Skip to main content

Conventional and Molecular Interventions for Biotic Stress Resistance in Floricultural Crops

  • Chapter
  • First Online:
Genomic Designing for Biotic Stress Resistant Technical Crops
  • 324 Accesses

Abstract

Biotic stresses are one of the major problems for ornamental crop loss worldwide. In general, the spreading of biotic stresses is controlled by the spray of chemicals or by other means. But the residue of some chemical is retained in the soil and hence cause groundwater contaminations. Also, the chemicals used for disease control adversely affect pollinators and humans. Despite this conventional and molecular breeding approaches have been applied for disease improvement in several ornamental crops. Genetic engineering also offers an attractive approach for creating biotic stress resistance in ornamentals. But the limited availability of the transformation and tissue culture protocol, genome complexity, lack of gene pool information, high heterozygosity or genetic variability level and limited genomic information of the ornamental crops restricts the development of biotic stress resistant varieties. Nevertheless, the currently available sequencing technology along with newly emerging genome editing tools will definitely help in unravelling the molecular and genetic basis of disease development and herbivory. This understanding will ultimately assist for the improvement of ornamentals against disease and insect pest attack. This book chapter gives a comprehensive look over the diseases and pests affecting the economically important ornamental crops and also highlight the recent progress in developing biotic stress resistance in ornamental crops through conventional breeding, molecular breeding, genetic engineering, RNAi, and genome editing tools.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • AhnB J, Shin HY, Hwang KH, Min BH, Joung HY (2004) Transformation of carnations with jasmonate methyl transferase gene for fusarium tolerance. In Vitro Cell Dev Biol 40:45A

    Google Scholar 

  • Anais G, Darrasse A, Prior P (1998) Breeding anthuriums (Anthurium andreanum L.) for resistance to bacterial blight caused by Xanthomonas campestris pv. dieffenbachiae. XIX Int Symp Improve Ornamental Plants 508:135–140

    Google Scholar 

  • Azadi P, Bagheri H, Nalousi AM, Nazari F, Chandler SF (2016) Current status and biotechnological advances in genetic engineering of ornamental plants. Biotechnol Adv 34(6):1073–1090

    Google Scholar 

  • Barnes DK, Hanson CH, Frosheiser FI, Elling LJ (1971) Recurrent selection for bacterial wilt resistance in alfalfa. Crop Sci 11(4):545–546

    Article  Google Scholar 

  • Beckerman JL, Lopez RG (2009) Disease-resistant annual and perennial production. Purdue Cooperative Extension Publication. ID-416-W:1−5

    Google Scholar 

  • Ben-Yephet Y, Reuven M, Shtienberg D (1997) Complete resistance by carnation cultivars to Fusarium Wilt induced by Fusarium oxysporum f. sp. dianthi race 2. Plant Dis 81(7):777–780

    Google Scholar 

  • Bhattarai K, Conesa A, Xiao S, Peres NA, Clark DG et al (2020) Sequencing and analysis of gerbera daisy leaf transcriptomes reveal disease resistance and susceptibility genes differentially expressed and associated with powdery mildew resistance. BMC Plant Biol 20(1):1–17

    Article  Google Scholar 

  • Bi M, Li X, Yan X, Liu D, Gao G, Zhu P, Mao H (2021) Chrysanthemum WRKY15–1 promotes resistance to Puccinia horiana Henn. via the salicylic acid signaling pathway. Hort Res 8(1):1–11

    Google Scholar 

  • Bolaños J, Edmeades GO (1993) Eight cycles of selection for drought tolerance in lowland tropical maize. Responses in grain yield, biomass, and radiation utilization. Field Crops Res 31(3–4):233–252

    Google Scholar 

  • Borsics T, Lados M (2002) Dodder infection induces the expression of a pathogenesis-related gene of the family PR-10 in alfalfa. J Exp Bot 53:1831–1832

    Google Scholar 

  • Brugliera F, Kalc Wright G, Hyland C, Webb L, Herbert S et al (2000) Improvement of fusarium wilt tolerance in carnations expressing chitinase. Int Plant Mol Biol Rep 18(2):522–529

    Google Scholar 

  • Buschges R, Hollricher K, Panstruga R, Simons G, Wolter M et al (1997) The barley Mlo gene: a novel control element of plant pathogen resistance. Cell 88:695–705

    Article  CAS  PubMed  Google Scholar 

  • Cassells AC, Walsh C, Periappuram C (1993) Diplontic selection as a positive factor in determining the fitness of mutants of Dianthus ‘Mystere’ derived from X-irradiation of nodes in in vitro culture Euphytica 70(3):167–174

    Google Scholar 

  • Chandler SF, Sanchez C (2012) Genetic modification; the development of transgenic ornamental plant varieties. Plant Biotechnol J 10(8):891–903

    Article  PubMed  Google Scholar 

  • Chandran NK, Sriram S, Prakash T, Budhwar R (2021) Transcriptome changes in resistant and susceptible rose in response to powdery mildew. J Phytopathol 169(9):556–569

    Article  CAS  Google Scholar 

  • Dallavalle E, D’Aulerio AZ, Verardi E, Bertaccini A (2002) Detection of RAPD polymorphisms in gladiolus cultivars with differing sensitivities to Fusarium oxysporum f. sp. gladioli. Plant Mol Biol Rep 20(3):305–306

    Google Scholar 

  • Debener T, Byrne DH (2014) Disease resistance breeding in rose: current status and potential of biotechnological tools. Plant Sci 228:107–117

    Google Scholar 

  • de Cáceres González FFN, Davey MR, Sanchez EC, Wilson ZA (2015) Conferred resistance to Botrytis cinerea in Lilium by overexpression of the RCH10 chitinase gene. Plant Cell Rep 34(7):1201–1209

    Article  Google Scholar 

  • De Jong J, Rademaker W (1986) The reaction of chrysanthemum cultivars to Puccinia horiana and the inheritance of resistance. Euphytica 35(3):945–952

    Article  Google Scholar 

  • Diaz-Lara A, Mollov D, Golino D, Al Rwahnih M (2020) Complete genome sequence of rose virus A, the first carla virus identified in rose. Arch Virol 165(1):241–244

    Article  CAS  PubMed  Google Scholar 

  • Dohm A, Ludwig C, Schilling D, Debener T (2001) Transformation of roses with genes for antifungal proteins to reduce their susceptibility to fungal diseases. In XX international eucarpia symposium, section ornamentals, strategies for new ornamentals-Part II 572. pp 105–111

    Google Scholar 

  • Doudna JA, Charpentier E (2014) The new frontier of genome engineering with CRISPR-Cas9. Science 346(6213)

    Google Scholar 

  • Elad Y, Pertot I, Cotes Prado AM, Stewart A (2016) Plant hosts of Botrytis spp. In: Fillinger S, Elad Y (eds) Botrytis—the fungus, the pathogen and its management in agricultural systems. Springer International Publishing, Cham, pp 413–486. https://doi.org/10.1007/978-3-319-23371-0_20

  • Elibox W, Umaharan P (2010) Inheritance of resistance to foliar infection by Xanthomonas axonopodis pv. dieffenbachiae in anthurium. Plant Dis 94(10):1243–1247

    Google Scholar 

  • Fang P, Arens P, Liu X, Zhang X, Lakwani D, Foucher F, Clotault J, Geike J, Kaufmann H, Debener T, Bai Y (2021) Analysis of allelic variants of RhMLO genes in rose and functional studies on susceptibility to powdery mildew related to clade V homologs. Theor Appl Genet 134(8):2495–2515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feng LG, Chen C, Sheng LX, Liu P, Tao J et al (2010) Comparative analysis of headspace volatiles of Chinese Rosa rugosa. Molecules 15(11):8390–8399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fu Y, Esselink GD, Visser RG, van Tuyl JM, Arens P (2016) Transcriptome analysis of Gerbera hybrida including in silico confirmation of defense genes found. Front Plant Sci 7:247

    Article  PubMed  PubMed Central  Google Scholar 

  • Fu Y, Van Silfhout A, Shahin A, Egberts R, Beers M, Van der Velde A, Van Houten A, Van Tuyl JM, Visser RG, Arens P (2017) Genetic mapping and QTL analysis of Botrytis resistance in Gerbera hybrida. Mol Breed 37(2):13

    Article  PubMed  PubMed Central  Google Scholar 

  • Gahukar RT (2003) Factors influencing thrips abundance and distribution on rose flowers in central India. J Entomol Res 27(4):271–279

    Google Scholar 

  • Gao X, Zhang Q, Zhao YQ, Yang J, He HB, Jia GX (2020) The lre-miR159a-LrGAMYB pathway mediates resistance to grey mould infection in Lilium regale. Mol Plant Pathol 21(6):749–760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gargul JM, Mibus H, Serek M (2015) Manipulation of MKS 1 gene expression affects Kalanchoë blossfeldiana and Petunia hybrida phenotypes. Plant Biotechnol J 13(1):51–61

    Google Scholar 

  • Guba EF, Ames RW (1953) Infectious diseases of carnation. The year book of agriculture. USDA, pp 583–589

    Google Scholar 

  • Hayes HK, Immer FR, Smith DC (1955) Methods of plant breeding, 2nd edn. McGraw-Hill, New York, p 551

    Google Scholar 

  • He H, Liu D, Zhang N, Zheng W, Han Q, Ji B, Ge F, Chen C (2014) The PR10 gene family is highly expressed in Lilium regale Wilson during Fusarium oxysporum f. sp. lilii infection. Genes Genom 36(4):497–507

    Google Scholar 

  • He X, Li W, Zhang W, Jin X, Shenkute AG et al (2019) Transcriptome sequencing analysis provides insights into the response to Fusarium oxysporum in Lilium pumilum. Evol Bioinformat 15:1176934319838818

    Article  Google Scholar 

  • Hole UB, Salunkhe GN (2005) Studies on the relative resistance of rose cultivars to two spotted spider mite (Tetranychus urticae Koch). J Maharashtra Agril Univ 30(3):316

    Google Scholar 

  • Hu X, Bidney DL, Yalpani N, Duvick JP, Crasta O, Folkerts O, Lu G (2003) Overexpression of a gene encoding hydrogen peroxide-generating oxalate oxidase evokes defense responses in sunflower. Plant Physiol 133(1):170–181

    Google Scholar 

  • Hutabarat P (2012) Morris arboretum nursery trial: a study of rose care treatment. Internship Program Reports, p 63. https://repository.upenn.edu/morrisarboretum_internreports/63

  • Ibrahim R, Ahmad Z, Salleh S Hassan AA, Ariffin S (2018) Mutation breeding in ornamentals. In: Ornamental. Springer, pp 175–211

    Google Scholar 

  • Ichikawa H, Kato K, Mochizuki A, Shinoyama H, Mitsuhara I (2015) Transgenic chrysanthemum (Chrysanthemum morifolium Ramat.) carrying both insect and disease resistance. XXV Int EUCARPIA Symp Sect Ornamentals Cross Borders 1087:485–497

    Google Scholar 

  • James J (1983) New roses by irradiation: an update [Mutations]. American Rose Annual (USA)

    Google Scholar 

  • Jiang P, Chen Y, Wilde HD (2016) Reduction of MLO1 expression in petunia increases resistance to powdery mildew. Sci Hortic 201:225–229

    Google Scholar 

  • Jo Y, Choi H, Cho WK (2015) Complete genome sequence of a Carnation mottle virus infecting hop plants. Genome Announce 3(3):e00416–e00515

    Article  Google Scholar 

  • Kamo K, Jordan R, Guaragna MA, Hsu HT, Ueng P (2010) Resistance to Cucumber mosaic virus in Gladiolus plants transformed with either a defective replicase or coat protein subgroup II gene from Cucumber mosaic virus. Plant Cell Rep 29(7):695–704

    Article  CAS  PubMed  Google Scholar 

  • Kamo K, Lakshman D, Bauchan G, Rajasekaran K, Cary J, Jaynes J (2015) Expression of a synthetic antimicrobial peptide, D4E1, in Gladiolus plants for resistance to Fusarium oxysporum f. sp. gladioli. Plant Cell Tiss Org Cult 121(2):459–467

    Google Scholar 

  • Kamo K, Lakshman D, Pandey R, Guaragna MA, Okubara P et al (2016) Resistance to Fusarium oxysporum f. sp. gladioli in transgenic Gladiolus plants expressing either a bacterial chloroperoxidase or fungal chitinase genes. Plant Cell Tiss Organ Cult 124(3):541–553

    Google Scholar 

  • Kardos JH, Robacker CD, Dirr MA, Rinehart TA (2009) Production and verification of Hydrangea macrophylla × Hydrangea angustipetala hybrids. HortScience 44(6):1534–1537

    Article  Google Scholar 

  • Khan RS, Kameya N, Mii M, Nakamura I (2012) Transgenic Petunia hybrida expressing a synthetic fungal chitinase gene confers disease tolerance to Botrytis cinerea. Plant Biotechnol 29(3):285–291

    Google Scholar 

  • Kim YS, Lim S, Yoda H, Choi YE, Sano H (2011) Simultaneous activation of salicylate production and fungal resistance in transgenic chrysanthemum producing caffeine. Plant Signal Behav 6(3):409–412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kishi-Kaboshi M, Aida R, Sasaki K (2017) Generation of gene-edited Chrysanthemum morifolium using multicopy transgenes as targets and markers. Plant Cell Physiol 58(2):216–226

    CAS  PubMed  Google Scholar 

  • Kratka J, Duskova E (1991) Hodnocení odolnosti odrůd astry čínské (Callistephus chinensis) k Fusarium oxysporum f. sp. callistephi. Ochrana Rostlin 27:127–135

    Google Scholar 

  • Krips OE, Willems PEL, Gols R, Posthumus MA, Gort G, Dicke M (2001) Comparison of cultivars of ornamental crop Gerbera jamesonii on production of spider mite-induced volatiles, and their attractiveness to the predator Phytoseiulus Persimilis. J Chem Ecol 27(7):1355–1372

    Article  CAS  PubMed  Google Scholar 

  • Kumar KD (2007) Incidence and management of mites and thrips of rose under naturally ventilated polyhouse condition. Doctoral dissertation, University of Agricultural Sciences, Dharwad, India

    Google Scholar 

  • Kumar S, Tomar KS, Shakywar RC, Pathak M (2013) Integrated management of powdery mildew of gerbera under polyhouse conditions in Arunachal Pradesh. HortFlora Res Spectr 2(2):130–134

    Google Scholar 

  • Kumari S, Kanth BK, Kim JH, Lee GJ (2021) Genome-Wide Transcriptomic Identification and functional insight of lily WRKY genes responding to botrytis fungal disease. Plants 10(4):776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, Gasic K, Cammue B, Broekaert W, Korban SS (2003) Transgenic rose lines harboring an antimicrobial protein gene, Ace-AMP1, demonstrate enhanced resistance to powdery mildew (Sphaerotheca pannosa). Planta 218(2):226–232

    Article  CAS  PubMed  Google Scholar 

  • Li JF, Norville JE, Aach J, McCormack M, Zhang D et al (2013) Multiplex and homologous recombination–mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nat Biotechnol 31(8):688–691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li D, Liu X, Shu L, Zhang H, Zhang S, Song Y, Zhang Z (2020) Global analysis of the AP2/ERF gene family in rose (Rosa chinensis) genome unveils the role of RcERF099 in botrytis resistance. BMC Plant Biol 20(1):1–15

    Article  Google Scholar 

  • Linde M, Mattiesch L, Debene T (2004) Rpp1, a dominant gene providing race-specific resistance to rose powdery mildew (Podosphaera pannosa): molecular mapping, SCAR development and confirmation of disease resistance data. Theor Appl Genet 109(6):1261–1266

    Article  CAS  PubMed  Google Scholar 

  • Liu Q, Paroo Z (2010) Biochemical principles of small RNA pathways. Annu Rev Biochem 79:295–319

    Article  CAS  PubMed  Google Scholar 

  • Liu JJ, Ekramoddoullah AKM, Yu X (2003) Differential expression of multiple PR10 proteins in western white pine following wounding, fungal infection and cold hardening. Physiol Plant 119:544–553

    Google Scholar 

  • Liu WL, Wu LF, Wu HZ, Zheng SX, Wang JH, Liu FH (2011) Correlation of saponin content and Fusarium resistance in hybrids from different ploidy levels of Lilium oriental. Sci Hort 129(4):849–853

    Article  CAS  Google Scholar 

  • Liu X, Cao X, Shi S, Zhao N, Li D, Fang P, Chen X, Qi W, Zhang Z (2018) Comparative RNA-Seq analysis reveals a critical role for brassinosteroids in rose (Rosa hybrida) petal defense against Botrytis cinerea infection. BMC Genet 19(1):1–10

    Article  CAS  Google Scholar 

  • Loebenstein G, Lawson RH, Brunt AA (1995) Virus and virus-like diseases of bulb and flower crops. John Wiley and Sons

    Google Scholar 

  • Löffler HJM, Meijer H, Straathof TP, Van Tuyl JM (1994) Segregation of Fusarium resistance in an interspecific cross between Lilium longiflorum and Lilium dauricum. Int Symp Genus Lilium 414:203–208

    Google Scholar 

  • Marchant R, Davey MR, Lucas JA, Lamb CJ, Dixon RA, Power JB (1998) Expression of a chitinase transgene in rose (Rosa hybrida L.) reduces development of blackspot disease (Diplocarpon rosae Wolf). Mol Breed 4(3):187–194

    Google Scholar 

  • Maria C, Chis L (2006) Breeding of gerbera hybrida at the fruit research station Cluj. Buletin USAMV, ISSN 1454–2382

    Google Scholar 

  • Matthews REF (2019) Diagnosis of plant virus diseases. CRC Press, Boca Raton, FL

    Book  Google Scholar 

  • Mekapogu M, Kwon OK, Hyun DY, Lee KJ, Ahn MS et al (2020) Identification of standard type cultivars in Chrysanthemum (Dendranthema grandiflorum) using SSR markers. Hort Environ Biotechnol 61(1):153–161

    Article  CAS  Google Scholar 

  • Miao Y, Zhu Z, Guo Q, Zhu Y, Yang X, Sun Y (2016) Transcriptome analysis of differentially expressed genes provides insight into stolon formation in Tulipa edulis. Front Plant Sci 7:409

    Article  PubMed  PubMed Central  Google Scholar 

  • Mikkelsen JC (1975) Begonia [elatior] plant [Patents, cultivar Whisper O'Pink]. Plant Pat-US Pat Off (USA) no. 3787

    Google Scholar 

  • Mitiouchkina TY, Firsov AP, Titova SM, Pushin AS, Shulga OA et al (2018) Different approaches to produce transgenic virus B Resistant Chrysanthemum. Agronomy 8(3):28

    Article  Google Scholar 

  • Mitteau Y (1987) Breeding of new carnations resistant to Fusarium oxysporum. III Int Symp Carnation Cult 216:359–366

    Google Scholar 

  • Mitteau Y and Silvy A (1983) Cited in: Mutat. Breed. Newsl 39:19–23

    Google Scholar 

  • Moghaddam HH, Dewitte A, Van Bockstaele E, Van Huylenbroeck J, Leus L (2014) Roses exhibit pathotype-specific resistance responses to powdery mildew. J Phytopathol 162(2):107–115

    Google Scholar 

  • Moghaddam HH, Leus L, Van Huylenbroeck J, Van Bockstaele E, De Riek J (2009) Pathotype dependent resistance mapping for powdery mildew in a diploid rose population. V Int Symp Rose Res Cult 870:103–108

    Google Scholar 

  • Moghaddam HH, Leus L, De Riek J, Van Huylenbroeck J, Van Bockstaele E (2012) Construction of a genetic linkage map with SSR, AFLP and morphological markers to locate QTLs controlling pathotype-specific powdery mildew resistance in diploid roses. Euphytica 184(3):413–427

    Article  Google Scholar 

  • Munir N, Cheng C, Xia C, Xu X, Nawaz MA et al (2019) RNA-Seq analysis reveals an essential role of tyrosine metabolism pathway in response to root-rot infection in Gerbera hybrida. PLoS ONE 14(10):e0223519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagesh M, Parvatha Reddy P, Janakiram T, Rao TM (1999) Sequential biochemical changes, in roots of Callistiphus chinensis lines resistant and susceptible to Meloidogyne incognita race 1. Nematol Mediter 27:39–42

    Google Scholar 

  • Nambisan, KM, Krishnan BM, Veeraraghavathatham D, Ramasamy N (1980) Induced mutants in jasmine (Jasminum grandiflorum L.): leaf-spot resistant and dwarf mutants. Sci Cult 46(12):427–428 (India)

    Google Scholar 

  • Niu SC, Xu Q, Zhang GQ, Zhang YQ et al (2016) De novo transcriptome assembly databases for the butterfly orchid Phalaenopsis equestris. Sci Data 3(1):1–11

    Article  Google Scholar 

  • Oladosu Y, Rafii MY, Abdullah N, Hussin G, Ramli A, Rahim HA, Miah G, Usman M (2016) Principle and application of plant mutagenesis in crop improvement: a review. Biotechnol Biotechnol Equip 30(1):1–16

    Article  CAS  Google Scholar 

  • Onozaki T, Ikeda H, Yamaguchi T (1998) Effect of calcium nitrate addition to α-aminoisobutyric acid (AIB) on the prolongation of the vase life of cut carnation flowers. J Jpn Soc Hort Sci 67(2):198–203

    Article  CAS  Google Scholar 

  • Patil SD, Patil HE (2009) Improvement of major ornamental crops through mutation breeding. Int J Agri Sci 5(2):628–632

    Google Scholar 

  • Powell CC, Lindquist RK (1992) Ball Pest and Disease Manual. Ball Publishing

    Google Scholar 

  • Qiu X, Jian H, Wang Q, Tang K, Bao M (2015) Expression pattern analysis of four Mlo genes from rose. J Am Soc Hortic Sci 140(4):333–338

    Google Scholar 

  • Radonic LM, Zimmermann JM, Zavallo D, López N, López Bilbao M (2008) Introduction of antifungal genes in sunflower via Agrobacterium. Elec J Biotechnol 11(5):8–9

    Article  Google Scholar 

  • Ramalho MAP, Abreu ÂDFB, dos Santos JB (2005) Genetic progress after four cycles of recurrent selection for yield and grain traits in common bean. Euphytica 144(1):23–29

    Article  Google Scholar 

  • Sen S, Kumar S, Ghani M, Thakur M (2013) Agrobacterium mediated genetic transformation of chrysanthemum (Dendranthema grandiflora Tzvelev) with rice chitinase gene for improved resistance against Septoria obesa. Plant Pathol J 12(1):1–10

    Article  CAS  Google Scholar 

  • Shahin A, Arens P, Van Heusden S, Van Tuyl JM (2009) Conversion of molecular markers linked to Fusarium and virus resistance in Asiatic lily hybrids. XXIII Int Eucarpia Symp Sect Ornamentals: Colourful Breed Genet 836:131–136

    CAS  Google Scholar 

  • Shahin A, Arens P, Van Heusden AW, Van Der Linden G, Kaauwen V et al (2011) Genetic mapping in lilium: mapping of major genes and quantitative trait loci for several ornamental traits and disease resistances. Plant Breed 130(3):372–382

    Article  CAS  Google Scholar 

  • Shirasawa-Seo N, Nakamura S, Ukai N, Honkura R, Iwai T, Ohashi Y (2002) Ectopic expression of an oat thionin gene in carnation plants confers enhanced resistance to bacterial wilt disease. Plant Biotechnol 19(5):311–317

    Article  CAS  Google Scholar 

  • Sun D, Nandety RS, Zhang Y, Reid MS, Niu L, Jiang CZ (2016) A petunia ethylene-responsive element binding factor, PhERF2, plays an important role in antiviral RNA silencing. J Exp Bot 67(11):3353–3365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takatsu Y, Nishizawa Y, Hibi T, Akutsu K (1999) Transgenic chrysanthemum (Dendranthema grandiflorum (Ramat) Kitamura) expressing a rice chitinase gene shows enhanced resistance to gray mold (Botrytis cinerea). Sci Hort 82(1–2):113–123

    Article  CAS  Google Scholar 

  • Vahoniya D, Panigrahy SR, Patel D, Patel J (2018) Status of floriculture in India: with special focus to marketing. Int J Pure Appl Biosci 6(2):1434–1438

    Google Scholar 

  • Van Heusden AW, Jongerius MC, Van Tuyl JM, Straathof TP, Mes JJ (2001) Molecular assisted breeding for disease resistance in lily. In: XX International Eucarpia symposium, section ornamentals, strategies for new ornamentals-part II 572:131–138

    Google Scholar 

  • Vaucheret H (2006) Post-transcriptional small RNA pathways in plants: mechanisms and regulations. Genes Dev 20(7):759–771

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Shi W, Rinehart T (2015) Transcriptomes that confer to plant defense against powdery mildew disease in Lagerstroemia indica. Int j Genom 528395

    Google Scholar 

  • Williamson JD, Desai A, Krasnyanski SF, Ding F, Guo WW, Nguyen TT, Olson HA, Dole JM, Allen GC (2013) Overexpression of mannitol dehydrogenase in zonal geranium confers increased resistance to the mannitol secreting fungal pathogen Botrytis cinerea. Plant Cell Tiss Org Cult 115(3):367–375

    Article  CAS  Google Scholar 

  • Wisniewska-Grzeszkiewicz H, Witaszek W (1994) Evaluation of 26 rose cultivars in heated plastic tunnel for cut flower production. Zeszyty Naukowe Instytutu Sadownictwa i Kwiaciarstwa (poland) 1:85–94

    Google Scholar 

  • Xu G, Chen S, Chen F (2010) Transgenic chrysanthemum plants expressing a harpin Xoo gene demonstrate induced resistance to Alternaria leaf spot and accelerated development. Russ J Plant Physiol 57(4):548–553

    Article  CAS  Google Scholar 

  • Yagi M, Yamamoto T, Isobe S, Hirakawa H, Tabata S, Tanase K, Yamaguchi H, Onozaki T (2013) Construction of a reference genetic linkage map for carnation (Dianthus caryophyllus L.). BMC Genomics 14(1):1–0

    Google Scholar 

  • Yang T, Stoopen G, Thoen M, Wiegers G, Jongsma MA (2013) Chrysanthemum expressing a linalool synthase gene ‘smells good’, but ‘tastes bad’ to western flower thrips. Plant Biotechnol J 11(7):875–882

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhavya Bhargava .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Verma, V., Kumar, A., Verma, J., Priti, Bhargava, B. (2022). Conventional and Molecular Interventions for Biotic Stress Resistance in Floricultural Crops. In: Kole, C. (eds) Genomic Designing for Biotic Stress Resistant Technical Crops. Springer, Cham. https://doi.org/10.1007/978-3-031-09293-0_6

Download citation

Publish with us

Policies and ethics