Skip to main content
Log in

Characterization of a Gloverin-Like Antimicrobial Peptide Isolated from Muga Silkworm, Antheraea assamensis

  • Published:
International Journal of Peptide Research and Therapeutics Aims and scope Submit manuscript

Abstract

Antimicrobial peptides (AMPs) are produced in all living organisms including insects in a non-specific manner, and act as innate immune defense arsenal against the invading pathogens. Muga silkworm (Antheraea assamensis) larvae were injected with Candida albicans and AMPs were isolated from the hemolymph after extracting with methanol, acetic acid and water mixture (90:1:9) and evaluated for antimicrobial activity against fungal and bacterial pathogens. Further purification was done through successive semipreparative and analytical reversed phase HPLC using C-18 column. The obtained fractions were collected, lyophilized and tested for antimicrobial activity. Among the HPLC fractions, one showed highest activity with MIC value of 64 µg/ml against Gram-negative bacteria, Escherichia coli and Enterobacter cloacae. Purity of this isolated peptide was confirmed by SDS-PAGE and TLC, and its molecular mass was determined as 9.052 kDa by MALDI-TOF mass spectrometry. From the mass fingerprinting analysis of this peptide after trypsin digestion a peptide fragment with molecular mass of 2622.7 Da was obtained. De novo sequencing of this peptide fragment following MS/MS analysis identified few amino acid residues as “KSGGGGWGS” with a total score of 46.9 with gloverin peptide of A. mylitta. The peptide inhibited biofilm formation of the Gram-negative bacterial pathogens. SEM study revealed that peptide disrupted bacterial cell wall to leach out intracellular materials and may be the major target for its antimicrobial activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

RP-HPLC:

Reverse phase-high performance liquid chromatograpy

MALDI-TOF:

Matrix-assisted laser desorption/ionization-time of flight

MIC:

Minimum inhibitory concentration

SEM:

Scanning electron microscope

LPS:

Lipopolysaccharide

MS:

Mass spectroscopy

AMPs:

Antimicrobial peptides

CFU:

Colony-forming unit

TLC:

Thin layer chromatography

SDS-PAGE:

Sodium dodecyl sulphate-polyacrylamide gel electrophoresis

PMSF:

Phenyl methane sulfonyl fluoride

TFA:

Trifluoroacetic acid

References

  • Al Souhail Q, Hiromasa Y, Rahnamaeian M, Giraldo MC, Takahashi D, Valent B, Vilcinskas A, Kanost MR (2016) Characterization and regulation of expression of an antifungal peptide from hemolymph of an insect, Manduca sexta. Dev Comp Immunol 61:258–268

    Article  CAS  PubMed  Google Scholar 

  • Axén A, Carlsson A, Engström A, Bennich H (1997) Gloverin, an antibacterial protein from the immune hemolymph of Hyalophora pupae. Eur J Biochem 247:614–619

    Article  PubMed  Google Scholar 

  • Boman HG (1995) Peptide antibiotics and their role in innate immunity. Annu Rev Immunol 13: 61–92

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:48–254

    Article  Google Scholar 

  • Brey PT, Hultmark D (1998) Molecular mechanisms of immune responses in insects. Chapman & Hall, London

    Google Scholar 

  • Broekaert WF, Cammue BPA, De Bolle MFC, De Samblanx GW, Osborn RW (1997) Antimicrobial peptides from plants. Crit Rev Plant Sci 16:297–323

    Article  CAS  Google Scholar 

  • Bulet P, Stocklin R (2005) Insect antimicrobial peptides: structures, properties and gene regulation. Protein Pept Lett 12:3–11

    Article  CAS  PubMed  Google Scholar 

  • Bulet P, Hetru C, Dimarcq JL, Hoffmann D (1999) Antimicrobial peptides in insects; structure and function. Dev Comp Immunol 23:329–344

    Article  CAS  PubMed  Google Scholar 

  • Cheng T, Zhao P, Liu C, Xu P, Gao Z (2006) Structures, regulatory regions, and inductive expression patterns of antimicrobial peptide genes in the silkworm Bombyx mori. Genomics 87:356–365

    Article  CAS  PubMed  Google Scholar 

  • Chevallet M, Luche S, Rabilloud T (2006) Silver staining of proteins in polyacrylamide gels. Nat Protoc 1:1852–1858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clinical and Laboratory Standard Institute (CLSI) (2010) Performance standards for antimicrobial susceptibility testing; 20th Informational Supplement. CLSI document M100-S20. CLSI, Wayne: Clinical and Laboratory Standard Institute

    Google Scholar 

  • Epand RM, Epand RF (2009) Lipid domains in bacterial membranes and the action of antimicrobial agents. Biochem Biophys Acta 1788:289–294

    Article  CAS  PubMed  Google Scholar 

  • Etebari K, Palfreyman RW, Schlipalius D, Nielsen LK, Glatz RV, Asgari S (2011) Deep sequencing based transcriptome analysis of Plutella xylostella larvae parasitized by Diadegma semiclausum. BMC Genom 12:446

    Article  CAS  Google Scholar 

  • Gandhe AS, Arunkumar KP, Serene H, Nagaraju J (2006) Analysis of bacteria-challanged wild silkmoth, Antheraea mylitta (Lepidoptera) transcriptome reveals potential immune genes. BMC Genom 7:184

    Article  Google Scholar 

  • Gough M, Hancock RE, Kelly NM (1996) Antiendotoxic activity of cationic peptide antimicrobial agents. Infect Immun 64:4922–4927

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hultmark D (2003) Drosophila immunity: paths and patterns. Curr Opin Immunol 15:12–19

    Article  CAS  PubMed  Google Scholar 

  • Hwang J, Kim Y (2011) RNA interference of an antimicrobial peptide, gloverin, of the beet armyworm Spodoptera exigua, enhances susceptibility to Bacillus thuringiensis. J Invertebr Pathol 108:194–200

    Article  CAS  PubMed  Google Scholar 

  • Inagaki S, Miyasono M, Yamamoto M, Ohba K, Ishiguro T, Takeda R, Hayashi Y (1992) Induction of antibacterial activity against Bacillus thuringiensis in the common cutworm, Spodoptera litura (Lepidoptera: Noctuidae). Appl Entamol Zoo 27:565–570

    Article  Google Scholar 

  • Jiang H, Vilcinskas A, Kanost MR (2010) Immunity in lepidopteran insects. Adv Exp Med Biol 708:181–204

    Article  CAS  PubMed  Google Scholar 

  • Kawaoka S, Katsuma S, Daimon T, Isono R, Omuro N, Mita K, Shimada T (2008) Functional analysis of four Gloverin-like genes in the silkworm, Bombyx mori. Arch Insect Biochem Physiol 67:87–96

    Article  CAS  PubMed  Google Scholar 

  • Lamberty M, Zachary D, Lanot R, Bordereau C, Robert A, Hoffmann JA, Bulet P (2001) Constitutive expression of a cysteine-rich antifungal and a linear antibacterial peptide in a termite insect. J Biol Chem 276:4085–4092

    Article  CAS  PubMed  Google Scholar 

  • Lee W-J, Lee J-D, Kravchenko VV, Ulevitch RJ, Brey PT (1996) Purification and molecular cloning of an inducible Gram negative bacteria binding protein from the silkworm, Bombyx mori. Proc Natl Acad Sci USA 93:7888–7893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lundstrom A, Liu G, Kang D, Berzins K, Steiner H (2002) Trichoplusia ni gloverin, an inducible immune gene encoding an antibacterial insect protein. Insect Biochem Mol Biol 32:795–801

    Article  CAS  PubMed  Google Scholar 

  • Mackintosh JA, Gooley AA, Karuso PH, Beattie AJ, Jardine DR, Veal DA (1998) A gloverin-like antibacterial protein is synthesized in Helicoverpa armigera following bacterial challenge. Dev Comp Immunol 22:387–399

    Article  CAS  PubMed  Google Scholar 

  • Mak P, Zdybicka-Barabas A, Suder P, Jakubowicz T (2007) Purification and characterization of eight peptides from Galleria mellonella immune hemolymph. Peptides 28:533–546

    Article  PubMed  Google Scholar 

  • Mandal SM (2012) A novel hydroxyproline rich glycopeptide from pericarp of Datura stramonium: proficiently eradicate the biofilm of antifungals resistant Candida albicans. Biopolymer 98:332–337

    Article  CAS  Google Scholar 

  • Mandal SM, Dey S, Mandal M, Sarkar S, Maria-Neto S, Franco OL (2009) Identification and structural insights of three novel antimicrobial peptides isolated from green coconut water. Peptides 30:633–637

    Article  CAS  PubMed  Google Scholar 

  • Mandal SM, Bharti R, Porto WF, Gauri SS, Mandal M, Franco OL, Ghosh AK (2014) Identification of multifunctional peptides from human milk. Peptides 56:84–93

    Article  CAS  PubMed  Google Scholar 

  • Neog K, Unni B, Ahmed G (2011) Studies on the influence of host plants and effect of chemical stimulants on the feeding behavior in the muga silkworm, Antheraea assamensis. J Insect Sci 11:133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Otvos L Jr (2000) Antibacterial peptides isolated from insects. J Pept Sci 6:497–511

    Article  CAS  PubMed  Google Scholar 

  • Ouellette AJ, Selsted ME (1996) Paneth cell definsins endogenous peptide components of intestinal host defense. FASEB J 10:1280–1289

    Article  CAS  PubMed  Google Scholar 

  • Rao XJ, Xu XX, Yu XQ (2012) Functional analysis of two lebocin-related proteins from Manduca sexta. Insect Biochem Mol Bio 42:231–239

    Article  CAS  Google Scholar 

  • Ratcliffe NA (1985) Invertebrate immunity A primer for the non-specialist. Immunol Lett 10:253–270

    Article  CAS  PubMed  Google Scholar 

  • Sachdev B, Zarin M, Khan Z, Malhotra P, Seth RK, Bhatnagar RK (2014) Effect of gamma radiation on phenoloxidase pathway, antioxidant defense mechanism in Helicoverpa armigera (Lepidoptera: Noctuidae) and its implication in inherited sterility towards pest suppression. Int J Radiat Biol 90:7–19

    Article  CAS  PubMed  Google Scholar 

  • Sachdev B, Khan Z, Zarin M, Malhotra P, Seth RK, Bhatnagar RK (2017) Irradiation influence onthe phenoloxidase pathway and an antioxidant defense mechanism in Spodoptera litura (Lepidoptera: Noctuidae) and its implication in radio-genetic ‘F 1 sterility’ and biorational pest suppression tactics. Bull Entomol Res 107:281–293

    Article  CAS  PubMed  Google Scholar 

  • Sackton TB, Lazzaro BP, Schlenke TA, Evans JD, Hultmark D, Clark AG (2007) Dynamic evolution of the innate immune system in Drosophila. Nat Genet 39:1461–1468

    Article  CAS  PubMed  Google Scholar 

  • Schoofs L, Holman GM, Hayes TK, Nachman RJ, De Loof A (1990) Locusta tachykinin I and II, two novel insect neuropeptides with homology to peptides from the vertebrate tachykinin family. FEBS Lett 26:1397–1401

    Google Scholar 

  • Seitz V, Clermont A, Wedde M, Hummel M, Vilcinskas A, Schlatterer K, Podsiadlowski L (2003) Identification of immunorelevant genes from greater wax moth (Galleria mellonella) by a subtractive hybridization approach. Dev Comp Immunol 27:207–215

    Article  CAS  PubMed  Google Scholar 

  • Silva JL, Barbosa JF, Bravo JP, Souza EM, Huergo LF, Pedrosa FO, Esteves E, Daffre S, Fernandez MA (2010) Induction of a gloverin-like antimicrobial polypeptide in the sugarcane borer Diatraea saccharalis challenged by septic injury. Braz J Med Biol Res 43:431–436

    Article  CAS  PubMed  Google Scholar 

  • Sumida M, Ichimori H, Yuhki T, Mori H, Matsubara F (1992) Induction of antibacterial activity in the haemolymph of the silkworm, Bombyx mori, by injection of formalin-treated Escherichia coli K-12 in the anterior and posterior body part of the ligated larvae. Comp Biochem Physiol B 101:173–178

    Article  CAS  PubMed  Google Scholar 

  • Tanaka H, Ishibashi J, Fujita K, Nakajima Y, Sagisaka A, Tomimoto K, Suzuki N, Yoshiyama M, Kaneko Y, Iwasaki T, Sunagawa T, Yamaji K, Asaoka A, Mita K, Yamakawa M (2008) A genome-wide analysis of genes and gene families involved in innate immunity of Bombyx mori. Insect Biochem Mol Biol 38:1087–1110

    Article  CAS  PubMed  Google Scholar 

  • Tzou P, De Gregorio E, Lemaitre B (2002) How Drosophila combats microbial infection: a model to study innate immunity and host-pathogen interactions. Curr Opin Microbiol 5:102–110

    Article  CAS  PubMed  Google Scholar 

  • Wang G (2013) Database-guided discovery of potent peptides to combat HIV-1 or superbugs. Pharmaceuticals 6:728–758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao XX, Zhong X, Yi H-Y, Yu X-Q (2012) Manduca sexta gloverin binds microbial components and is active against bacteria and fungi. Dev Comp Immunol 38:275–284

    Article  Google Scholar 

  • Xiong G-H, Xing L-S, Lin Z, Saha T, Wang C, Jiang H, Zou Z (2015) High throughput profiling of the cotton bollworm Helicoverpa armigera immunotranscriptome during the fungal and bacterial infection. BMC Genom 16:321

    Article  Google Scholar 

  • Yang J, Furukawa S, Sagisaka A, Ishibashi J, Taniai K, Shono T, Yamakawa M (1999) cDNA cloning and gene expression of cecropin D, an antibacterial protein in the silkworm, Bombyx mori. Comp Biochem Mol Biol 122:409–414

    Article  CAS  Google Scholar 

  • Zhu Y, Johnson TJ, Mayers AA, Kanost MR (2003) Identification by subtractive suppression hybridization of bacteria-induced genes expressed in Manduca sexta fat body. Insect Biochem Mol Biol 33:541–559

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The work was supported from a grant from Department of Biotechnology, Government of India (No: BT/464/NE/TBP/2013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ananta K. Ghosh.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 74 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nayak, T., Mandal, S.M., Neog, K. et al. Characterization of a Gloverin-Like Antimicrobial Peptide Isolated from Muga Silkworm, Antheraea assamensis . Int J Pept Res Ther 24, 337–346 (2018). https://doi.org/10.1007/s10989-017-9618-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10989-017-9618-0

Keywords

Navigation