landslides. Nature 608(7922):262–265

    Article  CAS  Google Scholar 

  • Perkins L, Kirschbaum DB, Ng J (2023) Global rainfall-triggered landslides from 2007 through 2015. Available at: svs.gsfc.nasa.gov. Retrieved on October 27, 2023

    Google Scholar 

  • Petley DN, Higuchi T, Petley DJ, Bulmer MH, Carey J (2005) Development of progressive landslide failure in cohesive materials. Geology 33(3):201–204

    Article  Google Scholar 

  • Rahardjo H, Kim Y, Satyanaga A (2019) Role of unsaturated soil mechanics in geotechnical engineering. Int J Geo-Eng 10:1–23. https://doi.org/10.1186/s40703-019-0104-8

    Article  Google Scholar 

  • Reichenbach P, Rossi M, Malamud BD, Mihir M, Guzzetti F (2018) A review of statistically-based landslide susceptibility models. Earth Sci Rev 180:60–91

    Article  Google Scholar 

  • Riva F, Agliardi F, Amitrano D, Crosta GB (2018) Damage-based time-dependent modeling of paraglacial to postglacial progressive failure of large rock slopes. J Geophys Res Earth Surf 123(1):124–141

    Article  Google Scholar 

  • Rusk J, Maharjan A, Tiwari P, Chen THK, Shneiderman S, Turin M, Seto KC (2022) Multi-hazard susceptibility and exposure assessment of the Hindu Kush Himalaya. Sci Total Environ 804:150039

    Article  CAS  Google Scholar 

  • Rutter EH, Green S (2011) Quantifying creep behaviour of clay-bearing rocks below the critical stress state for rapid failure: Mam Tor landslide, Derbyshire England. J Geol Soc 168(2):359–372

    Article  Google Scholar 

  • Roy R, Haque DME, Sifa SF, Tasnim S, Mahmud T, Hayat T (2022) Empirical approach based rainfall threshold estimation for landslide occurrence in Cox's Bazar district, Bangladesh. Dhaka Univ J Earth Environ Sci 11(1):81–94

    Google Scholar 

  • Saito H, Nakayama D, Matsuyama H (2010) Relationship between the initiation of a shallow landslide and rainfall intensity—duration thresholds in Japan. Geomorphology 118(1–2):167–175

    Article  Google Scholar 

  • Santangelo M, Althuwaynee O, Alvioli M, Ardizzone F, Bianchi C, Bornaetxea T., ... , Fiorucci F (2023) Inventory of landslides triggered by an extreme rainfall event in Marche-Umbria, Italy, on 15 September 2022. Sci Data 10(1):427. https://doi.org/10.1038/s41597-023-02336-3

  • Schauwecker S, Gascón E, Park S, Ruiz-Villanueva V, Schwarb M, Sempere-Torres D, ... , Rohrer M (2019) Anticipating cascading effects of extreme precipitation with pathway schemes-Three case studies from Europe. Environ Int 127:291–304

    Google Scholar 

  • Segoni S, Rosi A, Lagomarsino D, Fanti R, Casagli N (2018) Brief communication: Using averaged soil moisture estimates to improve the performances of a regional-scale landslide early warning system. Nat Hazard 18(3):807–812

    Article  Google Scholar 

  • Sengupta A, Gupta S, Anbarasu K (2010) Rainfall thresholds for the initiation of landslide at Lanta Khola in north Sikkim, India. Nat Hazards 52:31–42

    Article  Google Scholar 

  • Shah B, Alam A, Bhat MS, Ahsan S, Ali N, Sheikh HA (2023) Extreme precipitation events and landslide activity in the Kashmir Himalaya. Bull Eng Geol Env 82(8):328

    Article  Google Scholar 

  • Shugar DH, Jacquemart M, Shean D, Bhushan S, Upadhyay K, Sattar A, ... , Westoby MJ (2021) A massive rock and ice avalanche caused the 2021 disaster at Chamoli, Indian Himalaya. Science 373(6552):300–306

    Google Scholar 

  • Sharma N, Saharia M, Ramana GV (2024) High resolution landslide susceptibility mapping using ensemble machine learning and geospatial big data. CATENA 235:107653

    Article  Google Scholar 

  • Sidle RC, Bogaard TA (2016) Dynamic earth system and ecological controls of rainfall-initiated landslides. Earth-Sci Rev 159:275–291

    Google Scholar 

  • Singh K, Kumar V (2021) Rainfall thresholds triggering landslides: a review. In: Sustainable environment and infrastructure: proceedings of EGRWSE 2019. pp 455–464

    Google Scholar 

  • Singh S, Joshi A, Sahu A, Arun Prasath R, Sharma S, Dwivedi CS (2022) Himalayan landslides–causes and evolution. In: Disaster management in the complex Himalayan terrains: natural hazard management, methodologies and policy implications. Springer, pp 33–42

    Google Scholar 

  • Tacconi Stefanelli C, Catani F, Casagli N (2015) Geomorphological investigations on landslide dams. Geoenvironmental Disasters 2(1):1–15. https://doi.org/10.1186/s40677-015-0030-9

    Article  Google Scholar 

  • Tan X, Wu X, Huang Z, Fu J, Tan X, Deng S, ... , Liu B (2023) Increasing global precipitation whiplash due to anthropogenic greenhouse gas emissions. Nat Commun 14(1):2796. https://doi.org/10.1038/s41467-023-38510-9

  • Tehrani FS, Calvello M, Liu Z, Zhang L, Lacasse S (2022) Machine learning and landslide studies: recent advances and applications. Nat Hazards 114(2):1197–1245

    Article  Google Scholar 

  • Teja TS, Dikshit A, Satyam N (2019) Determination of rainfall thresholds for landslide prediction using an algorithm-based approach: Case study in the Darjeeling Himalayas India. Geosciences 9(7):302. https://doi.org/10.3390/geosciences9070302

    Article  Google Scholar 

  • Tengtrairat N, Woo WL, Parathai P, Aryupong C, Jitsangiam P, Rinchumphu D (2021) Automated landslide-risk prediction using web GIS and machine learning models. Sensors 21(13):4620. https://doi.org/10.3390/s21134620

    Article  Google Scholar 

  • Tichavský R, Ballesteros-Cánovas JA, Šilhán K, Tolasz R, Stoffel M (2019) Dry spells and extreme precipitation are the main trigger of landslides in Central Europe. Sci Rep 9(1):14560. https://doi.org/10.1038/s41598-019-51148-2

    Article  CAS  Google Scholar 

  • Tripathi S (2021) What causes landslides? Are they linked to climate change? India Today. Available at: www.indiatoday.in, Accessed on August 2023

  • Tsunetaka H (2021) Comparison of the return period for landslide-triggering rainfall events in Japan based on standardization of the rainfall period. Earth Surf Proc Land 46(14):2984–2998

    Article  Google Scholar 

  • Tyralis H, Papacharalampous G (2021) Quantile-based hydrological modelling. Water 13(23):3420

    Article  Google Scholar 

  • Wang W, Pijl A, Tarolli P (2022) Future climate-zone shifts are threatening steep-slope agriculture. Nature Food 3(3):193–196

    Article  Google Scholar 

  • Ward PJ, Blauhut V, Bloemendaal N, Daniell JE, de Ruiter MC, Duncan MJ, ... , Winsemius HC (2020) Natural hazard risk assessments at the global scale. Nat Hazards Earth Syst Sci 20(4):1069–1096

    Google Scholar 

  • Whiteley JS, Chambers JE, Uhlemann S, Wilkinson PB, Kendall JM (2019) Geophysical monitoring of moisture-induced landslides: a review. Rev Geophys 57(1):106–145

    Article  Google Scholar 

  • World Meteorological Organization (2018) 2018 Annual Report: WMO for the Twenty-first Century. Retrieved from: public.wmo.int. Technical report number WMO-No. 1229, pp 1–32

    Google Scholar 

  • Xue Y, Houser PR, Maggioni V, Mei Y, Kumar SV, Yoon Y (2021) Evaluation of High Mountain Asia‐Land Data Assimilation System (Version 1) From 2003 to 2016, Part I: A Hyper‐ Terrestrial Resolution Modeling System. J Geophys Res: Atmos 126(8):e2020JD034131.

    Google Scholar 

  • Zhang M, Chen F, Guo H, Yi L, Zeng J, Li B (2022) Glacial Lake area changes in high mountain asia during 1990–2020 using satellite remote sensing. Research. https://doi.org/10.34133/2022/9821275

    Article  Google Scholar 

  • Zhang W, Liu H, Wang L, Zhu X, Zhang Y (2023) Real-Time Monitoring and Early Warning of Landslide. In: Application of machine learning in slope stability assessment. Springer, pp 31–43

    Google Scholar 

  • Zhou W, Tang C (2014) Rainfall thresholds for debris flow initiation in the Wenchuan earthquake-stricken area, southwestern China. Landslides 11:877–887

    Article  Google Scholar 

  • Zscheischler J, Martius O, Westra S, Bevacqua E, Raymond C, Horton RM, ..., Vignotto E (2020) A typology of compound weather and climate events. Nat Rev Earth Environ 1(7):333–347

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Poulomi Ganguli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Monga, D., Ganguli, P. (2024). Moisture-Driven Landslides and Cascade Hazards in the Himalayan Region: A Synthesis on Predictive Assessment. In: Panda, G.K., Shaw, R., Pal, S.C., Chatterjee, U., Saha, A. (eds) Landslide: Susceptibility, Risk Assessment and Sustainability. Advances in Natural and Technological Hazards Research, vol 52. Springer, Cham. https://doi.org/10.1007/978-3-031-56591-5_10

Download citation

Publish with us

Policies and ethics