Skip to main content

Bone-Muscle Crosstalk in Advanced Cancer and Chemotherapy

  • Chapter
  • First Online:
The Systemic Effects of Advanced Cancer
  • 327 Accesses

Abstract

Advanced cancers metastasize to distant sites and bone is a common site for metastases from breast, lung, and prostate cancers. Breast and lung cancer bone metastases typically lead to osteolytic lesions. Osteolytic bone metastases lead to bone pain, nerve compression, hypercalcemia, increased risk of fractures from falls, and muscle weakness. Bone metastases are incurable, and therapies for osteolytic lesions are aimed at reducing tumor burden and limiting bone loss. In addition to growth of tumor cells in bone, systemic effects to the musculoskeletal system are important in the overall reduction in mobility and increased morbidity. The focus of this chapter will be on the process of breast cancer cell colonization of bone, and bone-muscle crosstalk in breast cancer bone metastases and chemotherapy-induced bone loss. Much progress has been made recently in our understanding of the interplay between bone and muscle in cancer and chemotherapy, and future therapeutic strategies will likely include considerations for both of these tissues in the context of reducing overall tumor burden in bone.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Siegel, R.L., Miller, K.D., Jemal, A.: Cancer statistics, 2018. CA Cancer J. Clin. 68(1), 7–30 (2018)

    Article  PubMed  Google Scholar 

  2. Guise, T.A., Mundy, G.R.: Cancer and bone. Endocr. Rev. 19(1), 18–54 (1998)

    CAS  PubMed  Google Scholar 

  3. Weilbaecher, K.N., Guise, T.A., McCauley, L.K.: Cancer to bone: a fatal attraction. Nat. Rev. Cancer. 11(6), 411–425 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kolb, A.D., Bussard, K.M.: The bone extracellular matrix as an ideal milieu for cancer cell metastases. Cancers (Basel). 11(7) (2019)

    Google Scholar 

  5. Phadke, P.A., Mercer, R.R., Harms, J.F., Jia, Y., Frost, A.R., Jewell, J.L., et al.: Kinetics of metastatic breast cancer cell trafficking in bone. Clin. Cancer Res. 12(5), 1431–1440 (2006)

    Article  PubMed  PubMed Central  Google Scholar 

  6. Burr, D.B., Akkus, O.: Bone morphology and organization. In: Burr, D.B., Allen, M.R. (eds.) Basic and applied bone biology, 2nd edn. Elsevier (2014)

    Google Scholar 

  7. Shupp, A.B., Kolb, A.D., Bussard, K.M.: Novel techniques to study the bone-tumor microenvironment. Adv. Exp. Med. Biol. 1225, 1–18 (2020)

    Article  CAS  PubMed  Google Scholar 

  8. Shupp, A.B., Kolb, A.D., Mukhopadhyay, D., Bussard, K.M.: Cancer metastases to bone: concepts, mechanisms, and interactions with bone osteoblasts. Cancers (Basel). 10(6) (2018)

    Google Scholar 

  9. Brown, H.K., Ottewell, P.D., Evans, C.A., Holen, I.: Location matters: osteoblast and osteoclast distribution is modified by the presence and proximity to breast cancer cells in vivo. Clin. Exp. Metastasis. 29(8), 927–938 (2012)

    Article  CAS  PubMed  Google Scholar 

  10. Wang, H., Yu, C., Gao, X., Welte, T., Muscarella, A.M., Tian, L., et al.: The osteogenic niche promotes early-stage bone colonization of disseminated breast cancer cells. Cancer Cell. 27(2), 193–210 (2015)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Wang, H., Tian, L., Liu, J., Goldstein, A., Bado, I., Zhang, W., et al.: The osteogenic niche is a calcium reservoir of bone micrometastases and confers unexpected therapeutic vulnerability. Cancer Cell. 34(5), 823–39 e7 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Goodenough, D.A., Goliger, J.A., Paul, D.L.: Connexins, connexons, and intercellular communication. Annu. Rev. Biochem. 65, 475–502 (1996)

    Article  CAS  PubMed  Google Scholar 

  13. Lim, P.K., Bliss, S.A., Patel, S.A., Taborga, M., Dave, M.A., Gregory, L.A., et al.: Gap junction-mediated import of microRNA from bone marrow stromal cells can elicit cell cycle quiescence in breast cancer cells. Cancer Res. 71(5), 1550–1560 (2011)

    Article  CAS  PubMed  Google Scholar 

  14. Hanahan, D., Weinberg, R.A.: Hallmarks of cancer: the next generation. Cell. 144(5), 646–674 (2011)

    Article  CAS  PubMed  Google Scholar 

  15. Rong, Y.P., Aromolaran, A.S., Bultynck, G., Zhong, F., Li, X., McColl, K., et al.: Targeting Bcl-2-IP3 receptor interaction to reverse Bcl-2’s inhibition of apoptotic calcium signals. Mol. Cell. 31(2), 255–265 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hempel, N., Trebak, M.: Crosstalk between calcium and reactive oxygen species signaling in cancer. Cell Calcium. 63, 70–96 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sethi, N., Dai, X., Winter, C.G., Kang, Y.: Tumor-derived JAGGED1 promotes osteolytic bone metastasis of breast cancer by engaging notch signaling in bone cells. Cancer Cell. 19(2), 192–205 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zheng, H., Bae, Y., Kasimir-Bauer, S., Tang, R., Chen, J., Ren, G., et al.: Therapeutic antibody targeting tumor- and osteoblastic niche-derived Jagged1 sensitizes bone metastasis to chemotherapy. Cancer Cell. 32(6), 731–47 e6 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lu, X., Mu, E., Wei, Y., Riethdorf, S., Yang, Q., Yuan, M., et al.: VCAM-1 promotes osteolytic expansion of indolent bone micrometastasis of breast cancer by engaging alpha4beta1-positive osteoclast progenitors. Cancer Cell. 20(6), 701–714 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Liang, Z., Wu, T., Lou, H., Yu, X., Taichman, R.S., Lau, S.K., et al.: Inhibition of breast cancer metastasis by selective synthetic polypeptide against CXCR4. Cancer Res. 64(12), 4302–4308 (2004)

    Article  CAS  PubMed  Google Scholar 

  21. Mukherjee, D., Zhao, J.: The role of chemokine receptor CXCR4 in breast cancer metastasis. Am. J. Cancer Res. 3(1), 46–57 (2013)

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Bendre, M.S., Montague, D.C., Peery, T., Akel, N.S., Gaddy, D., Suva, L.J.: Interleukin-8 stimulation of osteoclastogenesis and bone resorption is a mechanism for the increased osteolysis of metastatic bone disease. Bone. 33(1), 28–37 (2003)

    Article  CAS  PubMed  Google Scholar 

  23. Bussard, K.M., Venzon, D.J., Mastro, A.M.: Osteoblasts are a major source of inflammatory cytokines in the tumor microenvironment of bone metastatic breast cancer. J. Cell. Biochem. 111(5), 1138–1148 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kolb, A.D., Shupp, A.B., Mukhopadhyay, D., Marini, F.C., Bussard, K.M.: Osteoblasts are “educated” by crosstalk with metastatic breast cancer cells in the bone tumor microenvironment. Breast Cancer Res. 21(1), 31 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  25. Liu, X., Cao, M., Palomares, M., Wu, X., Li, A., Yan, W., et al.: Metastatic breast cancer cells overexpress and secrete miR-218 to regulate type I collagen deposition by osteoblasts. Breast Cancer Res. 20(1), 127 (2018)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Li, D., Liu, J., Guo, B., Liang, C., Dang, L., Lu, C., et al.: Osteoclast-derived exosomal miR-214-3p inhibits osteoblastic bone formation. Nat. Commun. 7, 10872 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sun, W., Zhao, C., Li, Y., Wang, L., Nie, G., Peng, J., et al.: Osteoclast-derived microRNA-containing exosomes selectively inhibit osteoblast activity. Cell Discov. 2, 16015 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Xie, Y., Chen, Y., Zhang, L., Ge, W., Tang, P.: The roles of bone-derived exosomes and exosomal microRNAs in regulating bone remodelling. J. Cell. Mol. Med. 21(5), 1033–1041 (2017)

    Article  PubMed  Google Scholar 

  29. Cappariello, A., Loftus, A., Muraca, M., Maurizi, A., Rucci, N., Teti, A.: Osteoblast-derived extracellular vesicles are biological tools for the delivery of active molecules to bone. J. Bone Miner. Res. 33(3), 517–533 (2018)

    Article  CAS  PubMed  Google Scholar 

  30. Li, Y., Yin, P., Guo, Z., Lv, H., Deng, Y., Chen, M., et al.: Bone-derived extracellular vesicles: novel players of interorgan crosstalk. Front. Endocrinol. (Lausanne). 10, 846 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  31. Bliss, S.A., Sinha, G., Sandiford, O.A., Williams, L.M., Engelberth, D.J., Guiro, K., et al.: Mesenchymal stem cell-derived exosomes stimulate cycling quiescence and early breast cancer dormancy in bone marrow. Cancer Res. 76(19), 5832–5844 (2016)

    Article  CAS  PubMed  Google Scholar 

  32. Vallabhaneni, K.C., Penfornis, P., Xing, F., Hassler, Y., Adams, K.V., Mo, Y.Y., et al.: Stromal cell extracellular vesicular cargo mediated regulation of breast cancer cell metastasis via ubiquitin conjugating enzyme E2 N pathway. Oncotarget. 8(66), 109861–109876 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  33. Qin, W., Dallas, S.L.: Exosomes and extracellular RNA in muscle and bone aging and crosstalk. Curr. Osteoporos. Rep. 17(6), 548–559 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  34. Hassan, M.Q., Maeda, Y., Taipaleenmaki, H., Zhang, W., Jafferji, M., Gordon, J.A., et al.: miR-218 directs a Wnt signaling circuit to promote differentiation of osteoblasts and osteomimicry of metastatic cancer cells. J. Biol. Chem. 287(50), 42084–42092 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Cheng, P., Chen, C., He, H.B., Hu, R., Zhou, H.D., Xie, H., et al.: miR-148a regulates osteoclastogenesis by targeting V-maf musculoaponeurotic fibrosarcoma oncogene homolog B. J. Bone Miner. Res. 28(5), 1180–1190 (2013)

    Article  CAS  PubMed  Google Scholar 

  36. van Wijnen, A.J., van de Peppel, J., van Leeuwen, J.P., Lian, J.B., Stein, G.S., Westendorf, J.J., et al.: MicroRNA functions in osteogenesis and dysfunctions in osteoporosis. Curr. Osteoporos. Rep. 11(2), 72–82 (2013)

    Article  PubMed  PubMed Central  Google Scholar 

  37. Hesse, E., Taipaleenmaki, H.: MicroRNAs in bone metastasis. Curr. Osteoporos. Rep. 17(3), 122–128 (2019)

    Article  PubMed  Google Scholar 

  38. Taipaleenmaki, H., Browne, G., Akech, J., Zustin, J., van Wijnen, A.J., Stein, J.L., et al.: Targeting of Runx2 by miR-135 and miR-203 impairs progression of breast cancer and metastatic bone disease. Cancer Res. 75(7), 1433–1444 (2015)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Krzeszinski, J.Y., Wei, W., Huynh, H., Jin, Z., Wang, X., Chang, T.C., et al.: miR-34a blocks osteoporosis and bone metastasis by inhibiting osteoclastogenesis and Tgif2. Nature. 512(7515), 431–435 (2014)

    Article  CAS  PubMed  Google Scholar 

  40. Croset, M., Pantano, F., Kan, C.W.S., Bonnelye, E., Descotes, F., Alix-Panabieres, C., et al.: miRNA-30 family members inhibit breast cancer invasion, osteomimicry, and bone destruction by directly targeting multiple bone metastasis-associated genes. Cancer Res. 78(18), 5259–5273 (2018)

    Article  CAS  PubMed  Google Scholar 

  41. Taipaleenmaki, H., Farina, N.H., van Wijnen, A.J., Stein, J.L., Hesse, E., Stein, G.S., et al.: Antagonizing miR-218-5p attenuates Wnt signaling and reduces metastatic bone disease of triple negative breast cancer cells. Oncotarget. 7(48), 79032–79046 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  42. Bren-Mattison, Y., Hausburg, M., Olwin, B.B.: Growth of limb muscle is dependent on skeletal-derived Indian hedgehog. Dev. Biol. 356(2), 486–495 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Rauch, F., Bailey, D.A., Baxter-Jones, A., Mirwald, R., Faulkner, R.: The ‘muscle-bone unit’ during the pubertal growth spurt. Bone. 34(5), 771–775 (2004)

    Article  PubMed  Google Scholar 

  44. Greenlund, L.J., Nair, K.S.: Sarcopenia-consequences, mechanisms, and potential therapies. Mech. Ageing Dev. 124(3), 287–299 (2003)

    Article  CAS  PubMed  Google Scholar 

  45. Steensberg, A., van Hall, G., Osada, T., Sacchetti, M., Saltin, B., Klarlund, P.B.: Production of interleukin-6 in contracting human skeletal muscles can account for the exercise-induced increase in plasma interleukin-6. J. Physiol. 529(Pt 1), 237–242 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Serrano, A.L., Baeza-Raja, B., Perdiguero, E., Jardi, M., Munoz-Canoves, P.: Interleukin-6 is an essential regulator of satellite cell-mediated skeletal muscle hypertrophy. Cell Metab. 7(1), 33–44 (2008)

    Article  CAS  PubMed  Google Scholar 

  47. The role of exercise-induced myokines in muscle homeostasis and the defense against chronic diseases, (2010)

    Google Scholar 

  48. Bostrom, P., Wu, J., Jedrychowski, M.P., Korde, A., Ye, L., Lo, J.C., et al.: A PGC1-alpha-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature. 481(7382), 463–468 (2012)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Kir, S., White, J.P., Kleiner, S., Kazak, L., Cohen, P., Baracos, V.E., et al.: Tumour-derived PTH-related protein triggers adipose tissue browning and cancer cachexia. Nature. 513(7516), 100–104 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Petruzzelli, M., Schweiger, M., Schreiber, R., Campos-Olivas, R., Tsoli, M., Allen, J., et al.: A switch from white to brown fat increases energy expenditure in cancer-associated cachexia. Cell Metab. 20(3), 433–447 (2014)

    Article  CAS  PubMed  Google Scholar 

  51. Han, J., Meng, Q., Shen, L., Wu, G.: Interleukin-6 induces fat loss in cancer cachexia by promoting white adipose tissue lipolysis and browning. Lipids Health Dis. 17(1), 14 (2018)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. McPherron, A.C., Lawler, A.M., Lee, S.J.: Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member. Nature. 387(6628), 83–90 (1997)

    Article  CAS  PubMed  Google Scholar 

  53. McFarlane, C., Plummer, E., Thomas, M., Hennebry, A., Ashby, M., Ling, N., et al.: Myostatin induces cachexia by activating the ubiquitin proteolytic system through an NF-kappaB-independent, FoxO1-dependent mechanism. J. Cell. Physiol. 209(2), 501–514 (2006)

    Article  CAS  PubMed  Google Scholar 

  54. DiGirolamo, D.J., Kiel, D.P., Esser, K.A.: Bone and skeletal muscle: neighbors with close ties. J. Bone Miner. Res. 28(7), 1509–1518 (2013)

    Article  PubMed  Google Scholar 

  55. Kitase, Y., Vallejo, J.A., Gutheil, W., Vemula, H., Jahn, K., Yi, J., et al.: beta-aminoisobutyric acid, l-BAIBA, is a muscle-derived osteocyte survival factor. Cell Rep. 22(6), 1531–1544 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Liang, H., Pun, S., Wronski, T.J.: Bone anabolic effects of basic fibroblast growth factor in ovariectomized rats. Endocrinology. 140(12), 5780–5788 (1999)

    Article  CAS  PubMed  Google Scholar 

  57. Yakar, S., Rosen, C.J., Beamer, W.G., Ackert-Bicknell, C.L., Wu, Y., Liu, J.L., et al.: Circulating levels of IGF-1 directly regulate bone growth and density. J. Clin. Invest. 110(6), 771–781 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Li, X., Zhou, Z.Y., Zhang, Y.Y., Yang, H.L.: IL-6 contributes to the defective osteogenesis of bone marrow stromal cells from the vertebral body of the glucocorticoid-induced osteoporotic mouse. PLoS One. 11(4), e0154677 (2016)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Kellum, E., Starr, H., Arounleut, P., Immel, D., Fulzele, S., Wenger, K., et al.: Myostatin (GDF-8) deficiency increases fracture callus size, Sox-5 expression, and callus bone volume. Bone. 44(1), 17–23 (2009)

    Article  CAS  PubMed  Google Scholar 

  60. Wallner, C., Jaurich, H., Wagner, J.M., Becerikli, M., Harati, K., Dadras, M., et al.: Inhibition of GDF8 (Myostatin) accelerates bone regeneration in diabetes mellitus type 2. Sci. Rep. 7(1), 9878 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  61. Kaji, H.: Effects of myokines on bone. Bonekey Rep. 5, 826 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  62. Hamrick, M.W., Samaddar, T., Pennington, C., McCormick, J.: Increased muscle mass with myostatin deficiency improves gains in bone strength with exercise. J. Bone Miner. Res. 21(3), 477–483 (2006)

    Article  CAS  PubMed  Google Scholar 

  63. Liu, S., Zhou, J., Tang, W., Jiang, X., Rowe, D.W., Quarles, L.D.: Pathogenic role of Fgf23 in Hyp mice. Am. J. Physiol. Endocrinol. Metab. 291(1), E38–E49 (2006)

    Article  CAS  PubMed  Google Scholar 

  64. Aono, Y., Hasegawa, H., Yamazaki, Y., Shimada, T., Fujita, T., Yamashita, T., et al.: Anti-FGF-23 neutralizing antibodies ameliorate muscle weakness and decreased spontaneous movement of Hyp mice. J. Bone Miner. Res. 26(4), 803–810 (2011)

    Article  CAS  PubMed  Google Scholar 

  65. Faul, C., Amaral, A.P., Oskouei, B., Hu, M.C., Sloan, A., Isakova, T., et al.: FGF23 induces left ventricular hypertrophy. J. Clin. Invest. 121(11), 4393–4408 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Mera, P., Laue, K., Ferron, M., Confavreux, C., Wei, J., Galan-Diez, M., et al.: Osteocalcin signaling in myofibers is necessary and sufficient for optimum adaptation to exercise. Cell Metab. 23(6), 1078–1092 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Mera, P., Laue, K., Wei, J.W., Berger, J.M., Karsenty, G.: Osteocalcin is necessary and sufficient to maintain muscle mass in older mice. Mol. Metab. 5(10), 1042–1047 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Sakai, R., Eto, Y.: Involvement of activin in the regulation of bone metabolism. Mol. Cell. Endocrinol. 180(1–2), 183–188 (2001)

    Article  CAS  PubMed  Google Scholar 

  69. Wildemann, B., Kadow-Romacker, A., Haas, N.P., Schmidmaier, G.: Quantification of various growth factors in different demineralized bone matrix preparations. J. Biomed. Mater. Res. A. 81(2), 437–442 (2007)

    Article  CAS  PubMed  Google Scholar 

  70. Bonewald, L.F., Mundy, G.R.: Role of transforming growth factor-beta in bone remodeling. Clin. Orthop. Relat. Res. 250, 261–276 (1990)

    Article  Google Scholar 

  71. Dallas, S.L., Rosser, J.L., Mundy, G.R., Bonewald, L.F.: Proteolysis of latent transforming growth factor-beta (TGF-beta)-binding protein-1 by osteoclasts. A cellular mechanism for release of TGF-beta from bone matrix. J. Biol. Chem. 277(24), 21352–21360 (2002)

    Article  CAS  PubMed  Google Scholar 

  72. Kang, Y., He, W., Tulley, S., Gupta, G.P., Serganova, I., Chen, C.R., et al.: Breast cancer bone metastasis mediated by the Smad tumor suppressor pathway. Proc. Natl. Acad. Sci. USA. 102(39), 13909–13914 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Kang, Y., Siegel, P.M., Shu, W., Drobnjak, M., Kakonen, S.M., Cordon-Cardo, C., et al.: A multigenic program mediating breast cancer metastasis to bone. Cancer Cell. 3(6), 537–549 (2003)

    Article  CAS  PubMed  Google Scholar 

  74. Korpal, M., Yan, J., Lu, X., Xu, S., Lerit, D.A., Kang, Y.: Imaging transforming growth factor-beta signaling dynamics and therapeutic response in breast cancer bone metastasis. Nat. Med. 15(8), 960–966 (2009)

    Article  CAS  PubMed  Google Scholar 

  75. Yin, J.J., Selander, K., Chirgwin, J.M., Dallas, M., Grubbs, B.G., Wieser, R., et al.: TGF-beta signaling blockade inhibits PTHrP secretion by breast cancer cells and bone metastases development. J. Clin. Invest. 103(2), 197–206 (1999)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Waning, D.L., Mohammad, K.S., Reiken, S., Xie, W., Andersson, D.C., John, S., et al.: Excess TGF-beta mediates muscle weakness associated with bone metastases in mice. Nat. Med. 21(11), 1262–1271 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Regan, J.N., Mikesell, C., Reiken, S., Xu, H., Marks, A.R., Mohammad, K.S., et al.: Osteolytic breast cancer causes skeletal muscle weakness in an immunocompetent syngeneic mouse model. Front. Endocrinol. (Lausanne). 8, 358 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  78. Santulli, G., Lewis, D.R., Marks, A.R.: Physiology and pathophysiology of excitation-contraction coupling: the functional role of ryanodine receptor. J. Muscle Res. Cell Motil. 38(1), 37–45 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Andersson, D.C., Betzenhauser, M.J., Reiken, S., Meli, A.C., Umanskaya, A., Xie, W., et al.: Ryanodine receptor oxidation causes intracellular calcium leak and muscle weakness in aging. Cell Metab. 14(2), 196–207 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Bellinger, A.M., Reiken, S., Carlson, C., Mongillo, M., Liu, X., Rothman, L., et al.: Hypernitrosylated ryanodine receptor calcium release channels are leaky in dystrophic muscle. Nat. Med. 15(3), 325–330 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Ago, T., Kitazono, T., Ooboshi, H., Iyama, T., Han, Y.H., Takada, J., et al.: Nox4 as the major catalytic component of an endothelial NAD(P)H oxidase. Circulation. 109(2), 227–233 (2004)

    Article  CAS  PubMed  Google Scholar 

  82. Carmona-Cuenca, I., Roncero, C., Sancho, P., Caja, L., Fausto, N., Fernandez, M., et al.: Upregulation of the NADPH oxidase NOX4 by TGF-beta in hepatocytes is required for its pro-apoptotic activity. J. Hepatol. 49(6), 965–976 (2008)

    Article  CAS  PubMed  Google Scholar 

  83. Nyman, J.S., Merkel, A.R., Uppuganti, S., Nayak, B., Rowland, B., Makowski, A.J., et al.: Combined treatment with a transforming growth factor beta inhibitor (1D11) and bortezomib improves bone architecture in a mouse model of myeloma-induced bone disease. Bone. 91, 81–91 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Dunn, L.K., Mohammad, K.S., Fournier, P.G., McKenna, C.R., Davis, H.W., Niewolna, M., et al.: Hypoxia and TGF-beta drive breast cancer bone metastases through parallel signaling pathways in tumor cells and the bone microenvironment. PLoS One. 4(9), e6896 (2009)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Marx, S.O., Reiken, S., Hisamatsu, Y., Jayaraman, T., Burkhoff, D., Rosemblit, N., et al.: PKA phosphorylation dissociates FKBP12.6 from the calcium release channel (ryanodine receptor): defective regulation in failing hearts. Cell. 101(4), 365–376 (2000)

    Article  CAS  PubMed  Google Scholar 

  86. Mendias, C.L., Gumucio, J.P., Davis, M.E., Bromley, C.W., Davis, C.S., Brooks, S.V.: Transforming growth factor-beta induces skeletal muscle atrophy and fibrosis through the induction of atrogin-1 and scleraxis. Muscle Nerve. 45(1), 55–59 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Allen, R.E., Boxhorn, L.K.: Inhibition of skeletal muscle satellite cell differentiation by transforming growth factor-beta. J. Cell. Physiol. 133(3), 567–572 (1987)

    Article  CAS  PubMed  Google Scholar 

  88. Allen, R.E., Boxhorn, L.K.: Regulation of skeletal muscle satellite cell proliferation and differentiation by transforming growth factor-beta, insulin-like growth factor I, and fibroblast growth factor. J. Cell. Physiol. 138(2), 311–315 (1989)

    Article  CAS  PubMed  Google Scholar 

  89. Chen, Y.W., Nagaraju, K., Bakay, M., McIntyre, O., Rawat, R., Shi, R., et al.: Early onset of inflammation and later involvement of TGFbeta in Duchenne muscular dystrophy. Neurology. 65(6), 826–834 (2005)

    Article  CAS  PubMed  Google Scholar 

  90. Kollias, H.D., McDermott, J.C.: Transforming growth factor-beta and myostatin signaling in skeletal muscle. J. Appl. Physiol. 2008, 104(3), 579–587 (1985)

    Google Scholar 

  91. Lee, S.J., Reed, L.A., Davies, M.V., Girgenrath, S., Goad, M.E., Tomkinson, K.N., et al.: Regulation of muscle growth by multiple ligands signaling through activin type II receptors. Proc. Natl. Acad. Sci. USA. 102(50), 18117–18122 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Zhou, X., Wang, J.L., Lu, J., Song, Y., Kwak, K.S., Jiao, Q., et al.: Reversal of cancer cachexia and muscle wasting by ActRIIB antagonism leads to prolonged survival. Cell. 142(4), 531–543 (2010)

    Article  CAS  PubMed  Google Scholar 

  93. Pistilli, E.E., Bogdanovich, S., Goncalves, M.D., Ahima, R.S., Lachey, J., Seehra, J., et al.: Targeting the activin type IIB receptor to improve muscle mass and function in the mdx mouse model of Duchenne muscular dystrophy. Am. J. Pathol. 178(3), 1287–1297 (2011)

    Article  PubMed  PubMed Central  Google Scholar 

  94. Sartori, R., Schirwis, E., Blaauw, B., Bortolanza, S., Zhao, J., Enzo, E., et al.: BMP signaling controls muscle mass. Nat. Genet. 45(11), 1309–1318 (2013)

    Article  CAS  PubMed  Google Scholar 

  95. Serrano, A.L., Munoz-Canoves, P.: Regulation and dysregulation of fibrosis in skeletal muscle. Exp. Cell Res. 316(18), 3050–3058 (2010)

    Article  CAS  PubMed  Google Scholar 

  96. Schiaffino, S., Mammucari, C.: Regulation of skeletal muscle growth by the IGF1-Akt/PKB pathway: insights from genetic models. Skelet. Muscle. 1(1), 4 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Florini, J.R., Ewton, D.Z., Coolican, S.A.: Growth hormone and the insulin-like growth factor system in myogenesis. Endocr. Rev. 17(5), 481–517 (1996)

    CAS  PubMed  Google Scholar 

  98. Wang-Gillam, A., Miles, D.A., Hutchins, L.F.: Evaluation of vitamin D deficiency in breast cancer patients on bisphosphonates. Oncologist. 13(7), 821–827 (2008)

    Article  CAS  PubMed  Google Scholar 

  99. Burne, T.H., Johnston, A.N., McGrath, J.J., Mackay-Sim, A.: Swimming behaviour and post-swimming activity in Vitamin D receptor knockout mice. Brain Res. Bull. 69(1), 74–78 (2006)

    Article  CAS  PubMed  Google Scholar 

  100. Kalueff, A.V., Lou, Y.R., Laaksi, I., Tuohimaa, P.: Impaired motor performance in mice lacking neurosteroid vitamin D receptors. Brain Res. Bull. 64(1), 25–29 (2004)

    Article  CAS  PubMed  Google Scholar 

  101. Russell, J.A.: Osteomalacic myopathy. Muscle Nerve. 17(6), 578–580 (1994)

    Article  CAS  PubMed  Google Scholar 

  102. Schott, G.D., Wills, M.R.: Muscle weakness in osteomalacia. Lancet. 1(7960), 626–629 (1976)

    Article  CAS  PubMed  Google Scholar 

  103. Garg, A., Leitzel, K., Ali, S., Lipton, A.: Antiresorptive therapy in the management of cancer treatment-induced bone loss. Curr. Osteoporos. Rep. 13(2), 73–77 (2015)

    Article  PubMed  Google Scholar 

  104. Guise, T.A.: Bone loss and fracture risk associated with cancer therapy. Oncologist. 11(10), 1121–1131 (2006)

    Article  CAS  PubMed  Google Scholar 

  105. Miller, K.D., Siegel, R.L., Lin, C.C., Mariotto, A.B., Kramer, J.L., Rowland, J.H., et al.: Cancer treatment and survivorship statistics, 2016. CA Cancer J. Clin. 66(4), 271–289 (2016)

    Article  PubMed  Google Scholar 

  106. Jensen, A.O., Jacobsen, J.B., Norgaard, M., Yong, M., Fryzek, J.P., Sorensen, H.T.: Incidence of bone metastases and skeletal-related events in breast cancer patients: a population-based cohort study in Denmark. BMC Cancer. 11, 29 (2011)

    Article  PubMed  PubMed Central  Google Scholar 

  107. Saad, F., Clarke, N., Colombel, M.: Natural history and treatment of bone complications in prostate cancer. Eur. Urol. 49(3), 429–440 (2006)

    Article  CAS  PubMed  Google Scholar 

  108. Nicolson, G.L., Conklin, K.A.: Reversing mitochondrial dysfunction, fatigue and the adverse effects of chemotherapy of metastatic disease by molecular replacement therapy. Clin. Exp. Metastasis. 25(2), 161–169 (2008)

    Article  CAS  PubMed  Google Scholar 

  109. Gilliam, L.A., St Clair, D.K.: Chemotherapy-induced weakness and fatigue in skeletal muscle: the role of oxidative stress. Antioxid. Redox Signal. 15(9), 2543–2563 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. D'Oronzo, S., Stucci, S., Tucci, M., Silvestris, F.: Cancer treatment-induced bone loss (CTIBL): pathogenesis and clinical implications. Cancer Treat. Rev. 41(9), 798–808 (2015)

    Article  CAS  PubMed  Google Scholar 

  111. Damrauer, J.S., Stadler, M.E., Acharyya, S., Baldwin, A.S., Couch, M.E., Guttridge, D.C.: Chemotherapy-induced muscle wasting: association with NF-kappaB and cancer cachexia. Eur. J. Transl. Myol. 28(2), 7590 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  112. Rana, T., Chakrabarti, A., Freeman, M., Biswas, S.: Doxorubicin-mediated bone loss in breast cancer bone metastases is driven by an interplay between oxidative stress and induction of TGFbeta. PLoS One. 8(10), e78043 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Hain, B.A., Xu, H., Wilcox, J.R., Mutua, D., Waning, D.L.: Chemotherapy-induced loss of bone and muscle mass in a mouse model of breast cancer bone metastases and cachexia. JCSM Rapid. Communications. 2(1) (2019)

    Google Scholar 

  114. Hain, B.A., Jude, B., Xu, H., Smuin, D.M., Fox, E.J., Elfar, J.C., et al.: Zoledronic acid improves muscle function in healthy mice treated with chemotherapy. J. Bone Miner. Res. 35(2), 368–381 (2020)

    Article  CAS  PubMed  Google Scholar 

  115. Barreto, R., Kitase, Y., Matsumoto, T., Pin, F., Colston, K.C., Couch, K.E., et al.: ACVR2B/Fc counteracts chemotherapy-induced loss of muscle and bone mass. Sci. Rep. 7(1), 14470 (2017)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Barreto, R., Waning, D.L., Gao, H., Liu, Y., Zimmers, T.A., Bonetto, A.: Chemotherapy-related cachexia is associated with mitochondrial depletion and the activation of ERK1/2 and p38 MAPKs. Oncotarget. 7(28), 43442–43460 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  117. Essex, A.L., Pin, F., Huot, J.R., Bonewald, L.F., Plotkin, L.I., Bonetto, A.: Bisphosphonate treatment ameliorates chemotherapy-induced bone and muscle abnormalities in young mice. Front. Endocrinol. (Lausanne). 10, 809 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  118. Gilliam LA, Ferreira LF, Bruton JD, Moylan JS, Westerblad H, St Clair DK, et al. Doxorubicin acts through tumor necrosis factor receptor subtype 1 to cause dysfunction of murine skeletal muscle. J. Appl. Physiol. 2009, 107(6), 1935–1942 (1985)

    Google Scholar 

  119. Gilliam, L.A., Moylan, J.S., Callahan, L.A., Sumandea, M.P., Reid, M.B.: Doxorubicin causes diaphragm weakness in murine models of cancer chemotherapy. Muscle Nerve. 43(1), 94–102 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. von Haehling, S., Morley, J.E., Anker, S.D.: An overview of sarcopenia: facts and numbers on prevalence and clinical impact. J. Cachexia. Sarcopenia Muscle. 1(2), 129–133 (2010)

    Article  Google Scholar 

  121. Christensen, J.F., Jones, L.W., Andersen, J.L., Daugaard, G., Rorth, M., Hojman, P.: Muscle dysfunction in cancer patients. Ann. Oncol. 25(5), 947–958 (2014)

    Article  CAS  PubMed  Google Scholar 

  122. Ballinger, T.J., Reddy, A., Althouse, S.K., Nelson, E.M., Miller, K.D., Sledge, J.S.: Impact of primary breast cancer therapy on energetic capacity and body composition. Breast Cancer Res. Treat. (2018)

    Google Scholar 

  123. Hesse, E., Schroder, S., Brandt, D., Pamperin, J., Saito, H., Taipaleenmaki, H.: Sclerostin inhibition alleviates breast cancer-induced bone metastases and muscle weakness. JCI. Insight. 5 (2019)

    Google Scholar 

  124. Drake, M.T., Clarke, B.L., Khosla, S.: Bisphosphonates: mechanism of action and role in clinical practice. Mayo Clin. Proc. 83(9), 1032–1045 (2008)

    Article  CAS  PubMed  Google Scholar 

  125. Bandeira, L., Lewiecki, E.M., Bilezikian, J.P.: Romosozumab for the treatment of osteoporosis. Expert. Opin. Biol. Ther. 17(2), 255–263 (2017)

    Article  CAS  PubMed  Google Scholar 

  126. Lipton, A., Uzzo, R., Amato, R.J., Ellis, G.K., Hakimian, B., Roodman, G.D., et al.: The science and practice of bone health in oncology: managing bone loss and metastasis in patients with solid tumors. J. Natl. Compr. Cancer Netw. 7(Suppl 7), S1–29 (2009); quiz S30

    Google Scholar 

  127. Swenson, K.K., Henly, S.J., Shapiro, A.C., Schroeder, L.M.: Interventions to prevent loss of bone mineral density in women receiving chemotherapy for breast cancer. Clin. J. Oncol. Nurs. 9(2), 177–184 (2005)

    Article  PubMed  Google Scholar 

  128. Kohrt, W.M., Bloomfield, S.A., Little, K.D., Nelson, M.E., Yingling, V.R., American College of Sports M: American College of Sports Medicine Position Stand: physical activity and bone health. Med. Sci. Sports Exerc. 36(11), 1985–1996 (2004)

    Article  PubMed  Google Scholar 

  129. Sturgeon, K.M., Mathis, K.M., Rogers, C.J., Schmitz, K.H., Waning, D.L.: Cancer- and chemotherapy-induced musculoskeletal degradation. JBMR Plus. 3(3), e10187 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David L. Waning .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Waning, D.L. (2022). Bone-Muscle Crosstalk in Advanced Cancer and Chemotherapy. In: Acharyya, S. (eds) The Systemic Effects of Advanced Cancer. Springer, Cham. https://doi.org/10.1007/978-3-031-09518-4_9

Download citation

Publish with us

Policies and ethics