Skip to main content

Advertisement

Log in

Challenges of analyzing multi-hazard risk: a review

  • Review Article
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

Many areas of the world are prone to several natural hazards, and effective risk reduction is only possible if all relevant threats are considered and analyzed. However, in contrast to single-hazard analyses, the examination of multiple hazards poses a range of additional challenges due to the differing characteristics of processes. This refers to the assessment of the hazard level, as well as to the vulnerability toward distinct processes, and to the arising risk level. As comparability of the single-hazard results is strongly needed, an equivalent approach has to be chosen that allows to estimate the overall hazard and consequent risk level as well as to rank threats. In addition, the visualization of a range of natural hazards or risks is a challenging task since the high quantity of information has to be depicted in a way that allows for easy and clear interpretation. The aim of this contribution is to give an outline of the challenges each step of a multi-hazard (risk) analysis poses and to present current studies and approaches that face these difficulties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. The term multi-hazard risk refers to the risk arising from multiple hazards. By contrast, the term multi-risk would relate to multiple risks such as economic, ecological, social, etc.

  2. The exposure of elements at risk is not considered separately since this article focuses on the issues and challenges that arise in multi-hazard context in contrast to single hazard analysis, and exposure does not change.

  3. EM-DAT is the Emergency Disaster Data Base maintained by CRED, the Centre for Research on the Epidemiology of Disasters. It contains essential core data on the occurrence and effects of over 18,000 mass disasters in the world from 1,900 to present (CRED 2009).

  4. Multi-hazard settings arising from one phenomenon, such as hurricanes that entail storms and heavy rainfall which again may lead to storm surges, flooding and landslides, or volcano eruptions that may imply lapilli and ash ejection, lahars and lava flows, are not considered separately. The reason is that they are covered under the presented concepts.

  5. Numerical approaches from engineering sciences, which consider individual structural features, are not included.

  6. As in the multi-hazard section, phenomena that entail multiple hazards are not considered separately. The reason is that although during a hurricane event, there will be some community elements that will be exposed to storm tide, some that are exposed to destructive winds, some that are exposed to inundation from either flash flooding or riverine flooding, and some that are potentially exposed to landslide; however, in most cases, no single property will be exposed to all of those hazards. On the contrary, even phenomena that entail only a singular hazard such as earthquake lead to consequential harm-producing effects such as fires or the decontainment of hazardous materials. Thus, it is crucial to analyze potential exposure separately from the consideration of vulnerability; still, the methodology to assess exposure for multiple hazards is not specific to the multi-hazard context and is not posing additional challenges and difficulties in comparison with single-hazard analyses, and therefore, exposure is not considered separately in this article. However, the exposure of one building to multiple hazards affects its vulnerability.

  7. December 20–21 2010, University of Vienna, Vienna, Austria.

References

  • Alexander D (2001) Natural hazards. In: Alexander D, Fairbridge R (eds) Encyclopedia of environmental science. Kluwer, Dordrecht, pp 421–425

    Google Scholar 

  • Altenbach T (1995) A comparison of risk assessment techniques from qualitative to quantitative. In: ASME pressure and piping conference, Honolulu, Hawaii

  • Ancey C, Gervasoni C, Meunier M (2004) Computing extreme avalanches. Cold Reg Sci Technol 39:161–180

    Article  Google Scholar 

  • Autonome Provinz Bozen Südtirol (2012) http://www.provinz.bz.it/wasserschutzbauten/wildbachverbauung/hazardbrowser.asp, access 29 January 2012

  • Baker M, Little A, Hilson J (1997) Multi hazard: identification and risk assessment—the cornerstone of the national mitigation strategy. Tech. rep., FEMA, http://www.fema.gov/library/viewRecord.do?id=2214, available at: http://www.fema.gov/library/viewRecord.do?id=2214

  • Bartel P, Muller J (2007) Horn of Africa natural hazard probability and risk analysis. Tech. rep, USAID

    Google Scholar 

  • Bell R (2002) Landslide and snow avalanche risk analysis—methodology and its application in Bíldur. Rheinische Friedrich-Wilhelms-Universität Bonn, NW-Iceland. Master’s thesis

    Google Scholar 

  • Bell R, Glade T (2004) Multi-hazard analysis in natural risk assessments. International Conference on Computer Simulation in Risk Analysis and Hazard Mitigation, Brebbia, C.A., Rhodes, Greece, In, pp 197–206

    Google Scholar 

  • Bernal G (2010) CAPRA: Multi-hazard approach, http://www.understandrisk.org/ur/node/4573, access 10 June 2011, conference presentation in the Understanding Risk Forum

  • Besson L, Durville JL, Garry G, Graszk E, Hubert T, Toulement M (1999) Plans de prévention des risques naturels (PPR)—risques de mouvements de terrain: guide méthodologique. Tech. rep., Ministère de l’aménagement du territoire et de l’environnement & Ministère de l’équipement, des transports et du logement

  • BGR, Desdm (2009) Guidebook for assessing the risks to natural hazards—case study: Province of Central Java. Tech. rep, Bundesanstalt für Geowissenschaften und Rohstoffe and the Geological Agency of Indonesia

    Google Scholar 

  • Bommer J, Rodríguez C (2002) Earthquake-induced landslides in Central America. Eng Geol 63:189–220

    Article  Google Scholar 

  • Borter P (1999) Risikoanalyse bei gravitativen Naturgefahren—Methode. Umwelt-Materialien 107/I, Bundesamt für Umwelt, Wald und Landschaft (BUWAL), Bern, Switzerland

  • Borter P, Bart R (1999) Risikoanalyse bei gravitativen Naturgefahren—Fallbeispiele und Daten. Umwelt-Materialien 107/II, Bundesamt für Umwelt, Wald und Landschaft (BUWAL), Bern, Switzerland

  • Bovolo CI, Abele SJ, Bathurst JC, Caballero D, Ciglan M, Eftichidis G, Simo B (2009) A distributed framework for multi-risk assessment of natural hazards used to model the effects of forest fire on hydrology and sediment yield. Comput Geosi 35(5):924–945

    Article  Google Scholar 

  • Bründl M (2008) Risikokonzept für Naturgefahren—Leitfaden. Tech. rep., Nationale Plattform für Naturgefahren PLANAT, Bern, www.riskplan.admin.ch, access 24 January 2009

  • Bründl M, Bartelt P, Schweizer J, Keiler M, Glade T (2010) Snow avalanche risk analysis—review and future challenges. In: Alcántara-Ayala I, Goudie A (eds) Geomorphological hazards and disaster prevention. Cambridge University Press, Cambridge, pp 49–61

    Chapter  Google Scholar 

  • Büchele B, Kreibich H, Kron A, Thieken A, Ihringer J, Oberle P, Merz B, Nestmann F (2006) Flood-risk mapping: contributions towards and enhanced assessment of extreme events and associated risks. Nat Hazard Earth Syst 6:485–503

    Article  Google Scholar 

  • Calvi G, Pinho R, Magenes G, Bommer J, Restrepo-Vélez L, Crowley H (2006) Development of seismic vulnerability assessment methodologies over the past 30 years. ISET J Earthq Technol 43:75–104

    Google Scholar 

  • Cannon S, deGraff J (2009) The increasing wildfire and post-fire debris-flow threat in western USA, and implications for consequences of climate change. In: Sassa K, Canuti P (eds) Landslides—disaster risk reduction. Springer, Berlin, pp 177–190

    Chapter  Google Scholar 

  • Cariam (2006) Plans de prévention des risques naturels prévisibles (PPR)—cahier de recommandations sur le contenu des PPR. Tech. rep., Ministère de l’Écologie et du Développement durable

  • Carpignano A, Golia E, Di Mauro C, Bouchon S, Nordvik JP (2009) A methodological approach for the definition of multi-risk maps at regional level: first application. J Risk Res 12:513–534

    Article  Google Scholar 

  • Carrasco R, Pedraza J, Martin-Duque J, Mattera M, Sanz M, Bodoque J (2003) Hazard zoning for landslides connected to torrential floods in the Jerte Valley (Spain) by using GIS techniques. Nat Hazards 30:361–381

    Article  Google Scholar 

  • CEPREDENAC, ISDR, IDB, the World Bank (2011) CAPRA Portal (Central American Probabilistic Risk Assessment). http://www.ecapra.org/en/, access 2 July 2011

  • Chang KT, Chiang SH, Hsu ML (2007) Modeling typhoon- and earthquake-induced landslides in a mountainous watershed using logistic regression. Geomorphology 89:335–347

    Article  Google Scholar 

  • Chiesa C, Laben C, Cicone R (2003) An Asia Pacific natural hazards and vulnerabilities atlas. In: 30th international symposium on remote sensing of environment

  • Christen M, Bartelt P, Gruber U (2007) Modelling avalanches. GEO connexion International Magazine pp 38–39

  • CRED (2009) EM-DAT: Emergency Events Database. http://www.emdat.be/, access 15 July 2009

  • Dai FC, Lee CF, Ngai YY (2002) Landslide risk assessment and management: an overview. Eng Geol 64(1):65–87

    Article  Google Scholar 

  • Delattre A, Garancher T, Rozencwajg C, Touret T (2002) Jurisque—prévention des risques naturels. Tech. Rep. 3, Ministere de l’Écologie et du Développement durable

  • Delmonaco G, Margottini C, Spizzichino D (2006) ARMONIA methodology for multi-risk assessment and the harmonisation of different natural risk maps. Deliverable 3.1.1, ARMONIA

  • Delmonaco G, Margottini C, Spizzichino D (2006) Report on new methodology for multi-risk assessment and the harmonisation of different natural risk maps. Deliverable 3.1, ARMONIA

  • dePippo T, Donadio C, Pennetta M, Petrosino C, Terlizzi F, Valente A (2008) Costal hazard assessment and mapping in Northern Campania, Italy. Geomorphology 97:451–466

    Article  Google Scholar 

  • DHS (2011) Integrated Rapid Visual Screening of buildings. Tech. report, Department of Homeland Security. http://www.dhs.gov/xlibrary/assets/st/st-bips-04-irvs.pdf, access 18th March 2012

  • Dilley M, Chen U RS Deichmann, Lerner-Lam A, Arnold M (2005) Natural disaster hotspots: a global risk analysis. In: Disaster Risk Management Series, 5, The World Bank

  • DIN (2009) ISO/IEC 31010: Risk management—risk assessment techniques. Tech. rep., Deutsches Institut für Normung e.V., http://www.previ.be/pdf/31010_FDIS.pdf, access 31st August 2011

  • Douglas J (2007) Physical vulnerability modelling in natural hazard risk assessment. Nat Hazard Earth Syst 7:283–288

    Article  Google Scholar 

  • Egli T (1996) Hochwasserschutz und Raumplanung. Schutz vor Naturgefahren mit Instrumenten der Raumplanung—dargestellt am Beispiel von Hochwasser und Murgängen. vdf Hochschulverlag AG, ETH Zürich, oRL-Bericht 100

  • El Morjani Z, Ebner S, Boos J, Abdel Ghaffar E, Musani A (2007) Modelling the spatial distribution of five natural hazards in the context of the WHO/EMRO Atlas of Disaster Risk as a step towards the reduction of the health impact related to disasters. Int J Health Geogr 6:1–28

  • Erlingsson U (2005) GIS for natural hazard mitigation—experiences from designing the HazMit GIS expert system suggests the need for an international standard. In: GIS Planet, Portugal

  • European Commission (2011) Risk assessment and mapping guidelines for disaster management. Commission staff working paper, European Union

  • Ewen J, Parkin G, O’Connell PE (2000) SHETRAN: distributed river basin flow and transport modeling system. J Hydrol Eng 5:250–258

    Article  Google Scholar 

  • Fell R, Ho K, Lacasse S, Leroi E (2005) A framework for landslide risk assessment. In: Proceedings of the International Conference on Landslide Risk Management, Vancouver, Canada, pp 3–25

  • FEMA (1995) National mitigation strategy: Partnerships for building safer communities. Tech. rep., Federal Agency Management Agency, Washington, USA

  • FEMA (2009) U.S. Department of Homeland Security: FEMA. http://www.fema.gov/, access 19 August 2009

  • FEMA (2010) HAZUS-MH analysis levels. Department of Homeland Security, Federal Emergency Management Agency. http://www.fema.gov/plan/prevent/hazus/hz_levels.shtm, access 4 July 2012

  • FEMA (2011a) Getting started with HAZUS-MH 2.1. Tech. rep. U.S. Department of Homeland Security, Federal Emergency Management Agency http://www.fema.gov/library/viewRecord.do?id=5120, access 2 July 2012

  • FEMA (2011b) Multi-hazard loss estimation methodology: flood model. HAZUS-MH. Technical manual, U.S. Department of Homeland Security, Federal Emergency Management Agency

  • FEMA (2011c) Multi-hazard loss estimation methodology: hurricane model. HAZUS-MH 2.1. Technical manual, U.S. Department of Homeland Security, Federal Emergency Management Agency

  • FEMA (2011d) Multi-hazard loss estimation methodology: earthquake model. HAZUS-MH 2.1—Technical Manual. U.S. Department of Homeland Security, Federal Emergency Management Agency

  • Foerster E, Krien Y, Dandoulaki M, Priest S, Tapsell S, Delmonaco G, Margottini C, Bonadonna C (2009) Methodologies to assess vulnerability of structural systems. Del. 1.1.1., ENSURE, http://eea.eionet.europa.eu/Public/irc/eionet-circle/airclimate/library?l=/public/2010_citiesproject/interchange/project_deliverables/ensure_del111pdf/_EN_1.0_&a=d, access 24 March 2011

  • Fuchs S, Keiler M, Zischg A (2001) Risikoanalyse—Oberes Suldental, Vinschgau: Konzepte und Methoden zur Erstellung eines Naturgefahrenhinweis-Informationssystems. Innsbrucker Geographische Studien

  • Garcin M, Prame B, Attanayake N, de Silva U, Desprats J, Fernando S, Fontaine M, Idier D, Lenotre N, Pedreros R, Siriwardana C (2007) A geographic information system for coastal hazards—application to a pilot site in Sri Lanka. Final report BRGM/RP-55553-FR, Bureau de recherches géologiques et minières (BRGM)

  • Garcin M, Desprats J, Fontaine M, Pedreros R, Attanayake N, Fernando S, Siriwardana C, de Silva U, Poisson B (2008) Integrated approach for coastal hazards and risks in Sri Lanka. Nat Hazard Earth Syst 8:577–586

    Article  Google Scholar 

  • Garry G, Graszk E, Dupuy JL (1997) Plans de prévention des risques naturels prévisibles (PPR): Guide général. Tech. rep., Ministère de l’Écologie et du Développement durable, http://catalogue.prim.net/146_plans-de-prevention-des-risques-naturels-ppr-guide-general.html, access 8 July 2009

  • GFDRR (2010) Reducing vulnerability to natural hazards. http://gfdrr.org, access 15 July 2010

  • Glade T (2003) Vulnerability assessment in landslide risk analysis. Erde 2:123–146

    Google Scholar 

  • Glade T, Crozier M (2004) A review of scale dependency in landslide hazard and risk analysis

  • GNS, NIWA (2010) RiskScape—user manual. http://riskscape.org.nz/system/files/Riskscape%20Manual.pdf, access 8 December 2010

  • Granger K, Jones T, Leiba M, Scott G (1999) Community risk in Cairns: a multi-hazards risk assessment. Tech. rep., Australian Geological Survey Organisation (AGSO), http://www.ga.gov.au/hazards/reports/cairns/, access 19 Febuary 2009

  • Greiving S (2006) Integrated risk assessment of multi-hazards: a new methodology. In: Schmidt-Thomé P (ed) Natural and technological hazards and risks affecting the spatial development of european regions, geological survey of Finland, vol 42, pp 75–81

  • Greiving S, Fleischhauer M, Lückenkötter J (2006) A methodology for an integrated risk assessment of spatially relevant hazards. J Environ Planning Manage 49(1):1–19

    Article  Google Scholar 

  • Grünthal G, Thieken A, Schwarz J, Radtke K, Smolka A, Merz B (2006) Comparative risk assessment for the city of cologne—storms, floods, earthquakes. Nat Hazards 38(1–2):21–44

    Article  Google Scholar 

  • Harp E, Wilson R (1995) Shaking intensity thresholds for rock falls and slides: evidence from 1987 whittier narrows and superstition hills earthquake strong-motion records. Bull Seismol Soc Am 85:1739–1757

    Google Scholar 

  • Heinimann H, Hollenstein K, Kienholz H, Krummenacher B, Mani P (1998) Methoden zur Analyse und Bewertung von Naturgefahren. Umwelt-Materialien Nr. 85, Bundesamt für Umwelt, Wald und Landschaft (BUWAL), Bern, Switzerland

  • Helmer O (1966) The use of the Delphi Technique in problems of educational innovations. Tech. Rep. P-3499, The Rand Corporation, http://www.rand.org/pubs/papers/2006/P3499.pdf, access 3 September 2010

  • Hewitt K, Burton I (1971) Hazardousness of a place: a regional ecology of damaging events. Toronto Press, Toronto

    Google Scholar 

  • Hufschmidt G, Glade T (2010) Vulnerability analysis in geomorphic risk assessment. In: Alcántara-Ayala I, Goudie A (eds) Geomorphological hazards and disaster prevention. Cambridge University Press, Cambridge, pp 233–243

    Chapter  Google Scholar 

  • Huggel C, Kääb A, Salzmann N (2004) GIS-based modeling of glacial hazards and their interactions using Landsat-TM and IKONOS imagery. Nor J Geogr 58:61–73

    Article  Google Scholar 

  • Hunter N, Bates P, Horritt M, Wilson M (2007) Simple spatially-distributed models for predicting flood inundation: a review. Geomorphology 90:208–225

    Article  Google Scholar 

  • Kappes M (2011) Multi-hazard risk analyses: a concept and its implementation. PhD thesis, University of Vienna

  • Kappes M, Keiler M, Glade T (2010) From single- to multi-hazard risk analyses: a concept addressing emerging challenges. In: Malet JP, Glade T, Casagli N (eds) Mountain risks: bringing science to society. Proceedings of the international conference, florence, CERG Editions, Strasbourg, pp 351–356

  • Kappes M, Papathoma-Köhle M, Keiler M (2011) Assessing physical vulnerability for multi-hazards using an indicator-based methodology. Appl Geogr 32:577–590

    Article  Google Scholar 

  • Keefer D (2002) Investigating landslides caused by earthquakes—a historical review. Surv Geophys 23:473–510

    Article  Google Scholar 

  • Keylock C, Barbolini M (2001) Snow avalanche impact pressure—vulnerability relations for use in risk assessment. Can Geotech J 38(2):227–238

    Article  Google Scholar 

  • Klein J, Greiving S, Jarva J (2006) Integrated natural risk legend and standard for harmonised risk maps for land use planning and management. Deliverable 3.2, ARMONIA, http://arkisto.gtk.fi/UT/ut_europe_2007_81.pdf, access 30 January 2009

  • Kunz M, Hurni L (2008) Hazard maps in Switzerland: state-of-the-art and potential improvements. In: Proceedings of the 6th ICA Mountain Cartography Workshop, Lenk, Switzerland

  • Lateltin O (1997) Berücksichtigung der Massenbewegungsgefahren bei raumwirksamen Tätigkeiten. Tech. rep., Bundesamt für Raumplanung (BRP), Bundesamt für Wasserwirtschaft (BWW), Bundesamt für Umwelt, Wald und Landschaft (BUWAL)

  • Lee K, Rosowsky D (2006) Fragility analysis of woodframe buildings considering combined snow and earthquake loading. Struct Saf 28:289–303

    Article  Google Scholar 

  • Lee CT, Huang CC, Lee JF, Pan KL, Lin ML, Dong JJ (2008) Statistical approach to earthquake-induced landslide susceptibility. Eng Geol 100:43–58

    Article  Google Scholar 

  • Liévois J (2003) Guide méthodologique plans de prévention des risques d’avalanches. Tech. rep., Ministère de l’Écologie et du Développement et de l’Aménagement

  • Lin CW, Liu SH, Lee SY, Liu CC (2006) Impacts of the Chi–Chi earthquake on subsequent rainfall-induced landslides in Central Taiwan. Eng Geol 86:87–101

    Article  Google Scholar 

  • Loat R (2010) Risk management of natural hazards in Switzerland. Tech. rep., Federal Office for the Environment FOEN, http://www.cenat.ch/ressources/planat_product_en_1308.pdf, access 23 July 2010

  • Loat R, Petrascheck A (1997) Berücksichtigung der Hochwassergefahren bei raumwirksamen Tätigkeiten. Empfehlungen 1997, Bundesamt für Wasserwirtschaft (BWW), Bundesamt für Raumplanung (BRP) and Bundesamt für Umwelt, Wald und Landschaft (BUWAL)

  • Luino F (2005) Sequence of instability processes triggered by heavy rainfall in the northern Italy. Geomorphology 66:13–39

    Article  Google Scholar 

  • Marzocchi W, Mastellone M, Di Ruocco A (2009) Principles of multi-risk assessment: interactions amongst natural and man-induced risks. Tech. rep., European Commission, http://www.scribd.com/doc/16902233/Principles-of-MultiRisk-Assessment, access 19 July 2009

  • Marzocchi W, Garcia-Aristizabal A, Gasparini P, Mastellone M, Di Ruocco A, Novelli P (2012) Basic principles of multi-risk assessment: a case study in Italy. Nat Hazards 62:551–573

    Article  Google Scholar 

  • MEDD (1999) Guide méthodologique plans de prévention des risques d’inondations. Tech. rep., Ministère de l’Écologie et du Développement durable, http://www.prim.net/professionnel/documentation/guide_inond/page01.html, access 25 November 2009

  • MEDD (2002) Guide méthodologique plans de prévention des risques sismique. Tech. rep., Ministère de l’Écologie et du Développement durable, http://www.prim.net/professionnel/documentation/guide_sismique/page01.html, access 25 November 2009

  • MEDD (2003) Plans de prévention des risques naturels (ppr)—risques d’inondations. Tech. rep., Ministère de l’Écologie et du Développement durable

  • Menoni S (2006) Integration of harmonized risk maps with spatial planning decision processes. Deliverable 5.1, ARMONIA

  • Meyenfeld H (2008) Modellierung seismisch ausgelöster gravitativer Massenbewegungen für die Schwäbische Alb und den Raum Bonn und Erstellen von Gefahrenhinweiskarten. PhD thesis, University of Vienna

  • Middelmann M, Granger K (2000) Community risk in Mackay: a multi-hazard risk assessment. Tech. rep., Australian Geological Survey Organisation (AGSO), http://www.ga.gov.au/hazards/reports/mackay/, access 19 February 2009

  • Miles S, Keefer D (2009) Evaluation of camel—comprehensive areal model of earthquake-induced landslides. Eng Geol 104:1–15

    Article  Google Scholar 

  • Moran A, Wastl M, Geitner C, Stötter J (2004) A regional scale risk analysis in the community of Ólafsfjödur, Iceland. In: Internationales Symposium—INTERPRAEVENT, Riva, Trient

  • Munich Re (1998) Weltkarte der Naturgefahren. Tech. rep., Münchner Rückversicherungs-Gesellschaft

  • Munich Re (2000) Topics 2000: natural catastrophes—the current position. Tech. rep., http://www.imia.com/downloads/external_papers/EP17_2003.pdf, access 23 January 2009

  • Odeh Engineers, Inc (2001) Statewide hazard risk and vulnerability assessment for the state of Rhode Island. Tech. rep., NOAA Coastal Services Center, http://www.csc.noaa.gov/rihazard/pdfs/rhdisl_hazard_report.pdf, access 09 March 2010

  • Papathoma-Köhle M, Kappes M, Keiler M, Glade T (2011) Physical vulnerability assessment for Alpine hazards—state of the art and future needs. Nat Hazards 58:645–680

    Article  Google Scholar 

  • Perles Roselló M, Cantarero Prados F (2010) Problems and challenges in analyzing multiple territorial risks. methodological proposals for multi-hazard mapping. Boletín de la Asociación de Geógrafos Españoles 52:399–404

    Google Scholar 

  • Porter K, Scawthorn C (2007) OpenRisk: open-source risk software and access for the insurance industry. In: 1st International Conference on Asian Catastrophe Insurance (ICACI), Kyoto University, Japan

  • Puissant A, Malet JP, Maquaire O (2006) Mapping landslide consequences in mountain areas: a tentative approach with a semi-quantitative procedure. In: SAGEO 2006, Strasbourg, France

  • Reese S, Bell R, King A (2007a) RiskScape: a new tool for comparing risk from natural hazards. Water Atm 15:24–25

    Google Scholar 

  • Reese S, King A, Bell R, Schmidt J (2007) Regional RiskScape: a multi-hazard loss modelling tool. In: Oxley L, Kulasiri D (eds) MODSIM 2007 International Congress on Modelling and Simulation, pp 1681–1687

  • Risk Frontiers (2008) PerilAUS II—relative risk ratings for postcodes and CRESTA/ICA zones. Website link to a PowerPoint presentation, http://www.riskfrontiers.com/perilaus.html, access 20 August 2008

  • RMS (2009) Risk management solutions. http://www.rms.com/, access 16 November 2009

  • Schmidt J, Matcham I, Reese S, King A, Bell R, Smart G, Cousins J, Smith W, Heron D (2011) Quantitative multi-risk analysis for natural hazards: a framework for multi-risk modelling. Nat Hazards 58:1169–1192

    Article  Google Scholar 

  • Schneider P, Schauer B (2006) Hazus—its development and its future. Nat Hazards Rev 7:40–44

    Article  Google Scholar 

  • Schneiderbauer S, Ehrlich D (2006) Social levels and hazard (in)dependence in determining vulnerability. In: Birkmann J (ed) Measuring vulnerability to natural hazards—towards disaster resilient societies. TERI Press, New Delhi, pp 78–102

    Google Scholar 

  • Sedan O, Mirgon C (2003) Application ARMAGEDOM. Notice utilisateur BRGM/RP-52759-FR, Bureau de recherches géologiques et minières (BRGM)

  • Shi P (2002) Theory on disaster science and disaster dynamics. J Nat Disasters 11:1–9

    Google Scholar 

  • SLF (1984) Richtlinien zur Berücksichtigung der Lawinengefahr bei raumwirksamen Tätigkeiten. Tech. rep., Eidgenössisches Institut für Schnee- und Lawinenforschung & Bundesamt für Forstwesen

  • Sperling M, Berger E, Mair V, Bussadori V, Weber F (2007) Richtlinien zur Erstellung der Gefahrenzonenpläne (GZP) und zur Klassifizierung des spezifischen Risikos (KSR). Tech. rep., Autonome Provinz Bozen

  • Tarvainen T, Jarva J, Greiving S (2006) Spatial pattern of hazards and hazard interactions in Europe. In: Schmidt-Thomé P (ed) Natural and Technological Hazards and Risks Affecting the Spatial Development of European Regions, vol 42, Geological Survey of Finland, pp 83–91

  • Thierry H (2003) Les plans de prévention des risques naturels ppr. Tech. rep., Ministere de l’Écologie et du Développement durable

  • Thierry P, Stieltjes L, Kouokam E, Nguéya P, Salley PM (2008) Multi-hazard risk mapping and assessment on an active volcano: the GRINP project at Mount Cameroon. Nat Hazards 45:429–456

    Article  Google Scholar 

  • Tufte E (2001) Envisioning information. Graphics Press, Cheshire

    Google Scholar 

  • UN (2002) Johannesburg plan of implementation of the world summit on sustainable development. Tech. rep., United Nations, http://www.un.org/esa/sustdev/documents/WSSD_POI_PD/English/WSSD_PlanImpl.pdf, access 03 September 2009

  • UNDHA (1992) Internationally agreed glossary of basic terms related to disaster management. Glossary, United Nations Department of Humanitarian Affairs

  • UNEP (1992) Agenda 21. Tech. rep., United Nations Environment Programme, http://www.un.org/esa/dsd/agenda21/res_agenda21_07.shtml, access 03 September 2009

  • UN-ISDR (2005) Hyogo framework for action 2005–1015: Building the resilience of nations and communities to disasters. In: World Conference on Disaster Reduction, Kobe, Hyogo, Japan

  • UN-ISDR (2009) Global assessment report on disaster risk reduction. Tech. rep., United Nations—International Strategy for Disaster Reduction, http://www.preventionweb.net/english/hyogo/gar/report/index.php?id=9413, access 1 September 2009

  • vanWesten C (2004) Geo-information tools for landslide risk assessment. an overview of recent developments. In: Lacerda W, Erlich M, Fontoura S, Sayao A (eds) Landslides : evaluation and stabilization—glissement de terrain: Evaluation et Stabilisation: proceedings of the 9th international symposium on landslides, Balkema, London, UK, Rio de Janeiro, Brazil, pp 39–56

  • vanWesten C, Montoya A, Boerboom L, Badilla Coto E (2002) Multi-hazard risk assessment using GIS in urban areas: a case study for the city of Turrialba, Costa Rica. In: Proceedings of the regional workshop on best practices in disaster mitigation: lessons learned from the Asian urban disaster mitigation program and other initiatives, Bali, Indonesia, pp 120–136

  • Varnes DJ (1984) Landslide hazard zonation: a review of principles and practice. United Nations Educational, Scientific and Cultural Organisation, Paris

    Google Scholar 

  • Wichmann V, Becht M (2003) Modelling of geomorphic processes in an alpine catchment. In: Martin D (ed) 7th international conference on geo computation. University of Southampton, Southampton

    Google Scholar 

  • Wichmann V, Heckmann T, Haas F, Becht M (2009) A new modelling approach to delineate the spatial extent of alpine sediment cascades. Geomorphology 111:70–78

    Article  Google Scholar 

  • WMO (1999) Comprehensive risk assessment for natural hazards. Technical document 955, World Meteorological Organisation, http://www.planat.ch/ressources/planat_product_en_198.pdf, access 05 May 2010

  • Zezere J, Garcia R, Oliveira S, Reis E (2008) Probabilistic landslide risk analysis considering direct costs in the area north of Lisbon (Portugal). Geomorphology 94:467–495

    Article  Google Scholar 

  • Zuccaro G, Leone M (2011) Volcanic crisis management and mitigation strategies: a multi-risk framework case study. Earthzine 4

  • Zuccaro G, Cacace F, Spence R, Baxter P (2008) Impact of explosive eruption scenarios at Vesuvius. J Volcanol Geoth Res 178:416–453

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the European Commission for funding the Marie Curie Research Training Network “Mountain Risks” (http://mountain-risks.eu, contract MCRTN03598) within which this review has be written. The authors also want to thank several persons who contributed to discussions, critics, and explanations: Cees van Westen, Stefan Greiving, Bernard Loup, Stephan Wohlwend, and Ronald Pöppl. We would also like to thank four anonymous reviewers for their constructive and helpful comments on earlier drafts of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Melanie S. Kappes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kappes, M.S., Keiler, M., von Elverfeldt, K. et al. Challenges of analyzing multi-hazard risk: a review. Nat Hazards 64, 1925–1958 (2012). https://doi.org/10.1007/s11069-012-0294-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-012-0294-2

Keywords

Navigation