Skip to main content

Rehabilitation and Assistive Robotics: Shared Principles and Common Applications

  • Chapter
  • First Online:
Robotics in Neurosurgery

Abstract

The field of robotics is continuously advancing and evolving, thanks to new technological developments and to the close interaction between engineers, neuroscientists, clinicians, and end-users. Indeed, for a positive and effective impact on the recovery of motor and sensory functions, assistance and rehabilitation approaches should be based on neurophysiological and clinical insights. In this chapter, we try to give an overview of the broad scenario of robots used for rehabilitation and assistance and some basic principles behind their development: from end-point robot, used exclusively for rehabilitation, to more complex exoskeleton, that can have the dual purpose of rehabilitation and assistance, to the more recent social robots that remotely provide physical and psychological assistance. As a closing remark, we illustrate perspectives for future improvements in this vast field. Highlighting the importance of home-based rehabilitation and portable and light assistive devices, supported by deeper basic science research to understand the neurophysiological mechanisms of aging and recovery after neurological injuries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. “World Population Prospects.” 2019.

    Google Scholar 

  2. Heinemann AW. State of the science on postacute rehabilitation: setting a research agenda and developing an evidence base for practice and public policy. An introduction. Assistive Technol. 2008;20(1):55–60. https://doi.org/10.1080/10400435.2008.10131932.

    Article  Google Scholar 

  3. Degardin A, et al. Deficit of sensorimotor integration in normal aging. Neurosci Lett. Jul. 2011;498(3):208–12. https://doi.org/10.1016/j.neulet.2011.05.010.

    Article  CAS  Google Scholar 

  4. Krakauer JW. Arm function after stroke: from physiology to recovery. Semin Neurol. 2005;25(4):384–95. https://doi.org/10.1055/s-2005-923533.

    Article  Google Scholar 

  5. Wesselhoff S, Hanke TA, Evans CC. Community mobility after stroke: a systematic review. Topics Stroke Rehabil. 2018. Taylor and Francis Ltd.;25(3):224–38. https://doi.org/10.1080/10749357.2017.1419617.

    Article  Google Scholar 

  6. Sosnoff JJ, Gappmaier E, Frame A, Motl RW. Influence of spasticity on mobility and balance in persons with multiple sclerosis. J Neurol Phys Ther. 2011;35(3):129–32. https://doi.org/10.1097/NPT.0b013e31822a8c40.

    Article  Google Scholar 

  7. Pila O, Duret C, Gracies JM, Francisco GE, Bayle N, Hutin E. Evolution of upper limb kinematics four years after subacute robot-assisted rehabilitation in stroke patients. Int J Neurosci. 2018;128(11):1030–9. https://doi.org/10.1080/00207454.2018.1461626.

    Article  Google Scholar 

  8. Cirstea MC, Mitnitski AB, Feldman AG, Levin MF. Interjoint coordination dynamics during reaching in stroke. Exp Brain Res. 2003;151(3):289–300. https://doi.org/10.1007/s00221-003-1438-0.

    Article  CAS  Google Scholar 

  9. Muren MA, Hütler M, Hooper J. Functional capacity and health-related quality of life in individuals post stroke. Top Stroke Rehabil. 2008;15(1):51–8. https://doi.org/10.1310/tsr1501-51.

    Article  Google Scholar 

  10. WHO. World health statistics. World Health Organization; 2008.

    Google Scholar 

  11. Wafa HA, Wolfe CDA, Emmett E, Roth GA, Johnson CO, Wang Y. Burden of stroke in Europe: thirty-year projections of incidence, prevalence, deaths, and disability-adjusted life years. Stroke. Aug. 2020;51(8):2418–27. https://doi.org/10.1161/STROKEAHA.120.029606.

    Article  Google Scholar 

  12. Virani SS, et al. Heart disease and stroke statistics—2020 update: A report from the American Heart Association. Circulation. 2020. Lippincott Williams and Wilkins.;141(9):E139–596. https://doi.org/10.1161/CIR.0000000000000757.

    Article  Google Scholar 

  13. Di Carlo A. Human and economic burden of stroke. Age Ageing. 2009;38(1):4–5.

    Article  Google Scholar 

  14. Lee KB, et al. Six-month functional recovery of stroke patients: a multi-time-point study. Int J Rehabil Res. 2015;38(2):173–80. https://doi.org/10.1097/MRR.0000000000000108.

    Article  Google Scholar 

  15. Levin MF. Interjoint coordination during pointing movements is disrupted in spastic hemiparesis. Brain. 1996;119(1):281–93.

    Article  Google Scholar 

  16. Huitema RB, Hof AL, Mulder T, Brouwer WH, Dekker R, Postema K. Functional recovery of gait and joint kinematics after right hemispheric stroke. Arch Phys Med Rehabil. 2004;85(12):1982–8. https://doi.org/10.1016/j.apmr.2004.04.036.

    Article  Google Scholar 

  17. Sommerfeld DK, Gripenstedt U, Welmer A-K. Spasticity after stroke. Am J Phys Med Rehabil. 2012;91(9):814–20. https://doi.org/10.1097/PHM.0b013e31825f13a3.

    Article  Google Scholar 

  18. Coscia M, Monaco V, Martelloni C, Rossi B, Chisari C, Micera S. Muscle synergies and spinal maps are sensitive to the asymmetry induced by a unilateral stroke. J Neuroeng Rehabil. 2015;12(1):39. https://doi.org/10.1186/s12984-015-0031-7.

    Article  Google Scholar 

  19. Sukal TM, Ellis MD, Dewald JPA. Shoulder abduction-induced reductions in reaching work area following hemiparetic stroke: neuroscientific implications. Exp Brain Res. 2007;183(2):215–23.

    Article  Google Scholar 

  20. Ellis MD, Sukal T, DeMott T, Dewald JPA. Augmenting clinical evaluation of hemiparetic arm movement with a laboratory-based quantitative measurement of kinematics as a function of limb loading. Neurorehabil Neural Repair. 2008;22(4):321–9.

    Article  Google Scholar 

  21. Jazayeri SB, Beygi S, Shokraneh F, Hagen EM, Rahimi-Movaghar V. Incidence of traumatic spinal cord injury worldwide: a systematic review. Eur Spine J. 2015;24(5):905–18.

    Article  Google Scholar 

  22. Curt A, Van Hedel HJA, Klaus D, Dietz V. Recovery from a spinal cord injury: significance of compensation, neural plasticity, and repair. J Neurotrauma. 2008;25(6):677–85. https://doi.org/10.1089/neu.2007.0468.

    Article  Google Scholar 

  23. Lynch J, Cahalan R. The impact of spinal cord injury on the quality of life of primary family caregivers: a literature review. Spinal Cord. 2017. Nature Publishing Group.;55(11):964–78. https://doi.org/10.1038/sc.2017.56.

    Article  CAS  Google Scholar 

  24. Browne P, et al. Atlas of multiple sclerosis 2013: a growing global problem with widespread inequity. Neurology. 2014. Lippincott Williams and Wilkins.;83(11):1022–4. https://doi.org/10.1212/WNL.0000000000000768.

    Article  Google Scholar 

  25. Thompson AJ, Baranzini SE, Geurts J, Hemmer B, Ciccarelli O. Multiple sclerosis. Lancet. 391(10130):1622, 2018. Lancet Publishing Group.–36. https://doi.org/10.1016/S0140-6736(18)30481-1.

  26. Confavreux C, Vukusic S. Natural history of multiple sclerosis: a unifying concept. Brain. 2006;129(3):606–16. https://doi.org/10.1093/brain/awl007.

    Article  Google Scholar 

  27. Coscia M, et al. Neurotechnology-aided interventions for upper limb motor rehabilitation in severe chronic stroke. Brain. 2019;142(8). Oxford University Press:2182–97. https://doi.org/10.1093/brain/awz181.

    Article  Google Scholar 

  28. Micera S, Caleo M, Chisari C, Hummel FC, Pedrocchi A. Advanced Neurotechnologies for the restoration of motor function. Neuron. 2020;105:604–20. https://doi.org/10.1016/j.neuron.2020.01.039.

    Article  CAS  Google Scholar 

  29. Góngora Alonso S, Hamrioui S, de la Torre Díez I, Motta Cruz E, López-Coronado M, Franco M. Social robots for people with aging and dementia: a systematic review of literature. Telemed e-Health. 2019;25(7):533–40. https://doi.org/10.1089/tmj.2018.0051.

    Article  Google Scholar 

  30. Majidi H, Vatan F, Nefti-Meziani S, Davis S, Saffari Z, El-Hussieny H. A review: a comprehensive review of soft and rigid wearable rehabilitation and assistive devices with a focus on the shoulder joint. J Intell Robot Syst. 2021;102(9) https://doi.org/10.1007/s10846-021-01353-x.

  31. Iandolo R, et al. Perspectives and challenges in robotic neurorehabilitation. Appl Sci. 2019;9(15):3138. https://doi.org/10.3390/app9153183.

    Article  Google Scholar 

  32. Beckerle P, et al. A human-robot interaction perspective on assistive and rehabilitation robotics. Front Neurorobotics. 2017;11(MAY). Frontiers Media S.A.:1. https://doi.org/10.3389/fnbot.2017.00024.

    Article  Google Scholar 

  33. Khalid S, Alnajjar F, Gochoo M, Shimoda S. Robotic assistive and rehabilitation devices leading to motor recovery in upper limb: a systematic review. Disabil Rehabil Assist Technol. 2021:1–15. https://doi.org/10.1080/17483107.2021.1906960.

  34. Atashzar SF, Carriere J, Tavakoli M. Review: how can intelligent robots and smart mechatronic modules facilitate remote assessment, assistance, and rehabilitation for isolated adults with neuro-musculoskeletal conditions? Front Robot AI. 2021;8:48. https://doi.org/10.3389/frobt.2021.610529.

    Article  Google Scholar 

  35. Reinkensmeyer DJ, Emken JL, Cramer SC. Robotics, motor learning, and neurologic recovery. Annu Rev Biomed Eng. 2004;6:497–525. https://doi.org/10.1146/annurev.bioeng.6.040803.140223.

    Article  CAS  Google Scholar 

  36. Reinkensmeyer DJ, Boninger ML. Technologies and combination therapies for enhancing movement training for people with a disability. J Neuroeng Rehabil. 2012;9(1):17. https://doi.org/10.1186/1743-0003-9-17.

    Article  Google Scholar 

  37. Riener R, Nef T, Colombo G. Robot-aided neurorehabilitation of the upper extremities. Med Biol Eng Comput. 2005;43(1):2–10, [Online]. Available: https://www.ncbi.nlm.nih.gov/pubmed/15742713.

    Article  CAS  Google Scholar 

  38. Riener R, Lunenburger L, Colombo G. Human-centered robotics applied to gait training and assessment. J Rehabil Res Dev. 2006;43(5):679–94, [Online]. Available: https://www.ncbi.nlm.nih.gov/pubmed/17123208.

    Article  Google Scholar 

  39. Veerbeek JM, Langbroek-Amersfoort AC, van Wegen EEHH, Meskers CGMM, Kwakkel G. Effects of robot-assisted therapy for the upper limb after stroke: a systematic review and meta-analysis. Neurorehabil Neural Repair. 2017;31(2):107–21. https://doi.org/10.1177/1545968316666957.

    Article  Google Scholar 

  40. Lamers I, et al. Upper limb rehabilitation in people with multiple sclerosis: a systematic review. Neurorehabil Neural Repair. 2016;30(8):773–93. https://doi.org/10.1177/1545968315624785.

    Article  Google Scholar 

  41. Krebs HI, Volpe BT. Robotics: a rehabilitation modality. Curr Phys Med Rehabil Rep. 2015;3(4):147–243. https://doi.org/10.1007/s40141-015-0101-6.

    Article  Google Scholar 

  42. Calabrò RS, et al. Robotic gait rehabilitation and substitution devices in neurological disorders: where are we now? Neurol Sci. 2016;37(4). Springer-Verlag Italia s.r.l.:503–14. https://doi.org/10.1007/s10072-016-2474-4.

    Article  Google Scholar 

  43. Maheu V, Archambault PS, Frappier J, Routhier F. Evaluation of the JACO robotic arm: Clinico-economic study for powered wheelchair users with upper-extremity disabilities; 2011. https://doi.org/10.1109/ICORR.2011.5975397.

    Book  Google Scholar 

  44. Caterwil. Caterwill electric stair-climbing wheelchair. https://caterwil.com/product-category/power-wheelchairs/stair-climbing-wheelchairs-gts/.

  45. Haumont T, et al. Wilmington robotic exoskeleton: A novel device to maintain arm improvement in muscular disease. J Pediatr Orthop. 2011;31(5) https://doi.org/10.1097/BPO.0b013e31821f50b5.

  46. Armon. Zero gravity gadget. http://www.armonproducts.com/.

  47. Gijbels D, Lamers I, Kerkhofs L, Alders G, Knippenberg E, Feys P. The Armeo Spring as training tool to improve upper limb functionality in multiple sclerosis: a pilot study. J Neuroeng Rehabil. 2011;8(1):5. https://doi.org/10.1186/1743-0003-8-5.

    Article  Google Scholar 

  48. Esquenazi A, Lee S, Wikoff A, Packel A, Toczylowski T, Feeley J. A comparison of locomotor therapy interventions: partial-body weight−supported treadmill, Lokomat, and G-EO training in people with traumatic brain injury. PM R. Sep. 2017;9(9):839–46. https://doi.org/10.1016/j.pmrj.2016.12.010.

    Article  Google Scholar 

  49. Pierella C, et al. A multimodal approach to capture post-stroke temporal dynamics of recovery. J Neural Eng. 2020;17(4):45,002. https://doi.org/10.1088/1741-2552/ab9ada.

    Article  Google Scholar 

  50. Krebs HI, et al. Rehabilitation robotics: pilot trial of a spatial extension for MIT-Manus. J Neuroeng Rehabil. 2004;1(1):1–15. https://doi.org/10.1186/1743-0003-1-5.

    Article  Google Scholar 

  51. Milia P, et al. Rehabilitation with robotic glove (Gloreha) in poststroke patients. Digit Med. 2019;5(2):62. https://doi.org/10.4103/digm.digm_3_19.

    Article  Google Scholar 

  52. Hesse S, Schulte-Tigges G, Konrad M, Bardeleben A, Werner C. Robot-assisted arm trainer for the passive and active practice of bilateral forearm and wrist movements in hemiparetic subjects. Arch Phys Med Rehabil. 2003;84(6):915–20. https://doi.org/10.1016/S0003-9993(02)04954-7.

    Article  Google Scholar 

  53. Casadio M, Morasso P, Sanguineti V, Giannoni P. Minimally assistive robot training for proprioception enhancement. Exp Brain Res. Apr. 2009;194(2):219–31. https://doi.org/10.1007/s00221-008-1680-6.

    Article  Google Scholar 

  54. Vergaro E, et al. Adaptive robot training for the treatment of incoordination in multiple sclerosis. J Neuroeng Rehabil. 2010;7(1):37. https://doi.org/10.1186/1743-0003-7-37.

    Article  Google Scholar 

  55. Squeri V, Masia L, Giannoni P, Sandini G, Morasso P. Wrist rehabilitation in chronic stroke patients by means of adaptive, progressive robot-aided therapy. IEEE Trans Neural Syst Rehabil Eng. 2014;22(2):312–25. https://doi.org/10.1109/TNSRE.2013.2250521.

    Article  CAS  Google Scholar 

  56. Gandolfi M, et al. High-intensity robot-assisted hand training in individuals with multiple sclerosis: A randomized, controlled, single-blinded trial. In: Biosystems and biorobotics, vol. 21. Springer International Publishing; 2019. p. 528–32.

    Google Scholar 

  57. Sale P, Lombardi V, Franceschini M. Hand robotics rehabilitation: feasibility and preliminary results of a robotic treatment in patients with hemiparesis. Stroke Res Treat. 2012, 2012; https://doi.org/10.1155/2012/820931.

  58. Jung JH, et al. Effects of combined upper limb robotic therapy in patients with tetraplegic spinal cord injury. Ann Rehabil Med. 2019;43(4):445–57. https://doi.org/10.5535/arm.2019.43.4.445.

    Article  Google Scholar 

  59. Calabrò RS, et al. Who may benefit from Armeo power treatment? A neurophysiological approach to predict neurorehabilitation outcomes. PM R. Oct. 2016;8(10):971–8. https://doi.org/10.1016/j.pmrj.2016.02.004.

    Article  Google Scholar 

  60. Simmatis LER, Jin AY, Taylor SW, Bisson EJ, Scott SH, Baharnoori M. The feasibility of assessing cognitive and motor function in multiple sclerosis patients using robotics. Mult Scler J Exp Transl Clin. 2020;6(4) https://doi.org/10.1177/2055217320964940.

  61. Keeling AB, Piitz M, Semrau JA, Hill MD, Scott SH, Dukelow SP. Robot enhanced stroke therapy optimizes rehabilitation (RESTORE): a pilot study. J Neuroeng Rehabil. 2021;18(1):10. https://doi.org/10.1186/s12984-021-00804-8.

    Article  Google Scholar 

  62. Pierella C et al.. Personalizing exoskeleton-based upper limb rehabilitation using a statistical model: a pilot study, vol. 21; 2019.

    Google Scholar 

  63. French JA, Rose CG, O’Malley MK, System characterization of MAHI Exo-II: a robotic exoskeleton for upper extremity rehabilitation. In: ASME 2014 dynamic systems and control conference, DSCC 2014; 2014, vol. 3. doi: https://doi.org/10.1115/DSCC2014-6267.

  64. Gunn M, Shank TM, Eppes M, Hossain J, Rahman T. User evaluation of a dynamic arm orthosis for people with neuromuscular disorders. IEEE Trans Neural Syst Rehabil Eng. 2016;24(12):1277–83. https://doi.org/10.1109/TNSRE.2015.2492860.

    Article  Google Scholar 

  65. Hussain I, Salvietti G, Spagnoletti G, Prattichizzo D. The soft-SixthFinger. IEEE Robot Autom Lett. 2021;1(2):1000–6. https://doi.org/10.1109/LRA.2016.2530793.

    Article  Google Scholar 

  66. Munari D, et al. Effects of robot-assisted gait training combined with virtual reality on motor and cognitive functions in patients with multiple sclerosis: a pilot, single-blind, randomized controlled trial. Restor Neurol Neurosci. 2020;38(2):151–4. https://doi.org/10.3233/RNN-190974.

    Article  Google Scholar 

  67. De Luca A, et al. Functional evaluation of robot end-point assisted gait re-education in chronic stroke survivors. IEEE Int Conf Rehabil Robot; 2013. https://doi.org/10.1109/ICORR.2013.6650513.

    Book  Google Scholar 

  68. Hesse S, Waldner A, Tomelleri C. Innovative gait robot for the repetitive practice of floor walking and stair climbing up and down in stroke patients. J Neuroeng Rehabil. 2010;7(1):30. https://doi.org/10.1186/1743-0003-7-30.

    Article  Google Scholar 

  69. Gandolfi M, et al. Robot-assisted vs. sensory integration training in treating gait and balance dysfunctions in patients with multiple sclerosis: a randomized controlled trial. Front Hum Neurosci. 2014;8(MAY):318. https://doi.org/10.3389/fnhum.2014.00318.

    Article  Google Scholar 

  70. Iosa M, et al. Driving electromechanically assisted gait trainer for people with stroke. J Rehabil Res Dev. 2011;48(2):135–46. https://doi.org/10.1682/JRRD.2010.04.0069.

    Article  Google Scholar 

  71. Zhang M, et al. A preliminary study on robot-assisted ankle rehabilitation for the treatment of drop foot. J Intell Robot Syst Theory Appl. 2018;91(2):207–15. https://doi.org/10.1007/s10846-017-0652-0.

    Article  Google Scholar 

  72. Marchesi G et al., A robot-based assessment of trunk control in Spinal Cord Injured athletes. In Proceedings of the IEEE RAS and EMBS international conference on biomedical robotics and biomechatronics; 2020, vol. 2020-November, pp. 497–502. doi: https://doi.org/10.1109/BioRob49111.2020.9224337.

  73. De Luca A, et al. Dynamic stability and trunk control improvements following robotic balance and core stability training in chronic stroke survivors: a pilot study. Front Neurol. 2020;11:494. https://doi.org/10.3389/fneur.2020.00494.

    Article  Google Scholar 

  74. Calabrò RS, et al. Robotic gait training in multiple sclerosis rehabilitation: can virtual reality make the difference? Findings from a randomized controlled trial. J Neurol Sci. 2017;377:25–30. https://doi.org/10.1016/j.jns.2017.03.047.

    Article  Google Scholar 

  75. Nam KY, Kim HJ, Kwon BS, Park JW, Lee HJ, Yoo A. Robot-assisted gait training (Lokomat) improves walking function and activity in people with spinal cord injury: a systematic review. J Neuroeng Rehabil. 2017;14(1):1–13. https://doi.org/10.1186/s12984-017-0232-3.

    Article  Google Scholar 

  76. Jezernik S, Colombo G, Keller T, Frueh H, Morari M. Robotic orthosis Lokomat: a rehabilitation and research tool. Neuromodulation Technol Neural Interface. 2003;6(2):108–15. https://doi.org/10.1046/j.1525-1403.2003.03017.x.

    Article  Google Scholar 

  77. van Kammen K, Boonstra AM, van der Woude LHV, Visscher C, Reinders-Messelink HA, den Otter R. Lokomat guided gait in hemiparetic stroke patients: the effects of training parameters on muscle activity and temporal symmetry. Disabil Rehabil. 2020;42(21):2977–85. https://doi.org/10.1080/09638288.2019.1579259.

    Article  Google Scholar 

  78. Calabrò RS, et al. Shaping neuroplasticity by using powered exoskeletons in patients with stroke: a randomized clinical trial. J Neuroeng Rehabil. 2018;15(1):35. https://doi.org/10.1186/s12984-018-0377-8.

    Article  Google Scholar 

  79. De Luca A, et al. Exoskeleton for gait rehabilitation: Effects of assistance, mechanical structure, and walking aids on muscle activations. Appl Sci. 2019;9(14):2868. https://doi.org/10.3390/app9142868.

    Article  Google Scholar 

  80. Kozlowski AJ, Fabian M, Lad D, Delgado AD. Feasibility and safety of a powered exoskeleton for assisted walking for persons with multiple sclerosis: a single-group preliminary study. Arch Phys Med Rehabil. 2017;98(7):1300–7. https://doi.org/10.1016/j.apmr.2017.02.010.

    Article  Google Scholar 

  81. Esquenazi A, Talaty M, Packel A, Saulino M. The ReWalk powered exoskeleton to restore ambulatory function to individuals with thoracic-level motor-complete spinal cord injury. Am J Phys Med Rehabil. 2012;91(11):911–21. https://doi.org/10.1097/PHM.0b013e318269d9a3.

    Article  Google Scholar 

  82. Scewo wheelchair. Powere Wheelchair BRO. https://www.scewo.ch/en/bro/.

  83. Kwakkel G, Kollen BJ, Krebs HI. Effects of robot-assisted therapy on upper limb recovery after stroke: a systematic review. Neurorehabil Neural Repair. 2008;22(2):111–21. https://doi.org/10.1177/1545968307305457.

    Article  Google Scholar 

  84. Veerbeek JM, et al. What is the evidence for physical therapy poststroke? A systematic review and meta-analysis. PLoS One. 2014;9(2):e87987. https://doi.org/10.1371/journal.pone.0087987.

    Article  CAS  Google Scholar 

  85. Brewer BR, McDowell SK, Worthen-Chaudhari LC. Poststroke upper extremity rehabilitation: a review of robotic systems and clinical results. Top Stroke Rehabil. 2007;14(6):22–44. https://doi.org/10.1310/tsr1406-22.

    Article  Google Scholar 

  86. Hesse S, Schmidt H, Werner C, Bardeleben A. Upper and lower extremity robotic devices for rehabilitation and for studying motor control. Curr Opin Neurol. 2003;16(6):705–10. https://doi.org/10.1097/01.wco.0000102630.16692.38.

    Article  Google Scholar 

  87. Edgerton VR, et al. Retraining the injured spinal cord. J Physiol. 2001;533(1). Wiley-Blackwell:15–22. https://doi.org/10.1111/j.1469-7793.2001.0015b.x.

    Article  CAS  Google Scholar 

  88. Edgerton VR, Roy RR. Paralysis recovery in humans and model systems. Curr Opin Neurobiol. 2002;12(6). Elsevier Ltd:658–67. https://doi.org/10.1016/S0959-4388(02)00379-3.

    Article  CAS  Google Scholar 

  89. Gassert R, Dietz V. Rehabilitation robots for the treatment of sensorimotor deficits: A neurophysiological perspective. J NeuroEng Rehabil. 2018;15(1). BioMed Central Ltd.:1–15. https://doi.org/10.1186/s12984-018-0383-x.

    Article  Google Scholar 

  90. Colombo R, Sanguineti V. Rehabilitation robotics. 1st ed. Academic Press; 2018.

    Google Scholar 

  91. Klamroth-Marganska V, et al. Three-dimensional, task-specific robot therapy of the arm after stroke: a multicentre, parallel-group randomised trial. Lancet Neurol. 2014;13(2):159–66. https://doi.org/10.1016/S1474-4422(13)70305-3.

    Article  Google Scholar 

  92. Casadio M, Sanguineti V, Morasso PG, Arrichiello V. Braccio di Ferro: a new haptic workstation for neuromotor rehabilitation. Technol Health Care. 2006;14(3):123–42. [Online]. Available: http://www.ncbi.nlm.nih.gov/pubmed/16971753.

    Article  Google Scholar 

  93. Lo HS, Xie SQ. Exoskeleton robots for upper-limb rehabilitation: state of the art and future prospects. Med Eng Phys. 2012;34(3):261–8. https://doi.org/10.1016/j.medengphy.2011.10.004.

    Article  Google Scholar 

  94. Milot M-H, et al. A crossover pilot study evaluating the functional outcomes of two different types of robotic movement training in chronic stroke survivors using the arm exoskeleton BONES. J Neuroeng Rehabil. 2013;10(1):112.

    Article  Google Scholar 

  95. Proietti T, Guigon E, Roby-Brami A, Jarrassé N. Modifying upper-limb inter-joint coordination in healthy subjects by training with a robotic exoskeleton. J Neuroeng Rehabil. 2017;14(1):1–19. https://doi.org/10.1186/s12984-017-0254-x.

    Article  Google Scholar 

  96. Bach Baunsgaard C, et al. Gait training after spinal cord injury: safety, feasibility and gait function following 8 weeks of training with the exoskeletons from Ekso bionics article. Spinal Cord. Feb. 2018;56(2):106–16. https://doi.org/10.1038/s41393-017-0013-7.

    Article  Google Scholar 

  97. Frisoli A, et al. Positive effects of robotic exoskeleton training of upper limb reaching movements after stroke. J Neuroeng Rehabil. 2012;9(1):36.

    Article  Google Scholar 

  98. Hornby TG, Campbell DD, Kahn JH, Demott T, Moore JL, Roth HR. Enhanced gait-related improvements after therapist- versus robotic-assisted locomotor training in subjects with chronic stroke: a randomized controlled study. Stroke. 2008;39(6):1786–92. https://doi.org/10.1161/STROKEAHA.107.504779.

    Article  Google Scholar 

  99. Marchal-Crespo L, Reinkensmeyer DJ. Review of control strategies for robotic movement training after neurologic injury. J NeuroEng Rehabil. 2009;6(1). BioMed Central:20. https://doi.org/10.1186/1743-0003-6-20.

    Article  Google Scholar 

  100. Meng W, Liu Q, Zhou Z, Ai Q, Sheng B, Xie SS. Recent development of mechanisms and control strategies for robot-assisted lower limb rehabilitation. Mechatronics. 2015;31:132–45. https://doi.org/10.1016/j.mechatronics.2015.04.005.

    Article  Google Scholar 

  101. Wolbrecht ET, Chan V, Le V, Cramer SC, Reinkensmeyer DJ, Bobrow JE, Real-time computer modeling of weakness following stroke optimizes robotic assistance for movement therapy. In Proceedings of the 3rd International IEEE EMBS Conference on Neural Engineering, pp. 152–158; 2007. doi: 10.1109/CNE.2007.369635.

    Google Scholar 

  102. Casadio M, Sanguineti V. Learning, retention, and slacking: a model of the dynamics of recovery in robot therapy. IEEE Trans Neural Syst Rehabil Eng. May 2012;20(3):286–96. https://doi.org/10.1109/TNSRE.2012.2190827.

    Article  Google Scholar 

  103. Lambercy O, Dovat L, Gassert R, Burdet E, Teo CL, Milner T. A haptic knob for rehabilitation of hand function. IEEE Trans Neural Syst Rehabil Eng. Sep. 2007;15(3):356–66. https://doi.org/10.1109/TNSRE.2007.903913.

    Article  Google Scholar 

  104. Stienen AHA et al. Dampace: Dynamic force-coordination trainer for the upper extremities. In 2007 IEEE 10th international conference on rehabilitation robotics, ICORR’07, pp. 820–826; 2007. doi: https://doi.org/10.1109/ICORR.2007.4428519.

  105. Proietti T, Crocher V, Roby-Brami A, Jarrassé N, et al. Upper-limb robotic exoskeletons for neurorehabilitation: a review on control strategies. IEEE Rev Biomed Eng. 2016;9:4–14.

    Article  Google Scholar 

  106. Guidali M, Duschau-Wicke A, Broggi S, Klamroth-Marganska V, Nef T, Riener R. A robotic system to train activities of daily living in a virtual environment. Med Biol Eng Comput. 2011;49(10):1213–23. https://doi.org/10.1007/s11517-011-0809-0.

    Article  Google Scholar 

  107. Liu LY, Li Y, Lamontagne A. The effects of error-augmentation versus error-reduction paradigms in robotic therapy to enhance upper extremity performance and recovery post-stroke: a systematic review. J NeuroEng Rehabil. 2018;15(1). BioMed Central Ltd.:65. https://doi.org/10.1186/s12984-018-0408-5.

    Article  Google Scholar 

  108. Patton JL, Stoykov ME, Kovic M, Mussa-Ivaldi FA. Evaluation of robotic training forces that either enhance or reduce error in chronic hemiparetic stroke survivors. Exp Brain Res. 2006;168(3):368–83. https://doi.org/10.1007/s00221-005-0097-8.

    Article  Google Scholar 

  109. Pellegrino L, et al. Effects of hemispheric stroke localization on the reorganization of arm movements within different mechanical environments. Life. 2021;11(5):383. https://doi.org/10.3390/life11050383.

    Article  Google Scholar 

  110. Maenza C, Good DC, Winstein CJ, Wagstaff DA, Sainburg RL. Functional deficits in the less-impaired arm of stroke survivors depend on hemisphere of damage and extent of paretic arm impairment. Neurorehabil Neural Repair. 2020;34(1):39–50. https://doi.org/10.1177/1545968319875951.

    Article  Google Scholar 

  111. Fritz H, Patzer D, Galen SS. Robotic exoskeletons for reengaging in everyday activities: promises, pitfalls, and opportunities. Disabil Rehabil. 2019;41(5):560–3. https://doi.org/10.1080/09638288.2017.1398786.

    Article  Google Scholar 

  112. Bharadwaj A, Shaw SB, Goldreich D. Comparing tactile to auditory guidance for blind individuals. Front Hum Neurosci. 2019;13:443. https://doi.org/10.3389/fnhum.2019.00443.

    Article  Google Scholar 

  113. Viseux F, Lemaire A, Barbier F, Charpentier P, Leteneur S, Villeneuve P. How can the stimulation of plantar cutaneous receptors improve postural control? Review and clinical commentary. Neurophysiologie Clinique. 2019;49(3). Elsevier Masson SAS.:263–8. https://doi.org/10.1016/j.neucli.2018.12.006.

    Article  Google Scholar 

  114. Campa R. The rise of social robots: a review of the recent literature. J Evol Technol. 2016;26:106–13.

    Google Scholar 

  115. Recchiuto CT, Sgorbissa A. A feasibility study of culture-aware cloud services for conversational robots. IEEE Robot Autom Lett. 2020;5(4):6559–66. https://doi.org/10.1109/LRA.2020.3015461.

    Article  Google Scholar 

  116. Belpaeme T, Kennedy J, Ramachandran A, Scassellati B, Tanaka F. Social robots for education: a review. Sci Robotics. 2018;3(21). American Association for the Advancement of Science.:5954. https://doi.org/10.1126/scirobotics.aat5954.

    Article  Google Scholar 

  117. Broekens J, Heerink M, Rosendal H. Assistive social robots in elderly care: a review. Gerontechnology. 2009;8:94–103.

    Article  Google Scholar 

  118. Pennisi P, et al. Autism and social robotics: a systematic review. Autism Res. 2016;9(2):165–83. https://doi.org/10.1002/aur.1527.

    Article  Google Scholar 

  119. Chen SC, Jones C, Moyle W. Social robots for depression in older adults: a systematic review. J Nurs Scholarsh. 2018;50(6):612–22. https://doi.org/10.1111/jnu.12423.

    Article  Google Scholar 

  120. Hobbs B, Artemiadis P. A review of robot-assisted lower-limb stroke therapy: unexplored paths and future directions in gait rehabilitation. Front Neurorobotics. 2020;14. Frontiers Media S.A.:19. https://doi.org/10.3389/fnbot.2020.00019.

    Article  Google Scholar 

  121. Resquín F, et al. Hybrid robotic systems for upper limb rehabilitation after stroke: a review. Med Eng Phys. 2016;38(11):1279–88. https://doi.org/10.1016/j.medengphy.2016.09.001.

    Article  Google Scholar 

  122. Capogrosso M, et al. A computational model for epidural electrical stimulation of spinal sensorimotor circuits. J Neurosci. 2013;33(49):19,326–40. https://doi.org/10.1523/JNEUROSCI.1688-13.2013.

    Article  CAS  Google Scholar 

  123. Antonietti A, Casellato C, D’Angelo E, Pedrocchi A. Model-driven analysis of eyeblink classical conditioning reveals the underlying structure of cerebellar plasticity and neuronal activity. IEEE Trans Neural Networks Learn Syst. 2017;28(11):2748–62. https://doi.org/10.1109/TNNLS.2016.2598190.

    Article  Google Scholar 

  124. Pierella C, et al. Learning new movements after paralysis: Results from a home-based study. Sci Rep. 2017;7(1):4779. https://doi.org/10.1038/s41598-017-04930-z.

    Article  CAS  Google Scholar 

  125. Sutandi AC, Rahman SF. Robotic exosuit to improve walking and gait rehabilitation for stroke survivors: a review. AIP Conf Proc. 2021;2344(1):050014. https://doi.org/10.1063/5.0047186.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Camilla Pierella .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pierella, C., Micera, S. (2022). Rehabilitation and Assistive Robotics: Shared Principles and Common Applications. In: González Martínez, J.A., Cardinale, F. (eds) Robotics in Neurosurgery. Springer, Cham. https://doi.org/10.1007/978-3-031-08380-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-08380-8_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-08379-2

  • Online ISBN: 978-3-031-08380-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics