Skip to main content

Advertisement

Log in

Bacterial resistance mechanisms against host defense peptides

  • Multi-author review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Host defense peptides and proteins are important components of the innate host defense against pathogenic microorganisms. They target negatively charged bacterial surfaces and disrupt microbial cytoplasmic membranes, which ultimately leads to bacterial destruction. Throughout evolution, pathogens devised several mechanisms to protect themselves from deleterious damage of host defense peptides. These strategies include (a) inactivation and cleavage of host defense peptides by production of host defense binding proteins and proteases, (b) repulsion of the peptides by alteration of pathogen’s surface charge employing modifications by amino acids or amino sugars of anionic molecules (e.g., teichoic acids, lipid A and phospholipids), (c) alteration of bacterial membrane fluidity, and (d) expulsion of the peptides using multi drug pumps. Together with bacterial regulatory network(s) that regulate expression and activity of these mechanisms, they represent attractive targets for development of novel antibacterials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

CAMPs:

Cationic antimicrobial peptides

gIIA PLA2:

group IIA phospholipase A2

HBD3:

Human β-defensin 3

HNPs:

Human neutrophil peptides

LPS:

Lipopolysaccharide

LTA:

Lipoteichoic acid

MDR:

Multidrug resistance

PAMPs:

Pathogen-associated molecular patterns

PGA:

Anionic poly-γ -glutamic acid

TA:

Teichoic acids

PG:

Phosphatidylglycerol

PIA:

Polysaccharide intercellular adhesin

SIC:

Streptococcal inhibitor of complement

WTA:

Wall teichoic acid

References

  1. Weiss J, Bayer AS, Yeaman M (2006) Cellular and extracellular defenses against Staphylococcal infections. In: Fischetti VA, Novick RP, Ferretti JJ, Portnoy DA, Rood JI (eds) Gram-positive pathogens. ASM Press, Washington, DC

    Google Scholar 

  2. DeLeo FR, Diep BA, Otto M (2009) Host defense and pathogenesis in Staphylococcus aureus infections. Infect Dis Clin North Am 23:17–34

    Article  PubMed  Google Scholar 

  3. Akira S, Uematsu S, Takeuchi O (2006) Pathogen recognition and innate immunity. Cell 124:783–801

    Article  PubMed  CAS  Google Scholar 

  4. Lehrer RI (2004) Primate defensins. Nat Rev Microbiol 2:727–738

    Article  PubMed  CAS  Google Scholar 

  5. Ganz T (2003) Defensins: antimicrobial peptides of innate immunity. Nat Rev Immunol 3:710–720

    Article  PubMed  CAS  Google Scholar 

  6. Easton DM, Nijnik A, Mayer ML, Hancock REW (2009) Potential of immunomodulatory host defense peptides as novel anti-infectives. Trends Biotechnol 27:582–590

    Article  PubMed  CAS  Google Scholar 

  7. Peschel A, Sahl H-G (2006) The co-evolution of host cationic antimicrobial peptides and microbial resistance. Nat Rev Micro 4:529–536

    Article  CAS  Google Scholar 

  8. Izadpanah A, Gallo RL (2005) Antimicrobial peptides. J Am Acad Dermatol 52:381–390 quiz 391–382

    Article  PubMed  Google Scholar 

  9. Lehrer RI, Ganz T (2002) Cathelicidins: a family of endogenous antimicrobial peptides. Curr Opin Hematol 9:18–22

    Article  PubMed  Google Scholar 

  10. Ayabe T (2000) Secretion of microbicidal alpha-defensins by intestinal Paneth cells in response to bacteria. Nature Immunol 1:113–118

    Article  CAS  Google Scholar 

  11. Bals R (1999) Mouse [beta]-defensin 3 is an inducible antimicrobial peptide expressed in the epithelia of multiple organs. Infect Immun 67:3542–3547

    PubMed  CAS  Google Scholar 

  12. Bensch KW, Raida M, Magert HJ, Schulz-Knappe P, Forssmann WG (1995) hBD-1: a novel [beta]-defensin from human plasma. FEBS Lett 368:331–335

    Article  PubMed  CAS  Google Scholar 

  13. Yeaman MR (2010) Platelets in defense against bacterial pathogens. Cell Mol Life Sci 67:525–544

    Article  PubMed  CAS  Google Scholar 

  14. Fitzgerald JR, Foster TJ, Cox D (2006) The interaction of bacterial pathogens with platelets. Nat Rev Micro 4:445–457

    Article  CAS  Google Scholar 

  15. Bayer AS, Cheng D, Yeaman MR, Corey GR, McClelland RS, Harrel LJ, Fowler VG Jr (1998) In vitro resistance to thrombin-induced platelet microbicidal protein among clinical bacteremic isolates of Staphylococcus aureus correlates with an endovascular infectious source. Antimicrob Agents Chemother 42:3169–3172

    PubMed  CAS  Google Scholar 

  16. Kupferwasser LI, Yeaman MR, Shapiro SM, Nast CC, Bayer AS (2002) In vitro susceptibility to thrombin-induced platelet microbicidal protein is associated with reduced disease progression and complication rates in experimental Staphylococcus aureus endocarditis: microbiological, histopathologic, and echocardiographic analyses. Circulation 105:746–752

    Article  PubMed  CAS  Google Scholar 

  17. Dhawan VK, Bayer AS, Yeaman MR (1998) In vitro resistance to thrombin-induced platelet microbicidal protein is associated with enhanced progression and hematogenous dissemination in experimental Staphylococcus aureus infective endocarditis. Infect Immun 66:3476–3479

    PubMed  CAS  Google Scholar 

  18. Ganz T (2006) Hepcidin–a peptide hormone at the interface of innate immunity and iron metabolism. Curr Top Microbiol Immunol 306:183–198

    Article  PubMed  CAS  Google Scholar 

  19. Madhuri ST, Venugopal SK, Ghosh D, Gadepalli R, Dhawan B, Mukhopadhyay K (2009) In vitro antimicrobial activity of alpha-melanocyte stimulating hormone against major human pathogen Staphylococcus aureus. Peptides 30:1627–1635

    Article  PubMed  CAS  Google Scholar 

  20. Schneider T, Gries K, Josten M, Wiedemann I, Pelzer S, Labischinski H, Sahl HG (2009) The lipopeptide antibiotic friulimicin B inhibits cell wall biosynthesis through complex formation with bactoprenol phosphate. Antimicrob Agents Chemother 53:1610–1618

    Article  PubMed  CAS  Google Scholar 

  21. Sass V, Schneider T, Wilmes M, Korner C, Tossi A, Novikova N, Shamova O, Sahl H-G (2010) Human beta-defensin 3 inhibits cell wall biosynthesis in Staphylococci. Infect Immun 78:2793–2800

    Article  PubMed  CAS  Google Scholar 

  22. Schneider T, Kruse T, Wimmer R, Wiedemann I, Sass V, Pag U, Jansen A, Nielsen AK, Mygind PH, Raventos DS, Neve S, Ravn B, Bonvin AMJJ, De Maria L, Andersen AS, Gammelgaard LK, Sahl H-G, Kristensen H-H (2010) Plectasin, a fungal defensin, targets the bacterial cell wall precursor lipid II. Science 328:1168–1172

    Article  PubMed  CAS  Google Scholar 

  23. Lai Y, Gallo RL (2009) AMPed Up immunity: how antimicrobial peptides have multiple roles in immune defense. Trends Immunol 30:131–141

    Article  PubMed  CAS  Google Scholar 

  24. Zasloff M (2002) Antimicrobial peptides of multicellular organisms. Nature 415:389–395

    Article  PubMed  CAS  Google Scholar 

  25. Shai Y (1999) Mechanism of the binding, insertion and destabilization of phospholipid bilayer membranes by alpha-helical antimicrobial and cell non-selective membrane-lytic peptides. Biochim Biophys Acta 1462:55–70

    Article  PubMed  CAS  Google Scholar 

  26. Wimley WC, Selsted ME, White SH (1994) Interactions between human defensins and lipid bilayers: evidence for formation of multimeric pores. Protein Sci 3:1362–1373

    Article  PubMed  CAS  Google Scholar 

  27. Scott MG, Vreugdenhil AC, Buurman WA, Hancock RE, Gold MR (2000) Cutting edge: cationic antimicrobial peptides block the binding of lipopolysaccharide (LPS) to LPS binding protein. J Immunol (Baltimore, MD, 1950) 164:549–553

    CAS  Google Scholar 

  28. Durr M, Peschel A (2002) Chemokines meet defensins: the merging concepts of chemoattractants and antimicrobial peptides in host defense. Infect Immun 70:6515–6517

    Article  PubMed  CAS  Google Scholar 

  29. Mader JS, Marcet-Palacios M, Hancock REW, Bleackley RC (2011) The human cathelicidin, LL-37, induces granzyme-mediated apoptosis in cytotoxic T lymphocytes. Exp Cell Res 317:531–538

    Article  PubMed  CAS  Google Scholar 

  30. Nijnik A, Madera L, Ma S, Waldbrook M, Elliott MR, Easton DM, Mayer ML, Mullaly SC, Kindrachuk J, Jenssen Hv, Hancock REW (2010) Synthetic cationic peptide IDR-1002 provides protection against bacterial infections through chemokine induction and enhanced leukocyte recruitment. J Immunol 184:2539–2550

    Article  PubMed  CAS  Google Scholar 

  31. Jin T, Bokarewa M, Foster T, Mitchell J, Higgins J, Tarkowski A (2004) Staphylococcus aureus resists human defensins by production of staphylokinase, a novel bacterial evasion mechanism. J Immunol 172:1169–1176

    PubMed  CAS  Google Scholar 

  32. Pence MA, Rooijakkers SHM, Cogen AL, Cole JN, Hollands A, Gallo RL, Nizet V (2010) Streptococcal inhibitor of complement promotes innate immune resistance phenotypes of invasive M1T1 Group A Streptococcus. J Innate Immun 2:587–595

    Article  PubMed  CAS  Google Scholar 

  33. Frick I-M, Akesson P, Rasmussen M, Schmidtchen A, Bjorck L (2003) SIC, a secreted protein of Streptococcus pyogenes that inactivates antibacterial peptides. J Biol Chem 278:16561–16566

    Article  PubMed  CAS  Google Scholar 

  34. Sieprawska-Lupa M, Mydel P, Krawczyk K, Wojcik K, Puklo M, Lupa B, Suder P, Silberring J, Reed M, Pohl J, Shafer W, McAleese F, Foster T, Travis J, Potempa J (2004) Degradation of human antimicrobial p LL-37 by Staphylococcus aureus-derived proteinases. Antimicrob Agents Chemother 48:4673–4679

    Article  PubMed  CAS  Google Scholar 

  35. Schmidtchen A, Frick I-M, Andersson E, Tapper H, Björck L (2002) Proteinases of common pathogenic bacteria degrade and inactivate the antibacterial peptide LL-37. Mol Microbiol 46:157–168

    Article  PubMed  CAS  Google Scholar 

  36. Guina T, Yi EC, Wang H, Hackett M, Miller SI (2000) A PhoP-regulated outer membrane protease of Salmonella enterica serovar typhimurium promotes resistance to [alpha]-helical antimicrobial peptides. J Bacteriol 182:4077–4086

    Article  PubMed  CAS  Google Scholar 

  37. Hui C-Y, Guo Y, He Q-S, Peng L, Wu S-C, Cao H, Huang S-H (2010) Escherichia coli outer membrane protease OmpT confers resistance to urinary cationic peptides. Microbiol Immunol 54:452–459

    Article  PubMed  CAS  Google Scholar 

  38. Vuong C, Voyich JM, Fischer ER, Braughton KR, Whitney AR, DeLeo FR, Otto M (2004) Polysaccharide intercellular adhesin (PIA) protects Staphylococcus epidermidis against major components of the human innate immune system. Cell Microbiol 6:269–275

    Article  PubMed  CAS  Google Scholar 

  39. Kocianova S, Vuong C, Yao Y, Voyich JM, Fischer ER, DeLeo FR, Otto M (2005) Key role of poly-γ-dl-glutamic acid in immune evasion and virulence of Staphylococcus epidermidis. J Clin Invest 115:688–694

    PubMed  CAS  Google Scholar 

  40. Vuong C, Kocianova S, Voyich JM, Yao Y, Fischer ER, De Leo FR, Otto M (2004) A crucial role for exopolysaccharide modification in bacterial biofilm formation, immune evasion, and virulence. J Biol Chem 279:54881–54886

    Article  PubMed  CAS  Google Scholar 

  41. Koprivnjak T, Peschel A, Gelb MH, Liang NS, Weiss JP (2002) Role of charge properties of bacterial envelope in bactericidal action of human group IIA phospholipase A2 against Staphylococcus aureus. J Biol Chem 277:47636–47644

    Article  PubMed  CAS  Google Scholar 

  42. Koprivnjak T, Weidenmaier C, Peschel A, Weiss JP (2008) Wall teichoic acid deficiency in Staphylococcus aureus confers selective resistance to mammalian group IIA phospholipase A2 and human beta-defensin -3. Infect Immun 76:2169–2176

    Article  PubMed  CAS  Google Scholar 

  43. Raetz CRH, Reynolds CM, Trent MS, Bishop RE (2007) Lipid A modification systems in Gram-negative bacteria. Annu Rev Biochem 76:295–329

    Article  PubMed  CAS  Google Scholar 

  44. Neuhaus FC, Baddiley J (2003) A continuum of anionic charge: structures and functions of d-alanyl-teichoic acids in Gram-positive bacteria. Microbiol Mol Biol Rev 67:686–723

    Article  PubMed  CAS  Google Scholar 

  45. Weidenmaier C, Peschel A (2008) Teichoic acids and related cell-wall glycopolymers in Gram-positive physiology and host interactions. Nat Rev Microbiol 6:276–287

    Article  PubMed  CAS  Google Scholar 

  46. Trent MS, Stead CM, Tran AX, Hankins JV (2006) Invited review: diversity of endotoxin and its impact on pathogenesis. J Endotxin Res 12:205–223

    Article  CAS  Google Scholar 

  47. Weidenmaier C, Kokai-Kun JF, Kulauzovic E, Kohler T, Thumm G, Stoll H, Gotz F, Peschel A (2008) Differential roles of sortase-anchored surface proteins and wall teichoic acid in Staphylococcus aureus nasal colonization. Int J Med Microbiol 298:505–513

    Article  PubMed  CAS  Google Scholar 

  48. Baddiley J, Buchanan JG, Hardy FE, Martin RO, Rajbhandary UL, Sanderson AR (1961) The structure of the ribitol teichoic acid of Staphylococcus aureus H. Biochim Biophys Acta 52:406–407

    Article  PubMed  CAS  Google Scholar 

  49. Morath S, Geyer A, Hartung T (2001) Structure-function relationship of cytokine induction by lipoteichoic acid from Staphylococcus aureus. J Exp Med 193:393–397

    Article  PubMed  CAS  Google Scholar 

  50. Fischer W (1994) Lipoteichoic acid and lipids in the membrane of Staphylococcus aureus. Med Microbiol Immunol (Berl) 183:61–76

    Article  CAS  Google Scholar 

  51. Xia G, Kohler T, Peschel A (2009) The wall teichoic acid and lipoteichoic acid polymers of Staphylococcus aureus. Int J Med Microbiol 300:148–154

    Article  PubMed  CAS  Google Scholar 

  52. Peschel A, Otto M, Jack RW, Kalbacher H, Jung G, Gotz F (1999) Inactivation of the dlt operon in Staphylococcus aureus confers sensitivity to defensins, protegrins, and other antimicrobial peptides. J Biol Chem 274:8405–8410

    Article  PubMed  CAS  Google Scholar 

  53. Weidenmaier C, Peschel A, Kempf VAJ, Lucindo N, Yeaman MR, Bayer AS (2005) DltABCD- and MprF-mediated cell envelope modifications of Staphylococcus aureus confer resistance to platelet microbicidal proteins and contribute to virulence in a rabbit endocarditis model. Infect Immun 73:8033–8038

    Article  PubMed  CAS  Google Scholar 

  54. Collins LV, Kristian SA, Weidenmaier C, Faigle M, Van Kessel KP, Van Strijp JA, Gotz F, Neumeister B, Peschel A (2002) Staphylococcus aureus strains lacking d-alanine modifications of teichoic acids are highly susceptible to human neutrophil killing and are virulence attenuated in mice. J Infect Dis 186:214–219

    Article  PubMed  CAS  Google Scholar 

  55. Abachin E, Poyart C, Pellegrini E, Milohanic E, Fiedler F, Berche P, Trieu-Cuot P (2002) Formation of d-alanyl-lipoteichoic acid is required for adhesion and virulence of Listeria monocytogenes. Mol Microbiol 43:1–14

    Article  PubMed  CAS  Google Scholar 

  56. Kovacs M, Halfmann A, Fedtke I, Heintz M, Peschel A, Vollmer W, Hakenbeck R, Bruckner R (2006) A Functional dlt operon, encoding proteins required for incorporation of d-alanine in teichoic acids in Gram-positive bacteria, confers resistance to cationic antimicrobial peptides in Streptococcus pneumoniae. J Bacteriol 188:5797–5805

    Article  PubMed  CAS  Google Scholar 

  57. Abi Khattar Z, Rejasse A, Destoumieux-Garzon D, Escoubas JM, Sanchis V, Lereclus D, Givaudan A, Kallassy M, Nielsen-Leroux C, Gaudriault S (2009) The dlt operon of Bacillus cereus is required for resistance to cationic antimicrobial peptides and for virulence in insects. J Bacteriol 191:7063–7073

    Article  PubMed  CAS  Google Scholar 

  58. Cox KH, Ruiz-Bustos E, Courtney HS, Dale JB, Pence MA, Nizet V, Aziz RK, Gerling I, Price SM, Hasty DL (2009) Inactivation of DltA modulates virulence factor expression in Streptococcus pyogenes. PLoS ONE 4:e5366

    Article  PubMed  CAS  Google Scholar 

  59. Haas R, Koch HU, Fischer W (1984) Alanyl turnover from lipoteichoic acid to teichoic acid in Staphylococcus aureus. FEMS Microbiol Lett 21:27–31

    Article  CAS  Google Scholar 

  60. Koprivnjak T, Mlakar V, Swanson L, Fournier B, Peschel A, Weiss JP (2006) Cation-induced transcriptional regulation of the dlt operon of Staphylococcus aureus. J Bacteriol 188:3622–3630

    Article  PubMed  CAS  Google Scholar 

  61. Perego M, Glaser P, Minutello A, Strauch MA, Leopold K, Fischer W (1995) Incorporation of d-alanine into lipoteichoic acid and wall teichoic acid in Bacillus subtilis. Identification of genes and regulation. J Biol Chem 270:15598–15606

    Article  PubMed  CAS  Google Scholar 

  62. Grundling A, Missiakas DM, Schneewind O (2006) Staphylococcus aureus mutants with increased lysostaphin resistance. J Bacteriol 188:6286–6297

    Article  PubMed  CAS  Google Scholar 

  63. Grundling A, Schneewind O (2006) Cross-linked peptidoglycan mediates lysostaphin binding to the cell wall envelope of Staphylococcus aureus. J Bacteriol 188:2463–2472

    Article  PubMed  CAS  Google Scholar 

  64. Fabretti F, Theilacker C, Baldassarri L, Kaczynski Z, Kropec A, Holst O, Huebner J (2006) Alanine esters of enterococcal lipoteichoic acid play a role in biofilm formation and resistance to antimicrobial peptides. Infect Immun 74:4164–4171

    Article  PubMed  CAS  Google Scholar 

  65. Gross M, Cramton SE, Gotz F, Peschel A (2001) Key role of teichoic acid net charge in Staphylococcus aureus colonization of artificial surfaces. Infect Immun 69:3423–3426

    Article  PubMed  CAS  Google Scholar 

  66. Weidenmaier C, Peschel A, Xiong YQ, Kristian SA, Dietz K, Yeaman MR, Bayer AS (2005) Lack of wall teichoic acids in Staphylococcus aureus leads to reduced interactions with endothelial cells and to attenuated virulence in a rabbit model of endocarditis. J Infect Dis 191:1771–1777

    Article  PubMed  CAS  Google Scholar 

  67. Kristian SA, Lauth X, Nizet V, Goetz F, Neumeister B, Peschel A, Landmann R (2003) Alanylation of teichoic acids protects Staphylococcus aureus against Toll-like receptor 2-dependent host defense in a mouse tissue cage infection model. J Infect Dis 188:414–423

    Article  PubMed  CAS  Google Scholar 

  68. Deininger S, Stadelmaier A, von Aulock S, Morath S, Schmidt RR, Hartung T (2003) Definition of structural prerequisites for lipoteichoic acid-inducible cytokine induction by synthetic derivatives. J Immunol 170:4134–4138

    PubMed  CAS  Google Scholar 

  69. Walter J, Loach DM, Alqumber M, Rockel C, Hermann C, Pfitzenmaier M, Tannock GW (2007) D-alanyl ester depletion of teichoic acids in Lactobacillus reuteri 100–23 results in impaired colonization of the mouse gastrointestinal tract. Environ Microbiol 9:1750–1760

    Article  PubMed  CAS  Google Scholar 

  70. Foreman-Wykert AK, Weinrauch Y, Elsbach P, Weiss J (1999) Cell-wall determinants of the bactericidal action of group IIA phospholipase A2 against Gram-positive bacteria. J Clin Invest 103:715–721

    Article  PubMed  CAS  Google Scholar 

  71. Weiss J, Inada M, Elsbach P, Crowl RM (1994) Structural determinants of the action against Escherichia coli of a human inflammatory fluid phospholipase A2 in concert with polymorphonuclear leukocytes. J Biol Chem 269:26331–26337

    PubMed  CAS  Google Scholar 

  72. Heptinstall S, Archibald AR, Baddiley J (1970) Teichoic acids and membrane function in bacteria. Nature 225:519–521

    Article  PubMed  CAS  Google Scholar 

  73. MacArthur AE, Archibald AR (1984) Effect of culture pH on the d-alanine ester content of lipoteichoic acid in Staphylococcus aureus. J Bacteriol 160:792–793

    PubMed  CAS  Google Scholar 

  74. Hurst A, Hughes A, Duckworth M, Baddiley J (1975) Loss of d-alanine during sublethal heating of Staphylococcus aureus S6 and magnesium binding during repair. J Gen Microbiol 89:277–284

    PubMed  CAS  Google Scholar 

  75. Koch HU, Doker R, Fischer W (1985) Maintenance of d-alanine ester substitution of lipoteichoic acid by reesterification in Staphylococcus aureus. J Bacteriol 164:1211–1217

    PubMed  CAS  Google Scholar 

  76. Kiriukhin MY, Neuhaus FC (2001) d-alanylation of lipoteichoic acid: role of the d-alanyl carrier protein in acylation. J Bacteriol 183:2051–2058

    Article  PubMed  CAS  Google Scholar 

  77. Poyart C, Lamy MC, Boumaila C, Fiedler F, Trieu-Cuot P (2001) Regulation of d-alanyl-lipoteichoic acid biosynthesis in Streptococcus agalactiae involves a novel two-component regulatory system. J Bacteriol 183:6324–6334

    Article  PubMed  CAS  Google Scholar 

  78. Dunman PM, Murphy E, Haney S, Palacios D, Tucker-Kellogg G, Wu S, Brown EL, Zagursky RJ, Shlaes D, Projan SJ (2001) Transcription profiling-based identification of Staphylococcus aureus genes regulated by the agr and/or sarA loci. J Bacteriol 183:7341–7353

    Article  PubMed  CAS  Google Scholar 

  79. Said-Salim B, Dunman PM, McAleese FM, Macapagal D, Murphy E, McNamara PJ, Arvidson S, Foster TJ, Projan SJ, Kreiswirth BN (2003) Global regulation of Staphylococcus aureus genes by Rot. J Bacteriol 185:610–619

    Article  PubMed  CAS  Google Scholar 

  80. Herbert S, Bera A, Nerz C, Kraus D, Peschel A, Goerke C, Meehl M, Cheung A, Gotz F (2007) Molecular basis of resistance to muramidase and cationic antimicrobial peptide activity of lysozyme in Staphylococci. PLoS Pathogens 3:e102

    Article  PubMed  CAS  Google Scholar 

  81. Meehl M, Herbert S, Gotz F, Cheung A (2007) Interaction of the GraRS two-component system with the VraFG ABC transporter to support vancomycin-intermediate resistance in Staphylococcus aureus. Antimicrob Agents Chemother 51:2679–2689

    Article  PubMed  CAS  Google Scholar 

  82. Kraus D, Herbert S, Kristian SA, Khosravi A, Nizet V, Gotz F, Peschel A (2008) The GraRS regulatory system controls Staphylococcus aureus susceptibility to antimicrobial host defenses. BMC Microbiol 8:85

    Article  PubMed  CAS  Google Scholar 

  83. Li M, Cha DJ, Lai Y, Villaruz AE, Sturdevant DE, Otto M (2007) The antimicrobial peptide-sensing system aps of Staphylococcus aureus. Mol Microbiol 66:1136–1147

    Article  PubMed  CAS  Google Scholar 

  84. Otto M (2009) Bacterial sensing of antimicrobial peptides. Contrib Microbiol 16:136–149

    Article  PubMed  CAS  Google Scholar 

  85. Peschel A (2001) Staphylococcus aureus resistance to human defensins and evasion of neutrophil killing via the novel virulence factor MprF is based on modification of membrane lipids with l-lysine. J Exp Med 193:1067–1076

    Article  PubMed  CAS  Google Scholar 

  86. Kuroda M, Kuwahara-Arai K, Hiramatsu K (2000) Identification of the up- and down-regulated genes in vancomycin-resistant Staphylococcus aureus strains Mu3 and Mu50 by cDNA differential hybridization method. Biochem Biophys Res Commun 269:485–490

    Article  PubMed  CAS  Google Scholar 

  87. Matsuzaki K (2009) Control of cell selectivity of antimicrobial peptides. Biochim Biophys Acta Biomembranes 1788:1687–1692

    Article  CAS  Google Scholar 

  88. Staubitz P, Neumann H, Schneider T, Wiedemann I, Peschel A (2004) MprF-mediated biosynthesis of lysylphosphatidylglycerol, an important determinant in staphylococcal defensin resistance. FEMS Microbiol Lett 231:67–71

    Article  PubMed  CAS  Google Scholar 

  89. Ernst CM, Staubitz P, Mishra NN, Yang S-J, Hornig G, Kalbacher H, Bayer AS, Kraus D, Peschel A (2009) The Bacterial defensin resistance protein MprF consists of separable domains for lipid lysinylation and antimicrobial peptide repulsion. PLoS Pathog 5:e1000660

    Article  PubMed  CAS  Google Scholar 

  90. Friedman L, Alder JD, Silverman JA (2006) Genetic changes that correlate with reduced susceptibility to daptomycin in Staphylococcus aureus. Antimicrob Agents Chemother 50:2137–2145

    Article  PubMed  CAS  Google Scholar 

  91. Rubio A, Conrad M, Haselbeck R, Kedar GC, Driver V, Finn J, Silverman J (2011) Regulation of mprF by antisense restores daptomycin susceptibility to daptomycin-resistant isolates of Staphylococcus aureus. Antimicrob Agents Chemother 55:364–367

    Article  PubMed  CAS  Google Scholar 

  92. Yang S-J, Xiong YQ, Dunman PM, Schrenzel J, Francois P, Peschel A, Bayer AS (2009) Regulation of mprF in daptomycin-nonsusceptible Staphylococcus aureus strains. Antimicrob Agents Chemother 53:2636–2637

    Article  PubMed  CAS  Google Scholar 

  93. Straus SK, Hancock REW (2006) Mode of action of the new antibiotic for Gram-positive pathogens daptomycin: comparison with cationic antimicrobial peptides and lipopeptides. Biophys Biochim Acta Biomembranes 1758:1215–1223

    Article  CAS  Google Scholar 

  94. Camargo ILBdC, Neoh H-M, Cui L, Hiramatsu K (2008) Serial daptomycin selection generates daptomycin-nonsusceptible Staphylococcus aureus strains with a heterogeneous vancomycin-intermediate phenotype. Antimicrob Agents Chemother 52:4289–4299

    Article  PubMed  CAS  Google Scholar 

  95. Ruzin A, Severin A, Moghazeh SL, Etienne J, Bradford PA, Projan SJ, Shlaes DM (2003) Inactivation of mprF affects vancomycin susceptibility in Staphylococcus aureus. Biochim Biophys Acta 1621:117–121

    PubMed  CAS  Google Scholar 

  96. Nishi H, Komatsuzawa H, Fujiwara T, McCallum N, Sugai M (2004) Reduced content of lysyl-phosphatidylglycerol in the cytoplasmic membrane affects susceptibility to moenomycin, as well as vancomycin, gentamicin, and antimicrobial peptides, in Staphylococcus aureus. Antimicrob Agents Chemother 48:4800–4807

    Article  PubMed  CAS  Google Scholar 

  97. Gunn JS, Miller SI (1996) PhoP–PhoQ activates transcription of pmrAB, encoding a two-component regulatory system involved in Salmonella typhimurium antimicrobial peptide resistance. J Bacteriol 178:6857–6864

    PubMed  CAS  Google Scholar 

  98. Gunn JS, Lim KB, Krueger J, Kim K, Guo L, Hackett M, Miller SI (1998) PmrA–PmrB-regulated genes necessary for 4-aminoarabinose lipid A modification and polymyxin resistance. Mol Microbiol 27:1171–1182

    Article  PubMed  CAS  Google Scholar 

  99. Gunn JS (2001) Bacterial modification of LPS and resistance to antimicrobial peptides. J Endotxin Res 7:57–62

    CAS  Google Scholar 

  100. Lee H, Hsu F-F, Turk J, Groisman EA (2004) The PmrA-regulated pmrC gene mediates phosphoethanolamine modification of lipid A and polymyxin resistance in Salmonella enterica. J Bacteriol 186:4124–4133

    Article  PubMed  CAS  Google Scholar 

  101. Groisman EA, Heffron F, Solomon F (1992) Molecular genetic analysis of the Escherichia coli phoP locus. J Bacteriol 174:486–491

    PubMed  CAS  Google Scholar 

  102. Groisman EA, Chiao E, Lipps CJ, Heffron F (1989) Salmonella typhimurium phoP virulence gene is a transcriptional regulator. Proc Natl Acad Sci USA 86:7077–7081

    Article  PubMed  CAS  Google Scholar 

  103. Garcia Vescovi E, Soncini FC, Groisman EA, Vescovi EG, Ayala YM, Di Cera E (1996) Mg2+ as an extracellular signal: environmental regulation of Salmonella virulence. Cell 84:165–174

    Article  PubMed  CAS  Google Scholar 

  104. Chamnongpol S, Cromie M, Groisman EA (2003) Mg2+ sensing by the Mg2+ sensor PhoQ of Salmonella enterica. J Mol Biol 325:795–807

    Article  PubMed  CAS  Google Scholar 

  105. Vescovi EG, Ayala YM, Di Cera E, Groisman EA (1997) Characterization of the bacterial sensor protein PhoQ. Evidence for distinct binding sites for Mg2+ and Ca2+. J Biol Chem 272:1440–1443

    Article  PubMed  CAS  Google Scholar 

  106. Alpuche Aranda CM, Swanson JA, Loomis WP, Miller SI (1992) Salmonella typhimurium activates virulence gene transcription within acidified macrophage phagosomes. Proc Natl Acad Sci USA 89:10079–10083

    Article  PubMed  CAS  Google Scholar 

  107. Bader MW, Sanowar S, Daley ME, Schneider AR, Cho U, Xu W, Klevit RE, Le Moual H, Miller SI (2005) Recognition of antimicrobial peptides by a bacterial sensor kinase. Cell 122:461–472

    Article  PubMed  CAS  Google Scholar 

  108. Charles RC, Harris JB, Chase MR, Lebrun LM, Sheikh A, LaRocque RC, Logvinenko T, Rollins SM, Tarique A, Hohmann EL, Rosenberg I, Krastins B, Sarracino DA, Qadri F, Calderwood SB, Ryan ET (2009) Comparative proteomic analysis of the phoP regulon in Salmonella enterica serovar typhi versus typhimurium. PLoS ONE 4:e6994

    Article  PubMed  CAS  Google Scholar 

  109. Prost LR, Sanowar S, Miller SI (2007) Salmonella sensing of anti-microbial mechanisms to promote survival within macrophages. Immunol Rev 219:55–65

    Article  PubMed  CAS  Google Scholar 

  110. Guo L, Lim KB, Gunn JS, Bainbridge B, Darveau RP, Hackett M, Miller SI (1997) Regulation of lipid A modifications by Salmonella typhimurium virulence genes phoPphoQ. Science 276:250–253

    Article  PubMed  CAS  Google Scholar 

  111. Miller SI, Pulkkinen WS, Selsted ME, Mekalanos JJ (1990) Characterization of defensin resistance phenotypes associated with mutations in the phoP virulence regulon of Salmonella typhimurium. Infect Immun 58:3706–3710

    PubMed  CAS  Google Scholar 

  112. Prost LR, Daley ME, Bader MW, Klevit RE, Miller SI (2008) The PhoQ histidine kinases of Salmonella and Pseudomonas spp. are structurally and functionally different: evidence that pH and antimicrobial peptide sensing contribute to mammalian pathogenesis. Mol Microbiol 69:503–519

    Article  PubMed  CAS  Google Scholar 

  113. Bayer AS, Prasad R, Chandra J, Koul A, Smriti M, Varma A, Skurray RA, Firth N, Brown MH, Koo S-P, Yeaman MR (2000) In Vitro resistance of Staphylococcus aureus to thrombin-induced platelet microbicidal protein is associated with alterations in cytoplasmic membrane fluidity. Infect Immun 68:3548–3553

    Article  PubMed  CAS  Google Scholar 

  114. Mishra NN, Liu GY, Yeaman MR, Nast CC, Proctor RA, McKinnell J, Bayer AS (2011) Carotenoid-related alteration of cell membrane fluidity impacts Staphylococcus aureus susceptibility to host defense peptides. Antimicrob Agents Chemother 55:526–531

    Article  PubMed  CAS  Google Scholar 

  115. Bengoechea JA, Skurnik M (2000) Temperature-regulated efflux pump/potassium antiporter system mediates resistance to cationic antimicrobial peptides in Yersinia. Mol Microbiol 37:67–80

    Article  PubMed  CAS  Google Scholar 

  116. Tzeng Y-L, Ambrose KD, Zughaier S, Zhou X, Miller YK, Shafer WM, Stephens DS (2005) Cationic antimicrobial peptide resistance in Neisseria meningitidis. J Bacteriol 187:5387–5396

    Article  PubMed  CAS  Google Scholar 

  117. Shafer WM, Qu X, Waring AJ, Lehrer RI (1998) Modulation of Neisseria gonorrhoeae susceptibility to vertebrate antibacterial peptides due to a member of the resistance/nodulation/division efflux pump family. Proc Natl Acad Sci USA 95:1829–1833

    Article  PubMed  CAS  Google Scholar 

  118. Rieg S, Huth A, Kalbacher H, Kern WV (2008) Resistance against antimicrobial peptides is independent of Escherichia coli AcrAB, Pseudomonas aeruginosa MexAB and Staphylococcus aureus NorA efflux pumps. Int J Antimicrob Ag 33:174–176

    Article  CAS  Google Scholar 

  119. Bayer AS, Kupferwasser LI, Brown MH, Skurray RA, Grkovic S, Jones T, Mukhopadhay K, Yeaman MR (2006) Low-level resistance of Staphylococcus aureus to thrombin-induced platelet microbicidal protein 1 In Vitro associated with qacA gene carriage is independent of multidrug efflux pump activity. Antimicrob Agents Chemother 50:2448–2454

    Article  PubMed  CAS  Google Scholar 

  120. May JJ, Finking R, Wiegeshoff F, Weber TT, Bandur N, Koert U, Marahiel MA (2005) Inhibition of the d-alanine:d-alanyl carrier protein ligase from Bacillus subtilis increases the bacterium’s susceptibility to antibiotics that target the cell wall. FEBS 272:2993–3003

    Article  CAS  Google Scholar 

  121. Peschel A (2002) How do bacteria resist human antimicrobial peptides? Trend Microbiol 10:179–186

    Article  CAS  Google Scholar 

  122. Jin T, Bokarewa M, McIntyre L, Tarkowski A, Corey GR, Reller LB, Fowler VG Jr (2003) Fatal outcome of bacteraemic patients caused by infection with staphylokinase-deficient Staphylococcus aureus strains. J Med Microbiol 52:919–923

    Article  PubMed  Google Scholar 

  123. Kwiecinski J, Josefsson E, Mitchell J, Higgins J, Magnusson M, Foster T, Jin T, Bokarewa M (2010) Activation of plasminogen by staphylokinase reduces the severity of Staphylococcus aureus systemic infection. J Infect Dis 202:1041–1049

    Article  PubMed  CAS  Google Scholar 

  124. Belas R, Manos J, Suvanasuthi R (2004) Proteus mirabilis ZapA metalloprotease degrades a broad spectrum of substrates, including antimicrobial peptides. Infect Immun 72:5159–5167

    Article  PubMed  CAS  Google Scholar 

  125. Johansson L, Thulin P, Sendi P, Hertzen E, Linder A, Akesson P, Low DE, Agerberth B, Norrby-Teglund A (2008) Cathelicidin LL-37 in severe Streptococcus pyogenes soft tissue infections in humans. Infect Immun 76:3399–3404

    Article  PubMed  CAS  Google Scholar 

  126. Woods DE, Cryz SJ, Friedman RL, Iglewski BH (1982) Contribution of toxin A and elastase to virulence of Pseudomonas aeruginosa in chronic lung infections of rats. Infect Immun 36:1223–1228

    PubMed  CAS  Google Scholar 

  127. Blackwood LL, Stone RM, Iglewski BH, Pennington JE (1983) Evaluation of Pseudomonas aeruginosa exotoxin A and elastase as virulence factors in acute lung infection. Infect Immun 39:198–201

    PubMed  CAS  Google Scholar 

  128. Rupp ME, Ulphani JS, Fey PD, Bartscht K, Mack D (1999) Characterization of the importance of polysaccharide intercellular adhesin/Hemagglutinin of Staphylococcus epidermidis in the pathogenesis of biomaterial-based infection in a mouse foreign body infection model. Infect Immun 67:2627–2632

    PubMed  CAS  Google Scholar 

  129. Rupp ME, Fey PD, Heilmann C, Gotz F (2001) Characterization of the importance of Staphylococcus epidermidis autolysin and polysaccharide intercellular adhesin in the pathogenesis of intravascular catheter-associated infection in a rat model. J Infect Dis 183:1038–1042

    Article  PubMed  CAS  Google Scholar 

  130. Jones A, Georg M, Maudsdotter L, Jonsson A-B (2009) Endotoxin, capsule, and bacterial attachment contribute to Neisseria meningitidis resistance to the human antimicrobial peptide LL-37. J Bacteriol 191:3861–3868

    Article  PubMed  CAS  Google Scholar 

  131. Yi K, Stephens DS, Stojiljkovic I (2003) Development and evaluation of an improved mouse model of meningococcal colonization. Infect Immun 71:1849–1855

    Article  PubMed  CAS  Google Scholar 

  132. Spinosa MR, Progida C, Tala A, Cogli L, Alifano P, Bucci C (2007) The Neisseria meningitidis capsule is important for intracellular survival in human cells. Infect Immun 75:3594–3603

    Article  PubMed  CAS  Google Scholar 

  133. Cortes G, Borrell N, de Astorza B, Gomez C, Sauleda J, Alberti S (2002) Molecular analysis of the contribution of the capsular polysaccharide and the lipopolysaccharide O side chain to the virulence of Klebsiella pneumoniae in a murine model of pneumonia. Infect Immun 70:2583–2590

    Article  PubMed  CAS  Google Scholar 

  134. Campos MA, Vargas MA, Regueiro V, Llompart CM, Alberti S, Bengoechea JA (2004) Capsule polysaccharide mediates bacterial resistance to antimicrobial peptides. Infect Immun 72:7107–7114

    Article  PubMed  CAS  Google Scholar 

  135. Llobet E, Tomas JM, Bengoechea JA (2008) Capsule polysaccharide is a bacterial decoy for antimicrobial peptides. Microbiology 154:3877–3886

    Article  PubMed  CAS  Google Scholar 

  136. Weidenmaier C, Kokai-Kun JF, Kristian SA, Chanturiya T, Kalbacher H, Gross M, Nicholson G, Neumeister B, Mond JJ, Peschel A (2004) Role of teichoic acids in Staphylococcus aureus nasal colonization, a major risk factor in nosocomial infections. Nat Med 10:243–245

    Article  PubMed  CAS  Google Scholar 

  137. Kristian SA, Datta V, Weidenmaier C, Kansal R, Fedtke I, Peschel A, Gallo RL, Nizet V (2005) d-alanylation of teichoic acids promotes group a streptococcus antimicrobial peptide resistance, neutrophil survival, and epithelial cell invasion. J Bacteriol 187:6719–6725

    Article  PubMed  CAS  Google Scholar 

  138. Kristian SA, Durr M, Van Strijp JAG, Neumeister B, Peschel A (2003) MprF-mediated lysinylation of phospholipids in Staphylococcus aureus leads to protection against oxygen-independent neutrophil killing. Infect Immun 71:546–549

    Article  PubMed  CAS  Google Scholar 

  139. Gunn JS, Ryan SS, Van Velkinburgh JC, Ernst RK, Miller SI (2000) Genetic and functional analysis of a PmrA–PmrB-regulated locus necessary for lipopolysaccharide modification, antimicrobial peptide resistance, and Oral virulence of Salmonella enterica serovar typhimurium. Infect Immun 68:6139–6146

    Article  PubMed  CAS  Google Scholar 

  140. Zhou Z, Ribeiro AA, Lin S, Cotter RJ, Miller SI, Raetz CRH (2001) Lipid A modifications in polymyxin-resistant Salmonella typhimurium. J Biol Chem 276:43111–43121

    Article  PubMed  CAS  Google Scholar 

  141. Belden WJ, Miller SI (1994) Further characterization of the PhoP regulon: identification of new PhoP-activated virulence loci. Infect Immun 62:5095–5101

    PubMed  CAS  Google Scholar 

  142. Guo L (1998) Lipid A acylation and bacterial resistance against vertebrate antimicrobial peptides. Cell 95:189–198

    Article  PubMed  CAS  Google Scholar 

  143. Pelz A, Wieland K-P, Putzbach K, Hentschel P, Albert K, Gotz F (2005) Structure and biosynthesis of staphyloxanthin from Staphylococcus aureus. J Biol Chem 280:32493–32498

    Article  PubMed  CAS  Google Scholar 

  144. Clauditz A, Resch A, Wieland K-P, Peschel A, Gotz F (2006) Staphyloxanthin plays a role in the fitness of Staphylococcus aureus and its ability to cope with oxidative stress. Infect Immun 74:4950–4953

    Article  PubMed  CAS  Google Scholar 

  145. Liu GY, Essex A, Buchanan JT, Datta V, Hoffman HM, Bastian JF, Fierer J, Nizet V (2005) Staphylococcus aureus golden pigment impairs neutrophil killing and promotes virulence through its antioxidant activity. J Exp Med 202:209–215

    Article  PubMed  CAS  Google Scholar 

  146. Kupferwasser LI, Skurray RA, Brown MH, Firth N, Yeaman MR, Bayer AS (1999) Plasmid-mediated resistance to thrombin-induced platelet microbicidal protein in Staphylococci: role of the qacA locus. Antimicrob Agents Chemother 43:2395–2399

    PubMed  CAS  Google Scholar 

  147. Warner DM, Folster JP, Shafer WM, Jerse AE (2007) Regulation of the MtrC–MtrD–MtrE efflux-pump system modulates the in vivo fitness of Neisseria gonorrhoeae. J Infect Dis 196:1804–1812

    Article  PubMed  CAS  Google Scholar 

  148. Jerse AE, Sharma ND, Simms AN, Crow ET, Snyder LA, Shafer WM (2003) A gonococcal efflux pump system enhances bacterial survival in a female mouse model of genital tract infection. Infect Immun 71:5576–5582

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Our work is supported in part by Grants from Marie Curie International Grant 249285 to TK, the German Research Foundation (SFB766, TRR34) and the German Ministry of Education and Research (SkinStaph, MENAGE) to AP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomaz Koprivnjak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koprivnjak, T., Peschel, A. Bacterial resistance mechanisms against host defense peptides. Cell. Mol. Life Sci. 68, 2243–2254 (2011). https://doi.org/10.1007/s00018-011-0716-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-011-0716-4

Keywords

Navigation