Skip to main content
Log in

Evaluation of robotic training forces that either enhance or reduce error in chronic hemiparetic stroke survivors

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

This investigation is one in a series of studies that address the possibility of stroke rehabilitation using robotic devices to facilitate “adaptive training.” Healthy subjects, after training in the presence of systematically applied forces, typically exhibit a predictable “after-effect.” A critical question is whether this adaptive characteristic is preserved following stroke so that it might be exploited for restoring function. Another important question is whether subjects benefit more from training forces that enhance their errors than from forces that reduce their errors. We exposed hemiparetic stroke survivors and healthy age-matched controls to a pattern of disturbing forces that have been found by previous studies to induce a dramatic adaptation in healthy individuals. Eighteen stroke survivors made 834 movements in the presence of a robot-generated force field that pushed their hands proportional to its speed and perpendicular to its direction of motion — either clockwise or counterclockwise. We found that subjects could adapt, as evidenced by significant after-effects. After-effects were not correlated with the clinical scores that we used for measuring motor impairment. Further examination revealed that significant improvements occurred only when the training forces magnified the original errors, and not when the training forces reduced the errors or were zero. Within this constrained experimental task we found that error-enhancing therapy (as opposed to guiding the limb closer to the correct path) to be more effective than therapy that assisted the subject.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bastian AJ, Martin TA, Keating JG, Thach WT (1996) Cerebellar ataxia: abnormal control of interaction torques across multiple joints. J Neurophysiol 76:492–509

    PubMed  CAS  Google Scholar 

  • Beer RF, Dewald JPA, Rymer WZ (2000) Deficits in the coordination of multijoint arm movements in patients with hemiparesis. Exp Brain Res 131:305–319

    Article  PubMed  CAS  Google Scholar 

  • Beer RF, Given JD, Dewald JPA (1999) Task-dependent weakness at the elbow in patients with hemiparesis. Arch Phys Med Rehabil 80:766–772

    Article  PubMed  CAS  Google Scholar 

  • Bhushan N, Shadmehr R (1999) Computational nature of human adaptive control during learning of reaching movements in force fields. Biol Cybern 81:39–60

    Article  MATH  CAS  PubMed  Google Scholar 

  • Bobath B (1978) Adult hemiplegia: evaluation and treatment. Heinemann, London

    Google Scholar 

  • Bock O (1990) Load compensation in human goal-directed arm movements. Behav Brain Res 41:167–177

    Article  PubMed  CAS  ADS  Google Scholar 

  • Boyd LA, Winstein CJ (2001) Implicit motor-sequence learning in humans following unilateral stroke: the impact of practice and explicit knowledge. Neurosci Lett 298:65–69

    Article  PubMed  CAS  Google Scholar 

  • Boyd LA, Winstein CJ (2003) Impact of explicit information on implicit motor-sequence learning following middle cerebral artery stroke. Phys Ther 83:976–989

    PubMed  Google Scholar 

  • Boyd LA, Winstein CJ (2004) Providing explicit information disrupts implicit motor learning after basal ganglia stroke. Learn Mem 11:388–396

    PubMed  Google Scholar 

  • Brewer B, Klatky R, Matsuoka Y (2005) Perceptual limits for a robotic rehabilitation environment using visual feedback distortion. IEEE Trans Neural Sys Rehabil Eng in press

  • Brewer BR, Klatzky R, Matsuoka Y (2004) Effects of visual feedback distortion for the elderly and the motor-impaired in a robotic rehabilitation environment. In: IEEE International conference on robotics and automation (ICRA), New Orleans

  • Burgar C, Lum P, Shor P, Van der Loos H (2000) Development of robots for rehabilitation therapy: the Palo Alto VA/Stanford experience. J Rehabil Res Dev 376:663–673

    Google Scholar 

  • Conditt MA, Gandolfo F, Mussa-Ivaldi FA (1997) The motor system does not learn the dynamics of the arm by rote memorization of past experience. J Neurophysiol 78:554–560

    PubMed  CAS  Google Scholar 

  • Conditt MA, Mussa-Ivaldi FA (1999) Central representation of time during motor learning. Proc Nat Acad Sci 96:11625–11630

    PubMed  CAS  ADS  Google Scholar 

  • Dancausea N, Ptitob A, Levin MF (2002) Error correction strategies for motor behavior after unilateral brain damage: short-term motor learning processes. Neuropsychologia 40:1313–1323

    Article  PubMed  Google Scholar 

  • Delisa JA, Gans BM (eds) (1993) Rehabilitation medicine. J. B. Lippincott Company, Philadelphia

  • Dewald J, Beer R (2001) Evidence for abnormal joint torque patterns in the paretic upper limb of subjects with hemiparesis. Muscle Nerve 24:273–283

    Article  PubMed  CAS  Google Scholar 

  • Dewhurst DJ (1967) Neuromuscular control system. IEEE Trans Biomed Eng 14:167–171

    PubMed  CAS  Google Scholar 

  • Emken JL, Reinkensmeyer DJ (2005) Robot-enhanced motor learning: accelerating internal model formation during locomotion by transient dynamic amplification. IEEE Trans Neural Syst Rehabil Eng in press

  • Ernst M, Banks M (2002) Humans integrate visual and haptic information in a statistically optimal fashion. Nature 415:429–433

    Article  PubMed  CAS  ADS  Google Scholar 

  • Fasoli SE, Krebs HI, Ferraro M, Hogan N, Volpe BT (2004) Does shorter rehabilitation limit potential recovery poststroke? Neurorehabil Neural Repair 18:88–94

    Article  PubMed  Google Scholar 

  • Fisk JD, Goodale MA (1988) The effects of unilateral brain damage on visually guided reaching: hemispheric differences in the nature of the deficit. Exp Brain Res 72:425–435

    Article  PubMed  CAS  Google Scholar 

  • Fitts PM (1964) Perceptual-motor skill learning. In: MeHou AW (ed) Categories of human learning. Academic, New York, pp 243–245

    Google Scholar 

  • Flanagan JR, Rao AK (1995) Trajectory adaptation to a nonlinear visuomotor transformation: evidence of motion planning in visually perceived space. J Neurophysiol 74:2174–2178

    PubMed  CAS  Google Scholar 

  • Flash T, Gurevitch F (1992) Arm movement and stiffness adaptation to external loads. In: Proceedings of the 13th IEEE engineering in medicine and biology conference, vol 13. Orlando, pp 885–886

  • Gandolfo F, Mussa-Ivaldi FA, Bizzi E (1996) Motor learning by field approximation. Proc Nat Acad Sci USA 93:3843–3846

    Article  PubMed  CAS  ADS  Google Scholar 

  • Ghez (1991) The control of movement. In: Kandel ER, Scwartz JH, Jessel TM (eds) Principles of neural science. Appleton & Lange, Nor wolk, pp 533–547

    Google Scholar 

  • Gomez Beldarrain M, Grafman J, Pascual-Leone A, Garcia-Monco JC (1999) Procedural learning is impaired in patients with prefrontal lesions. Neurology 52:1853–1860

    PubMed  CAS  Google Scholar 

  • Held R, Freedman SJ (1963) Plasticity in Human Sensorimotor Control. Science 142:455–461

    PubMed  CAS  ADS  Google Scholar 

  • Hemami H, Stokes BT (1982) Qualitative discussion of mechanisms of feedback and feedforward control of locomotion. IEEE Trans Biomed Eng 30:163–189

    Google Scholar 

  • Kahn LE, Zygman ML, Rymer WZ, Reinkensmeyer DJ (2001) Effect of robot-assisted and enassisted exercise on functional reaching in chronic hemiparesis. In: IEEE engineering in medicine and biology society (EMBS) conference. IEEE, Istanbul, pp 1344–1347

  • Kawato M (1990) Feedback-error-learning neural network for supervised learning. In: Eckmiller R (ed) Advanced neural computers. North-Holland, Amsterdam, pp 365–372

  • Kawato M, Wolpert D (1998) Internal models for motor control. Novartis Foundation Symposium 218:291–304

    PubMed  CAS  Google Scholar 

  • Kording KP, Wolpert DM (2004a) Bayesian integration in sensorimotor learning. Nature 427:244–247

    Article  PubMed  CAS  ADS  Google Scholar 

  • Kording KP, Wolpert DM (2004b) The loss function of sensorimotor learning. Proc Natl Acad Sci USA 101:9839–9842

    Article  PubMed  ADS  Google Scholar 

  • Krakauer JW, Ghilardi MF, Ghez C (1999) Independent learning of internal models for kinematic and dynamic control of reaching. Nat Neurosci 2:1026–1031

    Article  PubMed  CAS  Google Scholar 

  • Krebs HI, Aisen ML, Volpe BT, Hogan N (1999a) Quantization of continuous arm movements in humans with brain injury. Proc Nat Acad Sci USA 96:4645–4649

    Article  PubMed  CAS  ADS  Google Scholar 

  • Krebs HI, Brashers-Krug T, Rauch SL, Savage CR, Hogan N, Rubin RH, Fischman AJ, Alpert NM (1998a) Robot-aided functional imaging: application to a motor learning study. Hum Brain Mapp 6:59–72

    Article  PubMed  CAS  Google Scholar 

  • Krebs HI, Hogan N, Aisen ML, Volpe BT (1998b) Robot-aided neurorehabilitation. IEEE Trans Rehabil Eng 6:75–87

    Article  PubMed  CAS  Google Scholar 

  • Krebs HI, Hogan N, Hening W, Adamovich SV, Poizner H (2001) Procedural motor learning in Parkinson’s disease. Exp Brain Res 141:425–437

    Article  PubMed  CAS  Google Scholar 

  • Krebs HI, Hogan N, Volpe BT, Aisen ML, Edelstein L, Diels C (1999b) Robot-aided Neuro-rehabilitation in Stroke: Three Year follow-up. In: Sixth international conference of rehabilitation robotics, Stanford

  • Krebs HI, Volpe BT, Aisen ML, Hogan N (2000) Increasing productivity and quality of care: robot-aided neuro-rehabilitation. J Rehabil Res Dev 37:639–652

    PubMed  CAS  Google Scholar 

  • Lackner JR, DiZio P (1994) Rapid adaptation to Coriolis force perturbations of arm trajectories. J Neurophysiol 72:299–313

    PubMed  CAS  Google Scholar 

  • Lisberger S (1988) The neural basis for the learning of simple motor skills. Science 242:728–735

    PubMed  CAS  ADS  Google Scholar 

  • Lum P, Burgar C, Shor P, Majmundar M, Van der Loos M (2002) Robot-assisted movement training compared with conventional therapy techniques for the rehabilitation of upper limb motor function following stroke. Arch Phys Med Rehabil 83:952–959

    Article  PubMed  Google Scholar 

  • Lum PS, Burgar CG, Kenney DE, Van der Loos HF (1999) Quantification of force abnormalities during passive and active-assisted upper-limb reaching movements in post-stroke hemiparesis. IEEE Trans Biomed Eng 46:652–662

    Article  PubMed  CAS  Google Scholar 

  • Miall RC, Weir DJ, Wolpert DM, Stein JF (1993) Is the cerebellum a Smith Predictor? J Motor Behav 25:203–216

    Article  CAS  Google Scholar 

  • Mussa-Ivaldi FA, Patton JL (2000) Robots can teach people how to move their arm. In: IEEE international conference on robotics and automation (ICRA), San Francisco

  • Patton J, Mussa-Ivaldi F (eds) (2001) Robotic teaching by exploiting the nervous system’s adaptive mechanisms. IOS, Amsterdam

  • Patton J, Mussa-Ivaldi F, Rymer W (2001a) Altering Movement Patterns in Healthy and Brain-Injured Subjects Via Custom Designed Robotic Forces. In: IEEE-EMBC2001, the 23rd annual international conference of the ieee engineering in medicine and biology society (EMBS), Istanbul

  • Patton J, Mussa-Ivaldi F, Rymer W (2001b) Robotic-induced improvement of movements in hemiparetics via an implicit learning technique. Society for Neuroscience, San Diego

    Google Scholar 

  • Patton JL, Mussa-Ivaldi FA (2003) Robot-assisted adaptive training: custom force fields for teaching movement patterns. IEEE Trans Biomed Eng (in press)

  • Pine ZM, Krakauer JW, Gordon J, Ghez C (1996) Learning of scaling factors and reference axes for reaching movements. Neuroreport 7:2357–2361

    PubMed  CAS  Google Scholar 

  • Pohl PS, Winstein CJ (1999) Practice effects on the less-affected upper extremity after stroke. Arch Phys Med Rehabil 80:668–675

    Article  PubMed  CAS  Google Scholar 

  • Raasch CC, Mussa-Ivaldi FA, Rymer WZ (1997) Motor Learning in reaching movements by hemiparetic subjects. Soc Neurosci Abstr 924.17:2374

    Google Scholar 

  • Reinkensmeyer DJ, Iobbi MG, Kahn LE, Kamper DG, Takahashi CD (2003) Modeling reaching impairment after stroke using a population vector model of movement control that incorporates neural firing-rate variability. Neural Comput 15:2619–2642

    Article  PubMed  MATH  Google Scholar 

  • Robles-De-La-Torre G, Hayward V (2001) Force can overcome object geometry in the perception of shape through active touch. Nature 412:445–448

    Article  PubMed  CAS  ADS  Google Scholar 

  • Rossetti Y, Rode G, Pisella L, Farne A, Li L, Boisson D, Perenin MT (1998) Prism adaptation to a rightward optical deviation rehabilitates left hemispatial neglect. Nature 395:166–169

    Article  PubMed  CAS  ADS  Google Scholar 

  • Rumelhart DE, Hinton GE, Williams RJ (1986) Learning representations by back-propagating errors. Nature (London) 323:533–536

    Article  ADS  Google Scholar 

  • Rumelhart DE, McClelland JL (eds) (1986) Parallel distributed processing: explorations in the microstructure of cognition. MIT, Cambridge

  • Sainburg RL, Lateiner JE, Latash ML, Bagesteiro LB (2003) Effects of altering initial position on movement direction and extent. J Neurophysiol 89:401–415

    PubMed  Google Scholar 

  • Sanes JN, Dimitrov B, Hallett M (1990) Motor learning in patients with cerebellar dysfunction. Brain 113:103–120

    PubMed  Google Scholar 

  • Scheidt RA, Dingwell JB, Mussa-Ivaldi FA (2001) Learning to move amid uncertainty. J Neurophysiol 86:971–985

    PubMed  CAS  Google Scholar 

  • Scheidt RA, Reinkensmeyer DJ, Conditt MA, Rymer WZ, Mussa-Ivaldi FA (2000) Persistence of motor adaptation during constrained, multi-joint, arm movements. J Neurophysiol 84:853–862

    PubMed  CAS  Google Scholar 

  • Scheidt RA, Rymer WZ (2000) Control Strategies for the Transition From Multijoint to Single-Joint Arm Movements Studied Using a Simple Mechanical Constraint. J Neurophysiol 83:1–12

    PubMed  CAS  Google Scholar 

  • Schmidt RA (1988) Motor control and learning. Human kinetics Publishers, Champaign

    Google Scholar 

  • Schmit BD, Dewald JP, Rymer WZ (2000) Stretch reflex adaptation in elbow flexors during repeated passive movements in unilateral brain-injured patients. Arch Phys Med Rehabil 81:269–278

    Article  PubMed  CAS  Google Scholar 

  • Seidler RD, Purushotham A, Kim SG, Ugurbil K, Willingham D, Ashe J (2002) Cerebellum activation associated with performance change but not motor learning.[see comment]. Science 296:2043–2046

    Article  PubMed  CAS  ADS  Google Scholar 

  • Shadmehr R, Mussa-Ivaldi FA (1994) Adaptive representation of dynamics during learning of a motor task. J Neurosci 14:3208–3224

    PubMed  CAS  Google Scholar 

  • Squire LR (1986) Mechanisms of memory. Science 232:1612–1619

    PubMed  CAS  ADS  Google Scholar 

  • Srinivasan MA, LaMotte RH (1995) Tactual discrimination of softness. In: J Neurophysiol, vol 73, pp 88–101

  • Stein J, Krebs HI, Frontera WR, Fasoli SE, Hughes R, Hogan N (2004) Comparison of two techniques of robot-aided upper limb exercise training after stroke. Am J Phys Med Rehabil 83:720–728

    Article  PubMed  Google Scholar 

  • Takahashi CD, Scheidt RA, Reinkensmeyer DJ (2001) Impedance control and internal model formation when reaching in a randomly varying dynamical environment. J Neurophysiol 86:1047–1051

    PubMed  CAS  Google Scholar 

  • Takahashi CG, Reinkensmeyer DJ (2003) Hemiparetic stroke impairs anticipatory control of arm movement. Exp Brain Res 149:131–140

    PubMed  Google Scholar 

  • Taub E (2000) Constraint-induced movement therapy and massed practice [letter; comment]. Stroke 31:986–988

    PubMed  CAS  Google Scholar 

  • Taub E, Miller N, Novack T, Cook Ed, Fleming W, Nepomuceno C, Connell J, Crago J (1993) Technique to improve chronic motor deficit after stroke. Arch phys med rehabil 74:347–354

    PubMed  CAS  Google Scholar 

  • Taub E, Uswatte G, Pidikiti R (1999) Constraint-Induced Movement Therapy: a new family of techniques with broad application to physical rehabilitation–a clinical review. [see comments]. J Rehabil Res Dev 36:237–251

    PubMed  CAS  Google Scholar 

  • Thoroughman KA, Shadmehr R (2000) Learning of action through adaptive combination of motor primitives. [see comments]. Nature 407:742–747

    Article  PubMed  CAS  ADS  Google Scholar 

  • Volpe B, Krebs H, Hogan N, Edelstein L, Diels M, Aisen M (2000) A novel approach to stroke rehabilitation; robot-aided sensorimotor stimulation. Neurology 54:1938–1944

    PubMed  CAS  Google Scholar 

  • Volpe BT, Krebs HI, Hogan N (2001) Is robot-aided sensorimotor training in stroke rehabilitation a realistic option? Curr Opin Neurol 14:745–752

    Article  PubMed  CAS  Google Scholar 

  • Volpe BT, Krebs HI, Hogan N, Edelsteinn L, Diels CM, Aisen ML (1999) Robot training enhanced motor outcome in patients with stroke maintained over 3 years. Neurology 53:1874–1876

    PubMed  CAS  Google Scholar 

  • Voss DR, Ionta MK, Myers BJ (1985) Proprioceptive neuromuscular facilitation. Harper and Row, Philadelphia

    Google Scholar 

  • Wei Y, Bajaj P, Scheidt RA, Patton JL (2005) A real-time haptic/graphic demonstration of how error augmentation can enhance learning. In: IEEE international conference on robotics and automation (ICRA), Barcelona

  • Weiner MJ, Hallett M, Funkenstein HH (1983) Adaptation to lateral displacement of vision in patients with lesions of the central nervous system. Neurology 33:766–772

    PubMed  CAS  Google Scholar 

  • Winstein CJ, Merians AS, Sullivan KJ (1999) Motor learning after unilateral brain damage. Neuropsychologia 37:975–987

    Article  PubMed  CAS  Google Scholar 

  • Wolf SL, Lecraw DE, Barton LA, Jann BB (1989) Forced use of hemiplegic upper extremities to reverse the effect of learned nonuse among stroke and head-injured patients. Exp Neurol 104:125–132

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Supported by AHA 0330411Z, NIH 1 R24 HD39627-01, NINDS R01 NS35673.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James L. Patton.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Patton, J.L., Stoykov, M.E., Kovic, M. et al. Evaluation of robotic training forces that either enhance or reduce error in chronic hemiparetic stroke survivors. Exp Brain Res 168, 368–383 (2006). https://doi.org/10.1007/s00221-005-0097-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-005-0097-8

Keywords

Navigation