Skip to main content

Antimicrobial Peptides, An Alternative Antimicrobial Agent Against Multi-drug-Resistant Microbes: Source, Application, and Potential

  • Chapter
  • First Online:
Advancements in Materials Science and Technology Led by Women

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 165))

Abstract

Pathogenic microorganisms are often associated with infectious diseases in humans, plants, or animals. Over the past 100 years, antibiotics have been often used to combat the infections caused by these pathogenic microorganisms. The frequent and overuse of antibiotics has led to the rapid emergence of multi-drug-resistant microorganisms. There has been a worldwide quest for a new antibacterial agent. In recent years, antimicrobial peptides (AMPs), produced naturally by bacteria, insects, amphibians, and mammals, have gained attention as an alternative antimicrobial agent against multi-drug resistant microbes. Contrary to conventional antibiotics, which typically work by targeting a specific high-affinity antimicrobial target and may lead to the development of resistance in microorganisms, AMPs exert various antimicrobial activities that may offer a strategy to stop bacterial resistance. In addition, AMPs have a wide range of applications as they are effective in eradicating microorganisms and are non-toxic or harmful to humans and the environment. This paper reviews the sources, application, and potential of AMPs against multi-drug-resistant microorganisms and their risks to humankind.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abriouel H, Lucas R, Ben ON et al (2010) Potential applications of the cyclic peptide enterocin AS-48 in the preservation of vegetable foods and beverages. Probiotics Antimicrob Proteins 2:77–89

    Article  CAS  Google Scholar 

  • Adebisi YA, Jumoke AA, Melody O et al (2021) COVID-19 and antimicrobial resistance: a review. Infect Dis Res Treat 14:1–9

    Google Scholar 

  • J Afacan N, TY Yeung A, M Pena O, EW Hancock R (2012) Therapeutic potential of host defense peptides in antibiotic-resistant infections. Curr Pharm Des 18:807–819

    Google Scholar 

  • Agrillo B, Balestrieri M, Gogliettino M et al (2019) Functionalized polymeric materials with bio-derived antimicrobial peptides for “active” packaging. Int J Mol Sci 20:1–13

    Article  Google Scholar 

  • Akpan MR, Isemin NU, Udoh AE, Ashiru-Oredope D (2020) Implementation of antimicrobial stewardship programmes in African countries: a systematic literature review. J Glob Antimicrob Resist 22:317–324

    Article  Google Scholar 

  • Alanis AJ (2005) Resistance to antibiotics: are we in the post-antibiotic era? Arch Med Res 36:697–705

    Article  Google Scholar 

  • Andersson DI, Hughes D, Kubicek-Sutherland JZ (2016) Mechanisms and consequences of bacterial resistance to antimicrobial peptides. Drug Resist Updat 26:43–57

    Article  CAS  Google Scholar 

  • Asghari F, Samiei M, Adibkia K et al (2016) Biodegradable and biocompatible polymers for tissue engineering application: a review. Artif Cells Nanomed Biotechnol 45:185–192

    Article  Google Scholar 

  • Bagley CP (2014) Potential role of synthetic antimicrobial peptides in animal health to combat growing concerns of antibiotic resistance -a review. Wyno Acad J Agric Sci 2:19–28

    Google Scholar 

  • Barneah O, Ben-Dov E, Kramarsky-Winter E, Kushmaro A (2007) Characterization of black band disease in Red Sea stony corals. Environ Microbiol 9:1995–2006

    Article  CAS  Google Scholar 

  • Bart van der Worp H, Howells DW, Sena ES et al (2010) Can animal models of disease reliably inform human studies? PLOS Med 7:e1000245

    Article  Google Scholar 

  • Ben-Haim Y, Thompson FL, Thompson CC et al (2003) Vibrio coralliilyticus sp. nov., a temperature-dependent pathogen of the coral Pocillopora damicornis. Int J Syst Evol Microbiol 53:309–315

    Article  CAS  Google Scholar 

  • Berglund NA, Piggot TJ, Jefferies D et al (2015) Interaction of the antimicrobial peptide polymyxin B1 with both membranes of E. coli: a molecular dynamics study. PLoS Comput Biol 11:1–18

    Article  Google Scholar 

  • Bi J, Tian C, Jiang J et al (2020) Antibacterial activity and potential application in food packaging of peptides derived from turbot viscera hydrolysate. J Agric Food Chem 68:9968–9977

    Article  CAS  Google Scholar 

  • Boparai JK, Sharma PK (2019) Mini review on antimicrobial peptides, sources, mechanism and recent applications. Protein Pept Lett 27:4–16

    Article  Google Scholar 

  • Breukink E, De Kruijff B (1999) The lantibiotic nisin, a special case or not? Biochim Biophys Acta - Biomembr 1462:223–234

    Article  CAS  Google Scholar 

  • Brogden KA (2005) Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol 3:238–250

    Article  CAS  Google Scholar 

  • Browne K, Chakraborty S, Chen R et al (2020) A new era of antibiotics: the clinical potential of antimicrobial peptides. Int J Mol Sci 21:1–23

    Article  Google Scholar 

  • Bulet P, Stocklin R (2005) Insect antimicrobial peptides: structures, properties and gene regulation. Protein Pept Lett 12:3–11

    Article  CAS  Google Scholar 

  • Chen H, Hoover DG (2003) Bacteriocins and their food applications. Compr Rev Food Sci Food Saf. https://doi.org/10.1111/j.1541-4337.2003.tb00016.x

    Article  Google Scholar 

  • Chen AY, Zervos MJ, Vazquez JA (2007) Dalbavancin: a novel antimicrobial. Int J Clin Pract 61:853–863

    Article  CAS  Google Scholar 

  • Chen R, Cole N, Willcox MDP et al (2009) Synthesis, characterization and in vitro activity of a surface-attached antimicrobial cationic peptide. Biofouling 25:517–524

    Article  CAS  Google Scholar 

  • Choi WH, Yun JH, Chu JP, Chu KB (2012) Antibacterial effect of extracts of Hermetia illucens (Diptera: Stratiomyidae) larvae against Gram-negative bacteria. Entomol Res 42:219–226

    Article  Google Scholar 

  • Cuesta SA, Reinoso C, Morales F et al (2021) Novel antimicrobial cruzioseptin peptides extracted from the splendid leaf frog, Cruziohyla calcarifer. Amino Acids 53:853–868

    Article  CAS  Google Scholar 

  • D’Amato D, Sinigaglia M (2010) Antimicrobial agents of microbial origin: Nisin. Appl Altern Food-Preserv Technol Enhanc Food Saf Stab. https://doi.org/10.2174/978160805096311001010083

    Article  Google Scholar 

  • Datta A, Ghosh A, Airoldi C et al (2015) Antimicrobial peptides: Insights into membrane permeabilization, lipopolysaccharide fragmentation and application in plant disease control. Sci Rep 5:1–15

    Article  Google Scholar 

  • Destoumieux-Garzón D, Rosa RD, Schmitt P et al (2016) Antimicrobial peptides in marine invertebrate health and disease. Philos Trans R Soc B Biol Sci. https://doi.org/10.1098/rstb.2015.0300

    Article  Google Scholar 

  • Dutta D, Ozkan J, Willcox MDP (2014) Biocompatibility of antimicrobial melimine lenses: rabbit and human studies. Optom vis Sci 91:570–581

    Article  Google Scholar 

  • Dutta D, Vijay AK, Kumar N, Willcox MDP (2016) Melimine-coated antimicrobial contact lenses reduce microbial keratitis in an animal model. Invest Ophthalmol vis Sci 57:5616–5624

    Article  CAS  Google Scholar 

  • Dutta D, Kamphuis B, Ozcelik B et al (2018) Development of silicone hydrogel antimicrobial contact lenses with mel4 peptide coating. Optom vis Sci 95:937–946

    Article  Google Scholar 

  • Ehrenstein G, Lecar H (1977) Electrically gated ionic channels in lipid bilayers. Q Rev Biophys 10:1–34

    Article  CAS  Google Scholar 

  • Elayaraja S, Annamalai N, Mayavu P, Balasubramanian T (2014) Production, purification and characterization of bacteriocin from Lactobacillus murinus AU06 and its broad antibacterial spectrum. Asian Pac J Trop Biomed 4:S305–S311

    Article  Google Scholar 

  • Epand RM, Walker C, Epand RF, Magarvey NA (2016) Molecular mechanisms of membrane targeting antibiotics. Biochim Biophys Acta Biomembr 1858:980–987

    Article  CAS  Google Scholar 

  • Fernandez DI, Le Brun AP, Whitwell TC et al (2012) The antimicrobial peptide aurein 1.2 disrupts model membranes via the carpet mechanism. Phys Chem Chem Phys 14:15739–15751

    Article  CAS  Google Scholar 

  • Forde E, Devocelle M (2015) Pro-moieties of antimicrobial peptide prodrugs. Molecules 20:1210–1227

    Article  Google Scholar 

  • Franzenburg S, Walter J, Künzel S et al (2013) Distinct antimicrobial peptide expression determines host species-specific bacterial associations. Proc Natl Acad Sci USA 110:E3730–E3738

    Article  CAS  Google Scholar 

  • Fukui Y, Saitoh SI, Sawabe T (2010) Environmental determinants correlated to Vibrio harveyi-mediated death of marine gastropods. Environ Microbiol 12:124–133

    Article  CAS  Google Scholar 

  • Gálvez A, López RL, Abriouel H et al (2008) Application of bacteriocins in the control of foodborne pathogenic and spoilage bacteria. Crit Rev Biotechnol 28:125–152

    Article  Google Scholar 

  • Gálvez A, José Grande Burgos M, López RL, Pérez Pulido R (2014) Food biopreservation. Springer, New York

    Book  Google Scholar 

  • Gharsallaoui A, Oulahal N, Joly C, Degraeve P (2016) Nisin as a food preservative: part 1: physicochemical properties, antimicrobial activity, and main uses. Crit Rev Food Sci Nutr 56:1262–1274

    Article  CAS  Google Scholar 

  • Ghosh R, Maji UK, Bhattacharya R, Sinha AK (2012) The role of dermcidin isoform 2: a two-faceted atherosclerotic risk factor for coronary artery disease and the effect of acetyl salicylic acid on it. Thrombosis 2012:1–9

    Article  Google Scholar 

  • Gogliettino M, Balestrieri M, Ambrosio RL et al (2020) Extending the shelf-life of meat and dairy products via PET-modified packaging activated with the antimicrobial peptide MTP1. Front Microbiol 10:1–11

    Article  Google Scholar 

  • Grande MJ, López RL, Abriouel H et al (2007) Treatment of vegetable sauces with enterocin AS-48 alone or in combination with phenolic compounds to inhibit proliferation of Staphylococcus aureus. J Food Prot 70:405–411

    Article  CAS  Google Scholar 

  • Gschwandtner M, Zhong S, Tschachler A et al (2014) Fetal human keratinocytes produce large amounts of antimicrobial peptides: involvement of histone-methylation processes. J Invest Dermatol 134:2192–2201

    Article  CAS  Google Scholar 

  • Hammami R, Ben Hamida J, Vergoten G, Fliss I (2009) PhytAMP: a database dedicated to antimicrobial plant peptides. Nucleic Acids Res 37:963–968

    Article  Google Scholar 

  • Han J (2020) What is nisin preparation (E234) in food? Uses, safety, side effects. In: FoodAdditives.net. https://foodadditives.net/preservatives/nisin/. Accessed 24 Jan 2022

  • Hancock REW, Patrzykat A (2002) Clinical development of cationic antimicrobial peptides: from natural to novel antibiotics. Curr Drug Targets Infect Disord 2:79–83

    Article  CAS  Google Scholar 

  • Hancock REW, Nijnik A, Philpott DJ (2012) Modulating immunity as a therapy for bacterial infections. Nat Rev Microbiol 10:243–254

    Article  CAS  Google Scholar 

  • He SW, Zhang J, Li NQ et al (2017) A TFPI-1 peptide that induces degradation of bacterial nucleic acids, and inhibits bacterial and viral infection in half-smooth tongue sole, Cynoglossus semilaevis. Fish Shellfish Immunol 60:466–473

    Google Scholar 

  • Hilchie AL, Wuerth K, Hancock REW (2013) Immune modulation by multifaceted cationic host defense (antimicrobial) peptides. Nat Chem Biol 9:761–768

    Article  CAS  Google Scholar 

  • Hollmann A, Martinez M, Maturana P et al (2018) Antimicrobial peptides: Interaction with model and biological membranes and synergism with chemical antibiotics. Front Chem 6:1–13

    Article  Google Scholar 

  • Holt E (2018) Anti-microbial resistance on the rise. In: New straits times press Bhd. https://www.nst.com.my/opinion/columnists/2018/12/438444/anti-microbial-resistance-rise. Accessed 12 Jan 2022

  • Huan Y, Kong Q, Mou H, Yi H (2020) Antimicrobial peptides: classification, design, application and research progress in multiple fields. Front Microbiol 11:1–21

    Article  Google Scholar 

  • Irkin R, Esmer OK (2015) Novel food packaging systems with natural antimicrobial agents. J Food Sci Technol 52:6095–6111

    Article  CAS  Google Scholar 

  • Jamali H, Krylova K, Dozois CM (2019) The 100 top-cited scientific papers focused on the topic of bacteriocins. Int J Pept Res Ther 25:933–939

    Article  CAS  Google Scholar 

  • Jenssen H, Hamill P, Hancock REW (2006) Peptide antimicrobial agents. Clin Microbiol Rev 19:491–511. https://doi.org/10.1128/CMR.00056-05

    Article  CAS  Google Scholar 

  • Jones E, Salin V, Williams GW (2005) Nisin and the market for commercial bacteriocins. Texas

    Google Scholar 

  • Józefiak A, Engberg RM (2017) Insect proteins as a potential source of antimicrobial peptides in livestock production. A Review. J Anim Feed Sci 26:87–99

    Article  Google Scholar 

  • Józefiak D, Kierończyk B, Juśkiewicz J et al (2013) Dietary nisin modulates the gastrointestinal microbial ecology and enhances growth performance of the broiler chickens. PLoS ONE 8:e85347

    Article  Google Scholar 

  • Kampshoff F, Willcox MDP, Dutta D (2019) A pilot study of the synergy between two antimicrobial peptides and two common antibiotics. Antibiot 8:60

    Article  CAS  Google Scholar 

  • Kazemzadeh-Narbat M, Cheng H, Chabok R et al (2021) Strategies for antimicrobial peptide coatings on medical devices: a review and regulatory science perspective. Crit Rev Biotechnol 41:94–120

    Article  CAS  Google Scholar 

  • Kerenga BK, McKenna JA, Harvey PJ et al (2019) Salt-tolerant antifungal and antibacterial activities of the corn defensin ZmD32. Front Microbiol 10:1–13

    Article  Google Scholar 

  • Kierończyk B, Pruszyńska-Oszmałek E, Światkiewicz S et al (2016) The nisin improves broiler chicken growth performance and interacts with salinomycin in terms of gastrointestinal tract microbiota composition. J Anim Feed Sci 25:309–316

    Article  Google Scholar 

  • Koprivnjak T, Peschel A (2011) Bacterial resistance mechanisms against host defense peptides. Cell Mol Life Sci 68:2243–2254

    Article  CAS  Google Scholar 

  • Kumar P, Kizhakkedathu JN, Straus SK (2018) Antimicrobial peptides: diversity, mechanism of action and strategies to improve the activity and biocompatibility in vivo. Biomolecules. https://doi.org/10.3390/biom8010004

    Article  Google Scholar 

  • Lai Y, Gallo RL (2009) AMPed up immunity: how antimicrobial peptides have multiple roles in immune defense. Trends Immunol 30:131–141

    Article  CAS  Google Scholar 

  • Lazdunski CJ (1988) Pore-forming colicins: synthesis, extracellular release, mode of action, immunity. Biochimie 70:1291–1296

    Article  CAS  Google Scholar 

  • Lee CT, Chen IT, Yang YT, Ko TP, Huang YT, Huang JY, Huang MF, Lin SJ, Chen CY, Lin SS, Lightner DV(2015) The opportunistic marine pathogen Vibrio parahaemolyticus becomes virulent by acquiring a plasmid that expresses a deadly toxin. Proc Natl Acad Sci 112:E5445–E5445

    Google Scholar 

  • Li L, Sun J, Xia S et al (2016) Mechanism of antifungal activity of antimicrobial peptide APP, a cell-penetrating peptide derivative, against Candida albicans: intracellular DNA binding and cell cycle arrest. Appl Microbiol Biotechnol 100:3245–3253

    Article  CAS  Google Scholar 

  • Li J, Hu S, Jian W et al (2021) Plant antimicrobial peptides: structures, functions, and applications. Bot Stud. https://doi.org/10.1186/s40529-021-00312-x

    Article  Google Scholar 

  • Lin Z, Wu T, Wang W et al (2019) Biofunctions of antimicrobial peptide-conjugated alginate/hyaluronic acid/collagen wound dressings promote wound healing of a mixed-bacteria-infected wound. Int J Biol Macromol 140:330–342

    Article  CAS  Google Scholar 

  • Liu N, Lan JF, Sun JJ et al (2015) A novel crustin from Marsupenaeus japonicus promotes hemocyte phagocytosis. Dev Comp Immunol 49:313–322

    Article  CAS  Google Scholar 

  • Liu Y, Sameen DE, Ahmed S et al (2021) Antimicrobial peptides and their application in food packaging. Trends Food Sci Technol 112:471–483

    Article  CAS  Google Scholar 

  • Lohner K, Prossnigg F (2009) Biological activity and structural aspects of PGLa interaction with membrane mimetic systems. Biochim Biophys Acta Biomembr 1788:1656–1666

    Article  CAS  Google Scholar 

  • López Cabo M, Torres B, Rodríguez Herrera JJ et al (2009) Application of nisin and pediocin against resistance and germination of Bacillus spores in sous vide products. J Food Prot 72:515–523

    Article  Google Scholar 

  • López-García B, Lee PHA, Gallo RL (2006) Expression and potential function of cathelicidin antimicrobial peptides in dermatophytosis and tinea versicolor. J Antimicrob Chemother 57:877–882

    Article  Google Scholar 

  • Mader JS, Hoskin DW (2006) Cationic antimicrobial peptides as novel cytotoxic agents for cancer treatment. Expert Opin Investig Drugs 15:933–946

    Article  CAS  Google Scholar 

  • Makarova O, Johnston P, Rodriguez-Rojas A et al (2018) Genomics of experimental adaptation of Staphylococcus aureus to a natural combination of insect antimicrobial peptides. Sci Rep 8:1–8

    Article  CAS  Google Scholar 

  • Malabarba A, Goldstein BP (2005) Origin, structure, and activity in vitro and in vivo of dalbavancin. J Antimicrob Chemother 55:ii15–ii20

    Google Scholar 

  • Mangoni ML, Casciaro B (2020) Development of antimicrobial peptides from amphibians. Antibiotics 9:1–4

    Article  Google Scholar 

  • Mardirossian M, Grzela R, Giglione C et al (2014) The host antimicrobial peptide Bac71-35 binds to bacterial ribosomal proteins and inhibits protein synthesis. Chem Biol 21:1639–1647

    Article  CAS  Google Scholar 

  • Maria-Neto S, De Almeida KC, Macedo MLR, Franco OL (2015) Understanding bacterial resistance to antimicrobial peptides: From the surface to deep inside. Biochim Biophys Acta - Biomembr 1848:3078–3088

    Article  CAS  Google Scholar 

  • Martinez FAC, Balciunas EM, Converti A et al (2013) Bacteriocin production by Bifidobacterium spp: a review. Biotechnol Adv 31:482–488. https://doi.org/10.1016/j.biotechadv.2013.01.010

    Article  CAS  Google Scholar 

  • Moravej H, Moravej Z, Yazdanparast M et al (2018) Antimicrobial peptides: features, action, and their resistance mechanisms in bacteria. Microb Drug Resist 24:747–767

    Article  CAS  Google Scholar 

  • Müller-Auffermann K, Grijalva F, Jacob F, Hutzler M (2015) Nisin and its usage in breweries: a review and discussion. J Inst Brew 121:309–319

    Article  Google Scholar 

  • Murakami M, Kameda K, Tsumoto H et al (2017) TLN-58, an additional hCAP18 processing form, found in the lesion vesicle of palmoplantar pustulosis in the skin. J Invest Dermatol 137:322–331

    Article  CAS  Google Scholar 

  • Naeemmudeen NM, Mohd Ghazali NAN, Bahari H et al (2021) Trends in antimicrobial resistance in Malaysia. Med J Malaysia 76:698–705

    CAS  Google Scholar 

  • Nayak T, Mandal SM, Neog K, Ghosh AK (2018) Characterization of a gloverin-like antimicrobial peptide isolated from muga silkworm, Antheraea assamensis. Int J Pept Res Ther 24:337–346

    Article  CAS  Google Scholar 

  • Nguyen R, Khanna NR, Safadi AO, Sun Y (2021) Bacitracin topical. StatPearls, Florida

    Google Scholar 

  • Nie B, Ao H, Zhou J et al (2016) Biofunctionalization of titanium with bacitracin immobilization shows potential for anti-bacteria, osteogenesis and reduction of macrophage inflammation. Colloids Surf B Biointerfaces 145:728–739

    Article  CAS  Google Scholar 

  • Nie B, Ao H, Long T et al (2017) Immobilizing bacitracin on titanium for prophylaxis of infections and for improving osteoinductivity: an in vivo study. Colloids Surf B Biointerfaces 150:183–191

    Article  CAS  Google Scholar 

  • Nijnik A, Hancock R (2009) Host defence peptides: antimicrobial and immunomodulatory activity and potential applications for tackling antibiotic-resistant infections. Emerg Health Threats J 2:1–7

    Google Scholar 

  • Oren Z, Shai Y (1998) Mode of action of linear amphipathic α-helical antimicrobial peptides. Biopolymers 47:451–463

    Article  CAS  Google Scholar 

  • Ouertani A, Chaabouni I, Mosbah A et al (2018) Two new secreted proteases generate a casein-derived antimicrobial peptide in Bacillus cereus food born isolate leading to bacterial competition in milk. Front Microbiol 9:1–12

    Article  Google Scholar 

  • Palmieri G, Balestrieri M, Proroga YTR et al (2016) New antimicrobial peptides against foodborne pathogens: from in silico design to experimental evidence. Food Chem 211:546–554

    Article  CAS  Google Scholar 

  • Park SI, Kim JW, Yoe SM (2015) Purification and characterization of a novel antibacterial peptide from black soldier fly (Hermetia illucens) larvae. Dev Comp Immunol 52:98–106

    Article  CAS  Google Scholar 

  • Petton B, Bruto M, James A et al (2015) Crassostrea gigas mortality in France: the usual suspect, a herpes virus, may not be the killer in this polymicrobial opportunistic disease. Front Microbiol 6:686

    Article  Google Scholar 

  • Pfalzgraff A, Brandenburg K, Weindl G (2018) Antimicrobial peptides and their therapeutic potential for bacterial skin infections and wounds. Front Pharmacol 9:1–23

    Article  Google Scholar 

  • Ponprateep S, Tharntada S, Somboonwiwat K, Tassanakajon A (2012) Gene silencing reveals a crucial role for anti-lipopolysaccharide factors from Penaeus monodon in the protection against microbial infections. Fish Shellfish Immunol 32:26–34

    Article  CAS  Google Scholar 

  • Prestinaci F, Pezzotti P, Pantosti A (2015) Antimicrobial resistance: a global multifaceted phenomenon. Pathog Glob Health 109:309–318

    Article  Google Scholar 

  • Rahnamaeian M, Vilcinskas A (2015) Short antimicrobial peptides as cosmetic ingredients to deter dermatological pathogens. Appl Microbiol Biotechnol 99:8847–8855

    Article  CAS  Google Scholar 

  • Rai M, Pandit R, Gaikwad S, Kövics G (2016) Antimicrobial peptides as natural bio-preservative to enhance the shelf-life of food. J Food Sci Technol 53:3381–3394

    Article  CAS  Google Scholar 

  • Rapaport D, Shai Y (1991) Interaction of fluorescently labeled pardaxin and its analogues with lipid bilayers. J Biol Chem 266:23769–23775

    Article  CAS  Google Scholar 

  • Rieg S, Garbe C, Sauer B et al (2004) Dermcidin is constitutively produced by eccrine sweat glands and is not induced in epidermal cells under inflammatory skin conditions. Br J Dermatol 151:534–539

    Article  CAS  Google Scholar 

  • Rieg S, Saborowski V, Kern WV et al (2014) Expression of the sweat-derived innate defence antimicrobial peptide dermcidin is not impaired in Staphylococcus aureus colonization or recurrent skin infections. Clin Exp Dermatol 39:209–212

    Article  CAS  Google Scholar 

  • Rima M, Rima M, Fajloun Z et al (2021) Antimicrobial peptides: a potent alternative to antibiotics. Antibiotics 10:1–15

    Article  Google Scholar 

  • Riool M, de Breij A, Drijfhout JW, et al (2017) Antimicrobial peptides in biomedical device manufacturing. Front Chem AUG:1–13

    Google Scholar 

  • Rozek A, Friedrich CL, Hancock REW (2000) Structure of the bovine antimicrobial peptide indolicidin bound to dodecylphosphocholine and sodium dodecyl sulfate micelles. Biochemistry 39:15765–15774

    Article  CAS  Google Scholar 

  • Sahoo A, Swain SS, Behera A et al (2021) Antimicrobial peptides derived from insects offer a novel therapeutic option to combat biofilm: a review. Front Microbiol. https://doi.org/10.3389/fmicb.2021.661195

    Article  Google Scholar 

  • Salvagni E, García C, Manresa À et al (2020) Short and ultrashort antimicrobial peptides anchored onto soft commercial contact lenses inhibit bacterial adhesion. Colloids Surf B Biointerfaces 196:111283

    Article  CAS  Google Scholar 

  • Schittek B (2012) The multiple facets of dermcidin in cell survival and host defense. J Innate Immun 4:349–360

    Article  CAS  Google Scholar 

  • Schmitt P, Rosa RD, Destoumieux-Garzón D (2016) An intimate link between antimicrobial peptide sequence diversity and binding to essential components of bacterial membranes. Biochim Biophys Acta Biomembr 1858:958–970

    Article  CAS  Google Scholar 

  • Scott MG, Dullaghan E, Mookherjee N et al (2007) An anti-infective peptide that selectively modulates the innate immune response. Nat Biotechnol 25:465–472

    Article  CAS  Google Scholar 

  • Shai Y (2002) Mode of action of membrane active antimicrobial peptides. Biopolym Pept Sci Sect 66:236–248

    Article  CAS  Google Scholar 

  • Shai Y, Bach D, Yanovsky A (1990) Channel formation properties of synthetic pardaxin and analogues. J Biol Chem 265:20202–20209

    Article  CAS  Google Scholar 

  • Shu G, Chen Y, Liu T et al (2019) Antimicrobial peptide cathelicidin-bf inhibits platelet aggregation by blocking protease-activated receptor 4. Int J Pept Res Ther 25:349–358

    Article  CAS  Google Scholar 

  • Sitaram N, Nagaraj R (1999) Interaction of antimicrobial peptides with biological and model membranes: structural and charge requirements for activity. Biochim Biophys Acta Biomembr 1462:29–54

    Article  CAS  Google Scholar 

  • Sobczak M, Debek C, Oledzka E, Kozłowski R (2013) Polymeric systems of antimicrobial peptides-strategies and potential applications. Molecules 18:14122–14137

    Article  CAS  Google Scholar 

  • Song DF, Zhu MY, Gu Q (2014) Purification and characterization of plantaricin ZJ5, a new bacteriocin produced by Lactobacillus plantarum ZJ5. PLoS ONE 9:1–8. https://doi.org/10.1371/journal.pone.0105549

    Article  CAS  Google Scholar 

  • Souza AA, Costa AS, Campos DCO et al (2018) Lipid transfer protein isolated from noni seeds displays antibacterial activity in vitro and improves survival in lethal sepsis induced by CLP in mice. Biochimie 149:9–17

    Article  CAS  Google Scholar 

  • Suganthi V, Selvarajan E, Subathradevi C, Mohanasrinivasan V (2012) Lantibiotic nisin: natural preservative from lactococcus lactis. Int Res J Pharm 3:13–19

    CAS  Google Scholar 

  • Tani K, Murphy WJ, Chertov O et al (2000) Defensins act as potent adjuvant that promote cellular and humoral immune response in mice to a lymphhoma idiotype and carrier antigents. Int Immunol 12:691–700

    Article  CAS  Google Scholar 

  • Thomas LV, Clarkson MR, Delves-Broughton J (2000) Natural food antimicrobial systems. CRC Press LLC, Boca Raton

    Google Scholar 

  • University of Nebraska Medical Center (2017) AMP database search. In: Univ. Nebraska Med. Cent. https://aps.unmc.edu/database/peptide. Accessed 20 Jan 2022

  • Upendra RS, Khandelwal P, Jana K et al (2016) Bacteriocin production from indigenous strains of lactic acid bacteria isolated from selected fermented food sources. Int J Pharma Res Health Sci 4:982–990

    CAS  Google Scholar 

  • Viedma PM, Abriouel H, Ben ON et al (2009) Effect of enterocin EJ97 against Geobacillus stearothermophilus vegetative cells and endospores in canned foods and beverages. Eur Food Res Technol 230:513–519

    Article  Google Scholar 

  • Wang G (2014) Human antimicrobial peptides and proteins. Pharmaceuticals 7:545–594

    Article  CAS  Google Scholar 

  • Wang G (2020) Bioinformatic analysis of 1000 amphibian antimicrobial peptides uncovers multiple length-dependent correlations for peptide design and prediction. Antibiotics 9:1–26

    Article  Google Scholar 

  • Wang XW, Xu JD, Zhao XF et al (2014) A shrimp C-type lectin inhibits proliferation of the hemolymph microbiota by maintaining the expression of antimicrobial peptides. J Biol Chem 289:11779–11790

    Article  CAS  Google Scholar 

  • Wang S, Zeng X, Yang Q, Qiao S (2016) Antimicrobial peptides as potential alternatives to antibiotics in food animal industry. Int J Mol Sci. https://doi.org/10.3390/ijms17050603

    Article  Google Scholar 

  • WC W (2010) Describing the mechanism of antimicrobial peptide action with the interfacial activity model. Acs Chem Biol 5:905–917

    Google Scholar 

  • Welling MM, Hiemstra PS, Van Den Barselaar MT et al (1998) Antibacterial activity of human neutrophil defensins in experimental infections in mice is accompanied by increased leukocyte accumulation. J Clin Invest 102:1583–1590

    Article  CAS  Google Scholar 

  • Wen LF, He JG (2012) Dose–response effects of an antimicrobial peptide, a cecropin hybrid, on growth performance, nutrient utilisation, bacterial counts in the digesta and intestinal morphology in broilers. Br J Nutr 108:1756–1763

    Article  CAS  Google Scholar 

  • World Health Organization ROFS-EA (2018) Situational analysis on antimicrobial resistance in the south-east Asia region. New Delhi, India

    Google Scholar 

  • Wu Q, Patočka J, Kuča K (2018) Insect antimicrobial peptides, a mini review. Toxins (Basel) 10:1–17

    Article  CAS  Google Scholar 

  • Wu R, Patocka J, Nepovimova E et al (2021) Marine invertebrate peptides: antimicrobial peptides. Front Microbiol 12:1–12

    Article  Google Scholar 

  • Xiao H, Shao F, Wu M et al (2015) The application of antimicrobial peptides as growth and health promoters for swine. J Anim Sci Biotechnol 6:1–6

    Article  Google Scholar 

  • Yang HT, Yang MC, Sun JJ et al (2015) Catalase eliminates reactive oxygen species and influences the intestinal microbiota of shrimp. Fish Shellfish Immunol 47:63–73

    Article  CAS  Google Scholar 

  • Yasir M, Dutta D, Willcox MDP (2018) Comparative mode of action of antimicrobial peptide melimine and its derivative Mel4 against Pseudomonas aeruginosa. bioRxiv 450577

    Google Scholar 

  • Yeaman MR, Yount NY (2003) Mechanisms of antimicrobial peptide action and resistance. Pharmalogical Rev 55:27–55

    Article  CAS  Google Scholar 

  • Yoon JH, Ingale SL, Kim JS et al (2012) Effects of dietary supplementation of antimicrobial peptide-A3 on growth performance, nutrient digestibility, intestinal and fecal microflora and intestinal morphology in weanling pigs. Anim Feed Sci Technol 177:98–107

    Article  CAS  Google Scholar 

  • Yu G, Baeder DY, Regoes RR, Rolff J (2018) Predicting drug resistance evolution: insights from antimicrobial peptides and antibiotics. Proc R Soc B Biol Sci. https://doi.org/10.1098/rspb.2017.2687

    Article  Google Scholar 

  • Zai Y, Xi X, Ye Z et al (2021) Aggregation and its influence on the bioactivities of a novel antimicrobial peptide, temporin-pf, and its analogues. Int J Mol Sci. https://doi.org/10.3390/ijms22094509

    Article  Google Scholar 

  • Zheng Z, Tharmalingam N, Liu Q et al (2017) Synergistic efficacy of Aedes aegypti antimicrobial peptide cecropin A2 and tetracycline against Pseudomonas aeruginosa. Antimicrob Agents Chemother. https://doi.org/10.1128/AAC.00686-17

    Article  Google Scholar 

  • Zhu S, Gao B, Umetsu Y et al (2021) Adaptively evolved human oral actinomyces-sourced defensins show therapeutic potential. EMBO Mol Med. https://doi.org/10.15252/emmm.202114499

    Article  Google Scholar 

  • Zohri M, Shafiee Alavidjeh M, Mirdamadi SS et al (2013) Nisin-loaded chitosan/alginate nanoparticles: a hopeful hybrid biopreservative. J Food Saf 33:40–49

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the Malaysia Ministry of Higher Education under the Fundamental Research Grant scheme (FRGS/1/2020/STG01/UNIKL/02/1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leong Chean Ring .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ramzah, N.H.H.L., Yenn, T.W., Lee, WH., Loo, CY., Tan, WN., Ring, L.C. (2023). Antimicrobial Peptides, An Alternative Antimicrobial Agent Against Multi-drug-Resistant Microbes: Source, Application, and Potential. In: Ismail, A., Nur Zulkipli, F., Husin, H.S., Öchsner, A. (eds) Advancements in Materials Science and Technology Led by Women. Advanced Structured Materials, vol 165. Springer, Cham. https://doi.org/10.1007/978-3-031-21959-7_17

Download citation

Publish with us

Policies and ethics