Skip to main content
Log in

Rpp1, a dominant gene providing race-specific resistance to rose powdery mildew (Podosphaera pannosa): molecular mapping, SCAR development and confirmation of disease resistance data

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

We have previously demonstrated that in the diploid rose population 97/9 resistance to the powdery mildew race 9 is controlled by a major dominant resistance gene, Rpp1. In the study reported here, we isolated several molecular markers closely linked to Rpp1 via bulked segregant analysis, with the gene being tagged in an interval of 5 cM between the two most adjacent markers. It was possible to convert the most closely linked amplified fragment length polymorphic (AFLP) marker into a sequence-characterised amplified region (SCAR) segregating in the same manner. Indirect mapping of Rpp1 in relation to the black spot resistance gene Rdr1 revealed no linkage between the two R genes. Furthermore, the genetic model based on a single dominant resistance gene was supported by the marker data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bevan JR, Crute IR, Clarke DD (1993) Variation for virulence in Erysiphe fischeri from Senecio vulgaris. Plant Pathol 42:622–635

    Google Scholar 

  • Braun U, Takamatsu S (2000) Phylogeny of Erysiphe, Microsphaera, Uncinula (Erysipheae) and Cystotheca, Podosphaera, Sphaerotheca (Cystotheceae) inferred from rDNA ITS sequences—some taxonomic consequences. Schlechtendalia 4:1–33

    Google Scholar 

  • Braun PW, Turgut I (1995) The virulence structure of mildew populations on wild barley in Turkey. J Plant Dis Prot 102:593–598

    Google Scholar 

  • Chaanin A (2003) Breeding/selection strategies for cut roses. In: Roberts AV, Debener T, Gudin S (eds) Encyclopedia of rose science. Elsevier, Oxford, pp 33–41

  • Debener T, Mattiesch L (1999) Construction of a genetic linkage map for roses using RAPD and AFLP markers. Theor Appl Genet 99:891–899

    Article  CAS  Google Scholar 

  • Fried PM, MacKenzie DR, Nelson RR (1981) Yield loss caused by Erysiphe graminis f. sp. tritici on single culms of ‘Chancellor’ wheat and four multilines. Z Pflanzenk Pflanzen 88:256–264

    Google Scholar 

  • Hattendorf A, Linde M, Kaufmann H, Mattiesch L, Debener T (2004) Genetic analysis of rose resistance genes and their localisation in the rose genome. Acta Hortic (in press)

  • Horst RK (1983) Compendium of rose diseases. American Phytopathological Society, St. Paul

  • Huang XQ, Hsam SLK, Zeller FJ (1997) Chromosomal location of genes for resistance to powdery mildew in common wheat (Triticum aestivum L. em. Thell.). 4. Gene Pm24 in Chinese landrace Chiyacao. Theor Appl Genet 95:950–953

    Article  Google Scholar 

  • Huang CC, Cui YY, Weng CR, Zabel P, Lindhout P (2000) Development of diagnostic PCR markers closely linked to the tomato powdery mildew resistance gene Ol-1 on chromosome 6 of tomato. Theor Appl Genet 101:918–924

    Article  CAS  Google Scholar 

  • Jones JDG (2001) Putting knowledge on disease resistance genes to work. Curr Opin Plant Biol 4:281–287

    Article  CAS  PubMed  Google Scholar 

  • Kaufmann H, Mattiesch L, Lörz H, Debener T (2003) Construction of a bac library of Rosa rugosa Thunb. and assembly of a contig spanning Rdr1, a gene that confers resistance to black spot. Mol Genet Genomics 268:666–674

    CAS  PubMed  Google Scholar 

  • Keller B, Feuillet C, Messmer M (2000) Genetics of disease resistance: basis concepts and application in resistance breeding. In: Slusarenko AJ, Fraser RSS, Van Loon LC (eds) Mechanisms of resistance to plant diseases. Kluwer, Dordrecht, pp 101–136

  • Kobayashi N, Horikoshi T, Katsuyama H, Handa T, Takayanagi K (1998) A simple and efficient DNA extraction method for plants, especially woody plants. Plant Tissue Cult Biotechnol 4:77–81

    Google Scholar 

  • Kunoh H (1995) Host-parasite specificity in powdery mildews. In: Singh US, Kohmoto K, Singh RP (eds) Pathogenesis and host specificity in plant diseases: histopathological, biochemical, genetic and molecular bases, vol. 2 Eukaryotes. Elsevier, Oxford, pp 239–250

  • Linde M, Debener T (2003) Isolation and identification of eight races of powdery mildew of roses [Podosphaera pannosa (Wallr.: Fr.) de Bary] and the genetic analysis of the resistance gene Rpp1. Theor Appl Genet 107:256–262

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Liu D, Tao W, Li W, Wang S, Chen P, Cheng S, Gao D (2000) Molecular marker-facilitated pyramiding of different genes for powdery mildew resistance in wheat. Plant Breed 119:21–24

    Article  CAS  Google Scholar 

  • McDonald BA, Linde C (2002) Pathogen population genetics, evolutionary potential and durable resistance. Annu Rev Phytopathol 40:349–379

    Article  CAS  PubMed  Google Scholar 

  • Noack R (2003) Breeding/selection strategies for disease and pest resistance. In: Roberts AV, Debener T, Gudin S (eds) Encyclopedia of rose science. Elsevier, Oxford, pp 49–55

  • Paran I, Michelmore RW (1993) Development of reliable PCR-based markers linked to downy mildew resistance genes in lettuce. Theor Appl Genet 85:985–993

    CAS  Google Scholar 

  • Paterson AH (1996) Physical mapping and map-based cloning: bridging the gap between DNA markers and genes. In: Paterson AH (ed) Genome mapping in plants. Academic, San Diego, pp 55–61

  • Reimann-Philipp (1981) Cytogenetics and breeding in diploid roses from the triploid hybrid R. multiflora × garden cultivars. In Eucarpia (ed): Proc Eucarpia Ornamentals Meet Rose Breed. Eucarpia, pp 27–29

    Google Scholar 

  • Rommens CM, Kishore GM (2000) Exploiting the full potential of disease-resistance genes for agricultural use. Curr Opin Biotechnol 11:120–125

    Article  CAS  PubMed  Google Scholar 

  • Rong JK, Millet E, Manisterski J, Feldmann M (2000) A new powdery mildew resistance gene: introgression from wild emmer into common wheat and RFLP-based mapping. Euphytica 115:121–126

    Article  CAS  Google Scholar 

  • Sambrook J, Russel DW (2001) Molecular cloning: a laboratory manual. Cold Spring Harbor Press, Cold Spring Harbor

    Google Scholar 

  • Schaffer JF, Roelfs AP (1985) Estimated relation between numbers of urediniospores of Puccinia-graminis f. sp. tritici and rates of occurrence of virulence. Phytopathology 75:749–750

    Google Scholar 

  • Schmidt R, West J, Love K, Lenehan Z, Lister C, Thompson H, Bouchez D, Dean C (1995) Physical map and organization of Arabidopsis thaliana chromosome 4. Science 270:480–483

    CAS  PubMed  Google Scholar 

  • Schneider KA, Brothers ME, Kelly JD (1997) Marker-assisted selection to improve drought resistance in common bean. Crop Sci 37:51–60

    CAS  Google Scholar 

  • Schönfeld M, Ragni A, Fischbeck G, Jahoor A (1996) RFLP mapping of three new loci for resistance genes to powdery mildew (Erysiphe graminis f. sp. hordei) in barley. Theor Appl Genet 93:48–56

    Article  Google Scholar 

  • Stam P, Van Ooijen JW (1995) joinmap version 2.0: software for the calculation of genetic linkage maps. CPRO-DLO, Wageningen

  • Tanksley SD, Young ND, Paterson AH, Bonierbale MW (1989) RFLP mapping in plant breeding: new tools for an old science. Biotechnology 7:257–264

    CAS  Google Scholar 

  • Tiwari KR, Penner GA, Warkentin TD (1998) Identification of coupling and repulsion phase RAPD markers for powdery mildew resistance gene er-1 in pea. Genome 41:440–444

    Article  CAS  Google Scholar 

  • Urbanietz A (2002) Genetische und molekulare Charakterisierung der Resistenz des Apfels gegen den Echten Mehltau und der Virulenz des Erregers Podosphaera leucotricha (Ell. Et Ev.) Salm. PhD thesis, University of Hannover, Germany

  • Van der Beek JG, Pet G, Lindhout P (1994) Resistance to powdery mildew (Oidium lycopersicon) in Lycopersicon-hirsutum is controlled by an incompletely dominant gene Ol-1 on chromosome 6. Theor Appl Genet 89:467–473

    Google Scholar 

  • Von Malek B, Weber WE, Debener T (2000) Identification of molecular markers linked to Rdr1, a gene conferring resistance to black spot in roses. Theor Appl Genet 101:977–983

    Article  Google Scholar 

  • Williams JGK, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV (1990) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res 18:6531–6535

    CAS  PubMed  Google Scholar 

  • Wolfe MS (1985) The current status and prospects of multiline cultivars and variety mixtures for disease resistance. Annu Rev Phytopathol 23:251–273

    Article  Google Scholar 

  • Wolfe MS, McDermott JM (1994) Population genetics of plant pathogen interactions: the example of the Erysiphe graminisHordeum vulgare pathosystem. Annu Rev Phytopathol 32:89–113

    Google Scholar 

  • Zeller FJ, Kong L, Hartl L, Mohler V, Hsam SLK (2002) Chromosomal location of genes for resistance to powdery mildew in common wheat (Triticum aestivum L. em Thell.) 7. Gene Pm29 in line Pova. Euphytica 123:187–194

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This project was supported by a grant from the Ministry of Economics, Technology and Transport of the Land Schleswig-Holstein and by the companies W. Kordes Söhne (Germany) and Rosen Tantau (Germany). We thank K. Sabin for valuable technical assistance and Prof. A.V. Roberts (UEL, London) for critically reading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Linde.

Additional information

Communicated by H. Nybom

Rights and permissions

Reprints and permissions

About this article

Cite this article

Linde, M., Mattiesch, L. & Debener, T. Rpp1, a dominant gene providing race-specific resistance to rose powdery mildew (Podosphaera pannosa): molecular mapping, SCAR development and confirmation of disease resistance data. Theor Appl Genet 109, 1261–1266 (2004). https://doi.org/10.1007/s00122-004-1735-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-004-1735-4

Keywords

Navigation