Skip to main content

Applications of XAI for Forecasting in the Manufacturing Domain

  • Chapter
  • First Online:
Explainable Artificial Intelligence (XAI) in Manufacturing

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSAPPLSCIENCES))

Abstract

This chapter focuses on forecasting, which is an important function of manufacturing systems. Many operations and production activities such as cycle time forecasting, sales forecasting, unit cost reduction, predictive maintenance, yield learning, etc. are based on forecasting. This chapter takes job cycle time forecasting as an example. Artificial intelligence (AI) techniques have many applications in job cycle time prediction. Of these, artificial neural network (ANN) (or deep neural network, DNN) applications are most effective, but are difficult for factory workers to understand or communicate. To address this issue, existing explainable AI (XAI) techniques and tools for explaining the inference process and results of ANNs (or DNNs) are introduced. We first introduce XAI tools for visualizing operations in ANNs (or DNNs), such as ConvNetJS, TensorFlow, Seq2Seq, and MATLAB, and then mention XAI techniques for evaluating the impact, contribution, or importance of each input on the output, including partial derivatives, odd ratio, out-of-bag (OOB) predictor importance, recursive feature elimination (RFE), Shapely additive explanation value (SHAP). Subsequently, XAI techniques for approximating the relationship between the inputs and output of an ANN (or DNN), especially simpler machine learning techniques such as case-based reasoning (CBR), classification and regression trees (CART), random forest (RF), gradient boosting decision trees, eXtreme gradient boosting (XGBoost), and RF-based incremental interpretation are introduced. The application of each XAI technique is supplemented with simple examples and corresponding MATLAB codes, allowing readers to get started quickly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Y.-C. Wang, H.-R. Tsai, T. Chen, A selectively fuzzified back propagation network approach for precisely estimating the cycle time range in wafer fabrication. Mathematics 9, 1430 (2021)

    Article  Google Scholar 

  2. Q. Xu, V. Sharma, Ensemble sales forecasting study in semiconductor industry, in Industrial Conference on Data Mining (2017), pp. 31–44

    Google Scholar 

  3. T. Chen, H.-C. Wu, Forecasting the unit cost of a DRAM product using a layered partial-consensus fuzzy collaborative forecasting approach. Complex Intell. Syst. 6, 497 (2020)

    Article  Google Scholar 

  4. T.-C. T. Chen, Y.-C. Wang, AI applications to kaizen management, in Artificial Intelligence and Lean Manufacturing, pp. 37–52

    Google Scholar 

  5. T. Chen, Y.-C. Wang, Interval fuzzy number-based approach for modelling an uncertain fuzzy yield learning process. J. Ambient. Intell. Humaniz. Comput. 11, 1213–1223 (2020)

    Article  Google Scholar 

  6. J. Wang, J. Zhang, Big data analytics for forecasting cycle time in semiconductor wafer fabrication system. Int. J. Prod. Res. 54(23), 7231–7244 (2016)

    Article  Google Scholar 

  7. B.F. van Dongen, R.A. Crooy, W.M. van der Aalst, Cycle time prediction: when will this case finally be finished? in OTM Confederated International Conferences on the Move to Meaningful Internet Systems (2008), pp. 319–336

    Google Scholar 

  8. B.E. Ankenman, J.M. Bekki, J. Fowler, G.T. Mackulak, B.L. Nelson, F. Yang, Simulation in production planning: an overview with emphasis on recent developments in cycle time estimation, in Planning Production and Inventories in the Extended Enterprise (2011), pp. 565–591

    Google Scholar 

  9. T. Chen, Evaluating the mid-term competitiveness of a product in a semiconductor fabrication factory with a systematic procedure. Comput. Ind. Eng. 53, 499–513 (2007)

    Article  Google Scholar 

  10. T. Chen, Y.C. Wang, H.R. Tsai, Lot cycle time prediction in a ramping-up semiconductor manufacturing factory with a SOM–FBPN-ensemble approach with multiple buckets and partial normalization. Int. J. Adv. Manufact. Technol. 42(11), 1206–1216 (2009)

    Article  Google Scholar 

  11. F. Yang, B. Ankenman, B.L. Nelson, Efficient generation of cycle time-throughput curves through simulation and metamodeling. Nav. Res. Logist. 54(1), 78–93 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. T. Chen, Y.-C. Wang, A bi-criteria nonlinear fluctuation smoothing rule incorporating the SOM-FBPN remaining cycle time estimator for scheduling a wafer fab—a simulation study. Int. J. Adv. Manuf. Technol. 49(5), 709–721 (2010)

    Article  Google Scholar 

  13. C. Chiu, P.C. Chang, N.H. Chiu, A case-based expert support system for due-date assignment in a wafer fabrication factory. J. Intell. Manuf. 14(3), 287–296 (2003)

    Article  Google Scholar 

  14. B.R. Cobb, L. Li, Forward cycle time distributions for returnable transport items. J. Remanufact. 12(1), 125–151 (2022)

    Article  Google Scholar 

  15. T. Chen, An effective fuzzy collaborative forecasting approach for predicting the job cycle time in wafer fabrication. Comput. Ind. Eng. 66(4), 834–848 (2013)

    Article  Google Scholar 

  16. Y.C. Wang, T. Chen, T.C. Hsu, A fuzzy deep predictive analytics approach for enhancing cycle time range estimation precision in wafer fabrication. Decis. Anal. J. 1, 100010 (2021)

    Article  Google Scholar 

  17. T. Chen, H.C. Wu, A new cloud computing method for establishing asymmetric cycle time intervals in a wafer fabrication factory. J. Intell. Manuf. 28(5), 1095–1107 (2017)

    Article  MathSciNet  Google Scholar 

  18. T. Chen, Y.-C. Wang, Hybrid big data analytics and Industry 4.0 approach for projecting cycle time ranges. Int. J. Adv. Manufact. Technol. 120, 279–295 (2022)

    Google Scholar 

  19. T.C.T. Chen, Y.C. Wang, Fuzzy dynamic-prioritization agent-based system for forecasting job cycle time in a wafer fabrication plant. Complex Intell. Syst. 7(4), 2141–2154 (2021)

    Article  Google Scholar 

  20. T. Chen, Y.C. Wang, A nonlinearly normalized back propagation network and cloud computing approach for determining cycle time allowance during wafer fabrication. Robot. Comput. Integr. Manufact. 45, 144–156 (2017)

    Article  Google Scholar 

  21. D. Gunning, M. Stefik, J. Choi, T. Miller, S. Stumpf, G.Z. Yang, XAI—Explainable artificial intelligence. Sci. Robot. 4(37), eaay7120 (2019)

    Google Scholar 

  22. D. Kumar, A. Wong, G.W. Taylor, Explaining the unexplained: a class-enhanced attentive response (clear) approach to understanding deep neural networks, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops (2017), pp. 36–44

    Google Scholar 

  23. S. Plattner, D.M. Mason, G.A. Leshkevich, D.J. Schwab, E.S. Rutherford, Classifying and forecasting coastal upwellings in Lake Michigan using satellite derived temperature images and buoy data. J. Great Lakes Res. 32(1), 63–76 (2006)

    Article  Google Scholar 

  24. T. Chen, Y.-C. Lin, Enhancing the accuracy and precision of forecasting the productivity of a factory: a fuzzified feedforward neural network approach. Complex Intell. Syst. 7, 2317–2327 (2021)

    Article  Google Scholar 

  25. ConvNetJS, ConvnetJS demo: Toy 2d classification with 2-layer neural network (2022). https://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html

  26. GitHub, tensorflow (2022). https://github.com/tensorflow

  27. Z. Li, J. Cai, S. He, H. Zhao, Seq2seq dependency parsing, in Proceedings of the 27th International Conference on Computational Linguistics (2018), pp. 3203–3214

    Google Scholar 

  28. S. Mantri, K. Bapat, Neural network based face recognition using MATLAB. Int. J. Comput. Sci. Eng. Technol. 1(1), 6–9 (2011)

    Google Scholar 

  29. K.P. Sudheer, A. Jain, Explaining the internal behaviour of artificial neural network river flow models. Hydrol. Process. 18(4), 833–844 (2004)

    Article  Google Scholar 

  30. T.C.T. Chen, Production Planning and Control in Semiconductor Manufacturing: Big Data Analytics and Industry 4.0 Applications (Springer Nature, 2022)

    Google Scholar 

  31. A. Ranganathan, The Levenberg-Marquardt algorithm. Tutorial on LM Algorithm 11(1), 101–110 (2004)

    Google Scholar 

  32. P. Sedgwick, Pearson’s correlation coefficient. Bmj 345 (2012)

    Google Scholar 

  33. P. Sedgwick, Spearman’s rank correlation coefficient. Bmj 349 (2014)

    Google Scholar 

  34. M. Green, U. Ekelund, L. Edenbrandt, J. Björk, J.L. Forberg, M. Ohlsson, Exploring new possibilities for case-based explanation of artificial neural network ensembles. Neural Netw. 22(1), 75–81 (2009)

    Article  Google Scholar 

  35. MathWorks, oobPermutedPredictorImportance (2022). https://www.mathworks.com/help/stats/classificationbaggedensemble.oobpermutedpredictorimportance.html?searchHighlight=oobPermutedPredictorImportance&s_tid=srchtitle_oobPermutedPredictorImportance_1

  36. T. Chen, A fuzzy back propagation network for output time prediction in a wafer fab. Appl. Soft Comput. 2(3), 211–222 (2003)

    Article  Google Scholar 

  37. K. Yan, D. Zhang, Feature selection and analysis on correlated gas sensor data with recursive feature elimination. Sens. Actuators, B Chem. 212, 353–363 (2015)

    Article  Google Scholar 

  38. C. Molnar, 9.5 Shapley values (2022). https://christophm.github.io/interpretable-ml-book/shapley.html#shapley

  39. E.M. Kenny, M.T. Keane, Twin-systems to explain artificial neural networks using case-based reasoning: comparative tests of feature-weighting methods in ANN-CBR twins for XAI, in Twenty-Eighth International Joint Conferences on Artificial Intelligence (2019), pp. 2708–2715

    Google Scholar 

  40. A. Likas, N. Vlassis, J.J. Verbeek, The global k-means clustering algorithm. Pattern Recogn. 36(2), 451–461 (2003)

    Article  Google Scholar 

  41. S. Albawi, T.A. Mohammed, S. Al-Zawi, Understanding of a convolutional neural network, in 2017 International Conference on Engineering and Technology (2017), pp. 1–6

    Google Scholar 

  42. T. Chen, A job-classifying and data-mining approach for estimating job cycle time in a wafer fabrication factory. Int. J. Adv. Manuf. Technol. 62(1), 317–328 (2012)

    Article  MathSciNet  Google Scholar 

  43. W.Y. Loh, Classification and regression trees. Wiley Interdisc. Rev. Data Min. Knowl. Discovery 1(1), 14–23 (2011)

    Article  Google Scholar 

  44. J. Liu, Q. Huang, C. Ulishney, C.E. Dumitrescu, Comparison of random forest and neural network in modeling the performance and emissions of a natural gas spark ignition engine. J. Energy Res. Technol. 144(3), 032310 (2022)

    Article  Google Scholar 

  45. GoogleDevelopers, Gradient boosted decision trees | Machine learning (2022). https://developers.google.com/machine-learning/decision-forests/intro-to-gbdt

  46. T. Chen, T. He, M. Benesty, V. Khotilovich, Y. Tang, H. Cho, K. Chen, Xgboost: extreme gradient boosting. R Package Version 0.4-2, 1(4), 1–4 (2015)

    Google Scholar 

  47. T. Chen, Y.C. Wang, A two-stage explainable artificial intelligence approach for classification-based job cycle time prediction. Int. J. Adv. Manuf. Technol. 123(5), 2031–2042 (2022)

    Article  Google Scholar 

  48. MathWorks.com, Hyperbolic tangent sigmoid transfer function—MATLAB tansig (2022). https://www.mathworks.com/help/deeplearning/ref/tansig.html

  49. T. Chen, Y.-C. Wang, Semiconductor yield forecasting using quadratic-programming based fuzzy collaborative intelligence approach. Math. Probl. Eng. 2013, 672404 (2013)

    Google Scholar 

  50. T. Chen, M.C. Chiu, An improved fuzzy collaborative system for predicting the unit cost of a DRAM product. Int. J. Intell. Syst. 30(6), 707–730 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tin-Chih Toly Chen .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chen, TC.T. (2023). Applications of XAI for Forecasting in the Manufacturing Domain. In: Explainable Artificial Intelligence (XAI) in Manufacturing. SpringerBriefs in Applied Sciences and Technology. Springer, Cham. https://doi.org/10.1007/978-3-031-27961-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-27961-4_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-27960-7

  • Online ISBN: 978-3-031-27961-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics