Skip to main content

Advertisement

Log in

Forward cycle time distributions for returnable transport items

  • Research
  • Published:
Journal of Remanufacturing Aims and scope Submit manuscript

Abstract

Forward cycle time (FCT) distributions for returnable transport items (RTIs) are developed for periods where incomplete data is available, and these distributions are utilized to create an estimate of future container returns. Such forecasts are important inputs to inventory control models for RTI and production models in remanufacturing, and the objective of this paper is to implement a method that incorporates appropriate trend and seasonality. A FCT distribution provides the probability that a container filled in a specific period (week or month) will return in a specified time. The method used to estimate FCT distributions employs an adaptive exponential smoothing method that accounts for seasonality to forecast the parameters of a lognormal distribution for FCT in future periods. This distribution is used to calculate discrete FCT probabilities, estimate container returns, and calculate the estimated mean and standard deviation of cycle time for periods with incomplete data. The estimation process continues through the future periods for which an prediction of container returns is needed. Validation of the method is provided by comparing estimates created using historical data with periods where the actual FCT distributions are known. The resulting cycle time distributions are highly accurate, allowing companies employing RTI in practice to use the method to predict the number of containers that will be available to accommodate future production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Agrawal A, Choudhary V (2014) Reverse logistics: Performance measures and their effect in product lifecycle. Int J Core Eng Manag 1(2):14–22

    Google Scholar 

  2. Anderson TW (1962) On the distribution of the two-sample Cramer-von Mises criterion. Ann Math Stat 33(3):1148–1159

    Article  MathSciNet  MATH  Google Scholar 

  3. Asif FMA, Bianchi C, Rashid A, Nicolescu CM (2012) Performance analysis of the closed loop supply chain. J Remanufact 2(4):1–21

    Google Scholar 

  4. Bajari P, Nekipelov D, Ryan SP, Yang M (2015) Machine learning methods for demand estimation. Am Econ Rev 105(5):481–485

    Article  Google Scholar 

  5. Box GEP, Jenkins GM, Reinsel G (1994) Time Series Analysis: Forecasting and Control, 3rd edn. Prentice Hall, Englewood Cliff

    MATH  Google Scholar 

  6. de Brito MP, van der Laan EA (2009) Inventory control with product returns: The impact of imperfect information. Eur J Oper Res 194(1):85–101

    Article  MATH  Google Scholar 

  7. Buchanan DJ, Abad PL (1989) Optimal policy for a periodic review returnable inventory system. IIE Trans 30(11):1049–1055

    Article  Google Scholar 

  8. Chappell L, Ginsburg L, Schmidt P, Smith J, Tobolski J (2003) Auto-ID on the line: The value of auto-ID technology. in manufacturing

  9. Chen JM, Chang CI (2012) The economics of a closed-loop supply chain with remanufacturing. J Oper Res Soc 63(10):1323–1335

    Article  Google Scholar 

  10. Clottey T, Benton WC (2014) Determining core acquisition quantities when products have long return lags. IIE Trans 46(9):880–893

    Article  Google Scholar 

  11. Clottey T, Benton WC, Srivastava R (2012) Forecasting product returns for remanufacturing operations. Decis Sci 43(4):589–614

    Article  Google Scholar 

  12. Cobb BR (2014) Mixture of polynomials probability distributions for grouped sample data. In: van der Gaag L, Feelder A (eds) Proceedings of the Seventh European Conference on Probabilistic Graphical Models (PGM2014), Lecture Notes in Artificial Intelligence. Springer, Cham, pp 129–144

  13. Cobb BR (2016) Estimating cycle time and return rate distributions for returnable transport items. Int J Prod Res 54(14):4356–4367

  14. Cobb BR (2016) Inventory control for returnable transport items in a closed-loop supply chain. Transp Res Part E: Logist Transp Rev 86(C):1128–1139

  15. Darling DA (1957) The Kolmogorov-Smirnov, Cramer-von Mises tests. Ann Math Stat 28(4):823–838

    Article  MathSciNet  MATH  Google Scholar 

  16. Dowlatshahi S (2000) Developing a theory of reverse logistics. Interfaces 30(3):143–155

    Article  Google Scholar 

  17. Dwicahyani A, Jauhari W, Rosyidi C, Laksono P (2017) Inventory decisions in a two-echelon system with remanufacturing, carbon emission, and energy effects. Cogent Eng 4(1):1–17

    Article  Google Scholar 

  18. Ech-Charrat M, Amechnoue K, Zouadi T (2017) Dynamic planning of reusable containers in a close-loop supply chain under carbon emission constraint. Int J Supply Oper Manag 4(4):279–297

    Google Scholar 

  19. El Saadany AMA, Jaber MY (2010) A production/remanufacturing inventory model with price and quality depandant return rate. Comput Ind Eng 58 (3):352–362

    Article  Google Scholar 

  20. Fan X, Gong Y, Xu X, Zou B (2019) Optimal decisions in reducing loss rate of returnable transport items. J Clean Prod 214(1):1050–1060

    Article  Google Scholar 

  21. Finney DJ (1941) On the distribution of a variate whose logarithm is normally distributed. J R Stat Soc Ser B 7(2):155–161

    MathSciNet  Google Scholar 

  22. Fleischmann M, Bloemhof-Ruwaard JM, Dekker R, van der Laan E, van Nunen JAEE, Wassenhove LNV (1997) Quantitative models for reverse logistics: a review. Eur J Oper Res 103(1):1–17

    Article  MATH  Google Scholar 

  23. Fleischmann M, Krikke HR, Dekker R, Flapper SDP (2000) A characterization of logistics networks for product recovery. Omega 28(6):653–666

    Article  Google Scholar 

  24. Geda M, Kwong CK (2021) An MCMC based Bayesian inference approach to parameter estimation of distributed lag models for forecasting used product returns for remanufacturing. Journal of Remanufacturing. https://doi.org/10.1007/s13243-020-00099-3

  25. Gianesello P, Ivanov D, Battini D (2017) Closed-loop supply chain simulation with disruption considerations: A case-study on Tesla. Int J Inventory Res 4(4):257–280

    Article  Google Scholar 

  26. Giri BC, Glock CH (2017) A closed-loop supply chain with stochastic product returns and worker experience under learning and forgetting. Int J Prod Res 55(22):6760–6778

    Article  Google Scholar 

  27. Govindan K, Jha PC, Garg K (2016) Product recovery optimization in closed-loop supply chain to improve sustainability in manufacturing. Int J Prod Res 54(5):1463–1486

    Article  Google Scholar 

  28. Graham I, Goodall P, Peng Y, Palmer C, West A, Conway P, Mascolo JE (2015) Performance measurement and KPIs for remanufacturing. J Remanufact 5(10):1–17

    Google Scholar 

  29. Guide VDR, Wassenhove LNV (2009) The evolution of closed-loop supply chain research. Oper Res 57(1):10–18

    Article  MATH  Google Scholar 

  30. Guide VDR, Harrison TP, Wassenhove LNV (2003) The challenge of closed-loop supply chains. Interfaces 33(6):3–6

    Article  Google Scholar 

  31. Han X, Wu H, Yang Q, Shang J (2017) Collection channel and production decisions in a closed-loop supply chain with remanufacturing cost disruption. Int J Prod Res 55(4):1147–1167

    Article  Google Scholar 

  32. Hariga M, Glock C, Kim T (2016) Integrated product and container inventory model for a single-vendor single-buyer supply chain with owned and rented returnable transport items. Int J Prod Res 54(7):1964–1979

    Article  Google Scholar 

  33. Harter HL, Moore AH (1966) Local maximum-likelihood estimation of the parameters of three-parameter lognormal populations from complete and censored samples. J Am Stat Assoc 61(315):842–851

    Article  MathSciNet  Google Scholar 

  34. Hellström D (2009) The cost and process of implementing RFID technology to manage and control returnable transport items. Int J Logist Res Appl 12 (1):1–21

    Article  Google Scholar 

  35. Kelle P, Silver EA (1989) Forecasting the returns of reusable containers. J Oper Manag 8(1):17–35

  36. Kelle P, Silver EA (1989) Purchasing policy of new containers considering the random returns of previously issued containers. IIE Trans 21(4):349–354

  37. Kim T, Glock CH (2014) On the use of RFID in the management of reusable containers in closed-loop supply chains under stochastic container return quantities. Transp Res Part E: Logist Transp Rev 64(1):12–27

    Article  Google Scholar 

  38. Krapp M, Nebel J, Sahamie R (2013) Using forecasts and managerial accounting information to enhance closed-loop supply chain management. OR Spectrum 35(4):975–1007

    Article  MathSciNet  MATH  Google Scholar 

  39. Kullback S, Leibler RA (1951) On information and sufficiency. Ann Math Stat 22(1):76–86

    Article  MathSciNet  MATH  Google Scholar 

  40. Liang X, Jin X, Ni J (2014) Forecasting product returns for remanufacturing systems. J Remanuf 4(8):1–18

    Google Scholar 

  41. MacKay DJC (2003) Information theory, inference, and learning algorithms. Cambridge University Press, Cambridge

  42. Mutingi M, Mapfaira H, Monageng R (2014) Developing performance management systems for the green supply chain. J Remanuf 4(6):1–20

    Google Scholar 

  43. Olugu E, Wong K, Shaharoun A (2010) A comprehensive approach in assessing the performance of an automobile closed-loop supply chain. Sustainability 2(4):871–889

    Article  Google Scholar 

  44. Pereira MM, Machado RL, Ignacio Pires SR, Pereira Dantas MJ, Zaluski PR, Frazzon EM (2018) Forecasting scrap tires returns in closed-loop supply chains in brazil. J Clean Prod 188(1):741–750

    Article  Google Scholar 

  45. Pique S (2012) Managing RTIs. RFID Journal

  46. Ramírez A M, Morales VJG (2014) Improving organisational performance through reverse logistics. J Oper Res Soc 65(6):954–962

    Article  Google Scholar 

  47. Salema MIG, Barbosa AP, Novais AQ (2009) A strategic and tactical model for closed-loop supply chains. OR Spectrum 31(3):573–599

    Article  MathSciNet  MATH  Google Scholar 

  48. Sarkar B, Ullah M, Kim N (2017) Environmental and economic assessment of closed-loop supply chain with remanufacturing and returnable transport items. Comput Ind Eng 111(1):148–163

    Article  Google Scholar 

  49. Scholz FW, Stephens MA (1987) K-sample Anderson–Darling tests. J Am Stat Assoc 82(399):918–924

    MathSciNet  Google Scholar 

  50. Seideman T (2003) The race for RFID. J Commerce 4:16–18

    Google Scholar 

  51. Smirnov N (1948) Table for estimating the goodness of fit of empirical distributions. Ann Math Stat 19(2):279–281

    Article  MathSciNet  MATH  Google Scholar 

  52. Soleimani H, Seyyed-Esfahani M, Kannan G (2014) Incorporating risk measures in closed-loop supply chain network design. Int J Prod Res 52 (6):1843–1867

    Article  Google Scholar 

  53. Srivastava SK, Srivastava RK (2006) Managing product returns for reverse logistics. Int J Phys Distrib Logist Manag 36(7):524–546

    Article  Google Scholar 

  54. Stenger AJ (2011) Advances in information technology applications for supply chain management. Transp J 50(1):37–52

    Article  Google Scholar 

  55. Thierry M, Salomon M, Van Nunen J, Van Wassenhove LN (1995) Strategic issues in product recovery management. Calif Manag Rev 37(2):114–135

    Article  Google Scholar 

  56. Toktay LB, Wein LM, Zenios SA (2000) Inventory management of remanufacturable products. Manag Sci 46(11):1412–1426

    Article  MATH  Google Scholar 

  57. Tsay RS (2000) Time series and forecasting: Brief history and future research. J Am Stat Assoc 95(450):638–643

    Article  Google Scholar 

  58. Twede D, Clarke R (2004) Supply chain issues in reusable packaging. J Market Chann 12(1):7–26

    Article  Google Scholar 

  59. Veiga C, Veiga C, Catapan A, Tortato U, Silva W (2014) Demand forecasting in food retail: A, comparison between the holt-winters and ARIMA models. WSEAS Trans Bus Econ 11(1):608–614

    Google Scholar 

  60. Visich JK, Li S, Khumawala BM (2007) Enhancing product recovery value in closed-loop supply chains with RFID. J Manag Issues 19(3):436–452

    Google Scholar 

  61. Whittaker J (1990) Graphical models in applied multivariate statistics. Wiley, Chichester

  62. Wilding R, Delgado T (2004) RFID demystified: Part 2. applications within the supply chain. Logist Transport Focus 6(4):42–48

  63. Winters PR (1960) Forecasting sales by exponentially weighted moving averages. Manag Sci 6(3):324–342

    Article  MathSciNet  MATH  Google Scholar 

  64. Zheng B, Yang C, Yang J, Zhang M (2017) Dual-channel closed loop supply chains: forward channel competition, power structures and coordination. Int J Prod Res 55(12):3510–3527

    Article  Google Scholar 

  65. Zhou W, Piramuthu S (2013) Remanufacturing with RFID item-level information: optimization, waste reduction, and quality improvement. Int J Prod Econ 145(2):647–657

    Article  Google Scholar 

  66. Zolfagharinia H, Hafezi M, Farahani RZ, Fahimnia B (2014) A hybrid two-stock inventory control model for a reverse supply chain. Transp Res Part E: Logist Transp Rev 67(1):141–161

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank two anonymous reviewers for comments and suggestions which improved the paper significantly.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barry R. Cobb.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cobb, B.R., Li, L. Forward cycle time distributions for returnable transport items. Jnl Remanufactur 12, 125–151 (2022). https://doi.org/10.1007/s13243-021-00105-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13243-021-00105-2

Keywords

Navigation