Skip to main content

Selenium- and Se-Nanoparticle-Induced Improvements of Salt Stress Tolerance in Plants

  • Chapter
  • First Online:
Selenium and Nano-Selenium in Environmental Stress Management and Crop Quality Improvement

Part of the book series: Sustainable Plant Nutrition in a Changing World ((SPNCW))

  • 536 Accesses

Abstract

In recent years, there is growing interest in understanding the response of plants to Se supplementation both to ensure adequate dietary Se intakes for humans and animals and to achieve enhanced resistance of crops to stress factors, especially in the conditions of increasing climate change. One of the abiotic stresses that have a particularly negative effect on plant productivity is salinity, which is one of the most widespread soil degradation processes on Earth. It is estimated that soil salinity affects approx. 20% of agricultural land and reduces plant yielding substantially; therefore, extensive research has been conducted to develop crops with enhanced salt resistance. In plants exposed to salt stress, the protective role of Se ions, used in relatively low concentrations, has often been attributed to stimulation of antioxidative protection systems and regulation of ion homeostasis. However, the associated physiological changes, e.g. hormonal alterations, are complicated and not fully elucidated. To obtain the positive response of salt-exposed plants to Se application, the concentration and chemical form of Se, the way of application thereof, the level of salinity, and the possibility of Se interaction with other elements should be taken into account. Changes in the physiological and biochemical characteristics of Se- and Se-nanoparticle-supplemented plants grown under salt stress will be summarized in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aslam R, Bostan N, Nabgha-e-Amen, Maria M, Safdar W (2011) A critical review on halophytes: salt tolerant plants. J Med Plant Res 5:7108–7118

    CAS  Google Scholar 

  • Astaneh RK, Bolandnazar S, Nahandi FZ, Oustan S (2019) Effects of selenium on enzymatic changes and productivity of garlic under salinity stress. S Afr J Bot 121:447–455

    Article  CAS  Google Scholar 

  • Atarodi B, Fotovat A, Khorassani R, Keshavarz P, Hawrylak-Nowak B (2018) Selenium improves physiological responses and nutrient absorption in wheat (Triticum aestivum L.) grown under salinity. Toxicol Environ Chem 100(4):440–451

    Article  CAS  Google Scholar 

  • Baenas N, García-Viguera C, Moreno DA (2014) Elicitation: a tool for enriching the bioactive composition of foods. Molecules 19:13541–13563

    Article  PubMed  PubMed Central  Google Scholar 

  • Bistgani ZE, Hashemi M, DaCosta M, Craker L, Maggi F, Morshedloo MR (2019) Effect of salinity stress on the physiological characteristics, phenolic compounds and antioxidant activity of Thymus vulgaris L. and Thymus daenesis Celak. Ind Crop Prod 135:311–320

    Article  CAS  Google Scholar 

  • Bybordi A, Saadat S, Zargaripour P (2018) The effect of zeolite, selenium and silicon on qualitative and quantitative traits of onion grown under salinity conditions. Arch Agron Soil Sci 64(4):520–530

    Article  CAS  Google Scholar 

  • Chalker-Scott L (2002) Do anthocyanins function as osmoregulators in leaf tissues? Adv Bot Res 37:103–127

    Article  CAS  Google Scholar 

  • Demidchik V (2015) Mechanisms of oxidative stress in plants: from classical chemistry to cell biology. Environ Exp Bot 109:212–228

    Article  CAS  Google Scholar 

  • Desoky ES, Merwad AR, Abo El-Maati MF, Mansour E, Arnaout SM, Awad MF, Ramadan MF, Ibrahim SA (2021) Physiological and biochemical mechanisms of exogenously applied selenium for alleviating destructive impacts induced by salinity stress in bread wheat. Agronomy 11(5):926

    Article  CAS  Google Scholar 

  • Diao M, Ma L, Wang J, Cui J, Fu A, Liu HY (2014) Selenium promotes the growth and photosynthesis of tomato seedlings under salt stress by enhancing chloroplast antioxidant defense system. J Plant Growth Regul 33(3):671–682

    Article  CAS  Google Scholar 

  • Diaz-Vivancos P, Barba-Espín G, Hernández JA (2013) Elucidating hormonal/ROS networks during seed germination: insights and perspectives. Plant Cell Rep 32(10):1491–1502

    Article  CAS  PubMed  Google Scholar 

  • Dinh QT, Wang M, Tran TA, Zhou F, Wang D, Zhai H, Peng Q, Xue M, Du Z, Bañuelos GS, Lin ZQ (2019) Bioavailability of selenium in soil-plant system and a regulatory approach. Crit Rev Environ Sci Technol 49(6):443–517

    Article  CAS  Google Scholar 

  • Domokos-Szabolcsy E, Marton L, Sztrik A, Babka B, Prokisch J, Fari M (2012) Accumulation of red elemental selenium nanoparticles and their biological effects in Nicotinia tabacum. Plant Growth Regul 68(3):525–531

    Article  CAS  Google Scholar 

  • El-Araby HG, El-Hefnawy SF, Nassar MA, Elsheery NI (2020) Comparative studies between growth regulators and nanoparticles on growth and mitotic index of pea plants under salinity. Afr J Biotechnol 19(8):564–575

    Article  Google Scholar 

  • El-Badri AM, Batool M, Wang C, Hashem AM, Tabl KM, Nishawy E, Kuai J, Zhu G, Wang B (2021) Selenium and zinc oxide nanoparticles modulate the molecular and morpho-physiological processes during seed germination of Brassica napus under salt stress. Ecotoxicol Environ Saf 225:112695

    Article  CAS  PubMed  Google Scholar 

  • Elkelish AA, Soliman MH, Alhaithloul HA, El-Esawi MA (2019) Selenium protects wheat seedlings against salt stress-mediated oxidative damage by up-regulating antioxidants and osmolytes metabolism. Plant Physiol Biochem 137:144–153

    Article  CAS  PubMed  Google Scholar 

  • El-Ramady H, Faizy SED, Abdalla N, Taha H, Domokos-Szabolcsy É, Fari M, Elsakhawy T, Omara AE, Shalaby T, Bayoumi Y, Shehata S, Geilfus CM, Brevik EC (2020) Selenium and nano-selenium biofortification for human health: opportunities and challenges. Soil Syst 4(3):57

    Article  CAS  Google Scholar 

  • Fan J, Wang R, Hu H, Huo G, Fu Q, Zhu J (2015) Transformation and bioavailability of selenate and selenite added to a Nicotiana tabacum L. planting soil. Commun Soil Sci Plant Anal 46(11):1362–1375

    Article  CAS  Google Scholar 

  • Ghanem ME, Albacete A, Martínez-Andújar C, Acosta M, Romero-Aranda R, Dodd IC, Lutts S, Pérez-Alfocea F (2008) Hormonal changes during salinity-induced leaf senescence in tomato (Solanum lycopersicum L.). J Exp Bot 59(11):3039–3050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghasemian S, Masoudian N, Saeid Nematpour F, Safipour Afshar A (2021) Selenium nanoparticles stimulate growth, physiology, and gene expression to alleviate salt stress in Melissa officinalis. Biologia 76:2879–2888

    Article  CAS  Google Scholar 

  • González-García Y, Cárdenas-Álvarez C, Cadenas-Pliego G, Benavides-Mendoza A, Cabrera-de-la-Fuente M, Sandoval-Rangel A, Valdés-Reyna J, Juárez-Maldonado A (2021) Effect of three nanoparticles (Se, Si and Cu) on the bioactive compounds of bell pepper fruits under saline stress. Plants 10(2):217

    Article  PubMed  PubMed Central  Google Scholar 

  • Gupta B, Huang B (2014) Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization. Int J Genomics 2014:701596

    Article  PubMed  PubMed Central  Google Scholar 

  • Habibi G (2017a) Physiological, photochemical and ionic responses of sunflower seedlings to exogenous selenium supply under salt stress. Acta Physiol Plant 39:213

    Article  Google Scholar 

  • Habibi G (2017b) Selenium ameliorates salinity stress in Petroselinum crispum by modulation of photosynthesis and by reducing shoot Na accumulation. Russ J Plant Physiol 64(3):368–374

    Article  CAS  Google Scholar 

  • Han D, Tu S, Dai Z, Huang W, Jia W, Xu Z, Shao H (2022) Comparison of selenite and selenate in alleviation of drought stress in Nicotiana tabacum L. Chemosphere 287(2):13213

    Google Scholar 

  • Hasanuzzaman M, Hossain MA, Fujita M (2011) Selenium-induced up-regulation of the antioxidant defense and methylglyoxal detoxification system reduces salinity-induced damage in rapeseed seedlings. Biol Trace Elem Res 143(3):1704–1721

    Article  CAS  PubMed  Google Scholar 

  • Hasanuzzaman M, Bhuyan MHMB, Raza A, Hawrylak-Nowak B, Matraszek-Gawron R, Al Mahmud J, Nahar K, Fujita M (2020) Selenium in plants: boon or bane? Environ Exp Bot 178:104170

    Article  CAS  Google Scholar 

  • Hasanuzzaman M, Raihan M, Hossain R, Masud AA, Rahman K, Nowroz F, Rahman M, Nahar K, Fujita M (2021) Regulation of reactive oxygen species and antioxidant defense in plants under salinity. Int J Mol Sci 22(17):9326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hashem HA, Hassanein RA, Bekheta MA, El-Kady FA (2013) Protective role of selenium in canola (Brassica napus L.) plant subjected to salt stress. Egypt J Exp Biol (Bot) 9:199–211

    Google Scholar 

  • Hawrylak-Nowak B (2009) Beneficial effects of exogenous selenium in cucumber seedlings subjected to salt stress. Biol Trace Elem Res 132(1-3):259–269

    Article  CAS  PubMed  Google Scholar 

  • Hawrylak-Nowak B (2013) Comparative effects of selenite and selenate on growth and selenium accumulation in lettuce plants under hydroponic conditions. Plant Growth Regul 70(2):149–157

    Google Scholar 

  • Hawrylak-Nowak B (2015) Selenite is more efficient than selenate in alleviation of salt stress in lettuce plants. Acta Biol Cracov Ser Bot 57(2):49–54

    CAS  Google Scholar 

  • Hawrylak-Nowak B, Matraszek R, Pogorzelec M (2015) The dual effects of two inorganic selenium forms on the growth, selected physiological parameters and macronutrients accumulation in cucumber plants. Acta Physiol Plant 37(2):41

    Article  Google Scholar 

  • Hawrylak-Nowak B, Hasanuzzaman M, Matraszek-Gawron R (2018) Mechanisms of selenium-induced enhancement of abiotic stress tolerance in plants. In: Hasanuzzaman M, Fujita M, Oku H, Nahar K, Hawrylak-Nowak B (eds) Plant nutrients and abiotic stress tolerance. Springer, Singapore, pp 269–295

    Chapter  Google Scholar 

  • Hawrylak-Nowak B, Rubinowska K, Molas J, Woch W, Matraszek-Gawron R, Szczurowska A (2019) Selenium-induced improvements in the ornamental value and salt stress resistance of Plectranthus scutellarioides (L.) R. Br. Folia Hortic 31(1):213–221

    Article  Google Scholar 

  • Hawrylak-Nowak B, Dresler S, Stasińska-Jakubas M, Wójciak M, Sowa I, Matraszek-Gawron R (2021) NaCl-induced elicitation alters physiology and increases accumulation of phenolic compounds in Melissa officinalis L. Int J Mol Sci 22(13):6844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hayat S, Hayat Q, Alyemeni MN, Wani AS, Pichtel J, Ahmad A (2012) Role of proline under changing environments: a review. Plant Signal Behav 7(11):1456–1466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Houmani H, Corpas FJ (2016) Differential responses to salt-induced oxidative stress in three phylogenetically related plant species: Arabidopsis thaliana (glycophyte), Thellungiella salsuginea and Cakile maritima (halophytes). Involvement of ROS and NO in the control of K+/Na+ homeostasis. AIMS Biophys 3(3):380–397

    Article  CAS  Google Scholar 

  • Hussein HAA, Darwesh OM, Mekki BB (2019) Environmentally friendly nano-selenium to improve antioxidant system and growth of groundnut cultivars under sandy soil conditions. Biocatal Agric Biotechnol 18:101080

    Article  Google Scholar 

  • Isayenkov SV, Maathuis FJ (2019) Plant salinity stress: many unanswered questions remain. Front Plant Sci 10:80

    Article  PubMed  PubMed Central  Google Scholar 

  • Ismail A, Takeda S, Nick P (2014) Life and death under salt stress: same players, different timing? J Exp Bot 65(12):2963–2979

    Article  CAS  PubMed  Google Scholar 

  • Jawad Hassan M, Ali Raza M, Khan I, Ahmad Meraj T, Ahmed M, Abbas Shah G, Ansar M, Awan SA, Khan N, Iqbal N, Peng Y, Li Z (2020) Selenium and salt interactions in black gram (Vigna mungo L): ion uptake, antioxidant defense system, and photochemistry efficiency. Plants 9(4):467

    Article  PubMed Central  Google Scholar 

  • Jiang C, Zu C, Lu D, Zheng Q, Shen J, Wang H, Li D (2017) Effect of exogenous selenium supply on photosynthesis, Na+ accumulation and antioxidative capacity of maize (Zea mays L.) under salinity stress. Sci Rep 7(1):42039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kamran M, Parveen A, Ahmar S, Malik Z, Hussain S, Chattha MS, Saleem MH, Adil M, Heidari P, Chen JT (2020) An overview of hazardous impacts of soil salinity in crops, tolerance mechanisms, and amelioration through selenium supplementation. Int J Mol Sci 21(1):148

    Article  CAS  Google Scholar 

  • Karimi R, Ghabooli M, Rahimi J, Amerian M (2020) Effects of foliar selenium application on some physiological and phytochemical parameters of Vitis vinifera L. cv. Sultana under salt stress. J Plant Nutr 43(14):2226–2242

    Article  CAS  Google Scholar 

  • KeLing H, Ling Z, JiTao W, Yang Y (2013) Influence of selenium on growth, lipid peroxidation and antioxidative enzyme activity in melon (Cucumis melo L.) seedlings under salt stress. Acta Soc Bot Pol 82:193–197

    Article  Google Scholar 

  • Khalil R, Yusuf M, Bassuony F, Haroun S, Gamal A (2022) Alpha-tocopherol reinforce selenium efficiency to ameliorates salt stress in maize plants through carbon metabolism, enhanced photosynthetic pigments and ion uptake. S Afr J Bot 144:1–9

    Article  CAS  Google Scholar 

  • Kishor PBK, Sangam S, Amrutha RN, Laxmi PS, Naidu KR, Rao K, Rao S, Reddy KJ, Theriappan P, Sreenivasulu N (2005) Regulation of proline biosynthesis, degradation, uptake and transport in higher plants: its implications in plant growth and abiotic stress tolerance. Curr Sci 88:424–438

    CAS  Google Scholar 

  • Kong L, Wang M, Bi D (2005) Selenium modulates the activities of antioxidant enzymes, osmotic homeostasis and promotes the growth of sorrel seedlings under salt stress. Plant Growth Regul 45(2):155–163

    Article  CAS  Google Scholar 

  • Lan CY, Lin KH, Huang WD, Chen CC (2019) Protective effects of selenium on wheat seedlings under salt stress. Agronomy 9(6):272

    Article  CAS  Google Scholar 

  • Li ZG (2016) Methylglyoxal and glyoxalase system in plants: old players, new concepts. Bot Rev 82(2):183–203

    Article  Google Scholar 

  • Li D, An Q, Wu Y, Li JQ, Pan C (2020) Foliar application of selenium nanoparticles on celery stimulates several nutrient component levels by regulating the α-linolenic acid pathway. ACS Sustain Chem Eng 8(28):10502–10510

    Article  CAS  Google Scholar 

  • Lodeyro AF, Giró M, Poli HO, Bettucci G, Cortadi A, Ferri AM, Carrillo N (2016) Suppression of reactive oxygen species accumulation in chloroplasts prevents leaf damage but not growth arrest in salt-stressed tobacco plants. PLoS One 11(7):e0159588

    Article  PubMed  PubMed Central  Google Scholar 

  • Longchamp M, Castrec-Rouelle M, Biron P, Bariac T (2015) Variations in the accumulation, localization and rate of metabolization of selenium in mature Zea mays plants supplied with selenite or selenate. Food Chem 182:128–135

    Article  CAS  PubMed  Google Scholar 

  • Mbarki S, Sytar O, Cerda A, Zivcak M, Rastogi A, He X, Zoghlami A, Abdelly C, Brestic M (2018) Strategies to mitigate the salt stress effects on photosynthetic apparatus and productivity of crop plants. In: Kumar V, Wani SH, Suprasanna P, Tran LSP (eds) Salinity responses and tolerance in plants. Springer, Cham, pp 85–136

    Chapter  Google Scholar 

  • Morales-Espinoza MC, Cadenas-Pliego G, Pérez-Alvarez M, Hernández-Fuentes AD, Cabrera de la Fuente M, Benavides-Mendoza A, Valdés-Reyna J, Juárez-Maldonado A (2019) Se nanoparticles induce changes in the growth, antioxidant responses, and fruit quality of tomato developed under NaCl stress. Molecules 24(17):3030

    Article  CAS  PubMed Central  Google Scholar 

  • Mozafariyan M, Kamelmanesh MM, Hawrylak-Nowak B (2016) Ameliorative effect of selenium on tomato plants grown under salinity stress. Arch Agron Soil Sci 62:1368–1380

    Article  CAS  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  PubMed  Google Scholar 

  • Negrão S, Schmöckel SM, Tester M (2017) Evaluating physiological responses of plants to salinity stress. Ann Bot 119(1):1–11

    Article  PubMed  Google Scholar 

  • Neysanian M, Iranbakhsh A, Ahmadvand R, Ardebili ZO, Ebadi M (2020) Comparative efficacy of selenate and selenium nanoparticles for improving growth, productivity, fruit quality, and postharvest longevity through modifying nutrition, metabolism, and gene expression in tomato; potential benefits and risk assessment. PLoS One 15(12):e0244207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pilon-Smits EAH (2012) Plant selenium metabolism. In: Wong M (ed) Environmental contamination: health risks and ecological restoration. CRC Press, Boca Raton, pp 295–312

    Google Scholar 

  • Prasad R, Bhattacharyya A, Nguyen QD (2017) Nanotechnology in sustainable agriculture: Recent developments, challenges, and perspectives. Front Microbiol 8:1–13

    Article  Google Scholar 

  • Qin F, Shi M, Yuan H, Yuan L, Lu W, Zhang J, Tong J, Song X (2016) Dietary nano-selenium relieves hypoxia stress and, improves immunity and disease resistance in the Chinese mitten crab (Eriocheir sinensis). Fish Shellfish Immunol 54:481–488

    Article  CAS  PubMed  Google Scholar 

  • Rady MM, Desoky ESM, Ahmed SM, Majrashi A, Ali EF, Arnaout SM, Selem E (2021) Foliar nourishment with nano-selenium dioxide promotes physiology, biochemistry, antioxidant defenses, and salt tolerance in Phaseolus vulgaris. Plants 10(6):1189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Regni L, Palmerini CA, Del Pino AM, Businelli D, D’Amato R, Mairech H, Marmottini F, Micheli M, Pacheco PH, Proietti P (2021) Effects of selenium supplementation on olive under salt stress conditions. Sci Hortic 278:109866

    Article  CAS  Google Scholar 

  • Roy S, Chowdhury N (2021) Salt stress in plants and amelioration strategies: a critical review. In: Fahad S, Saud S, Chen Y, Wu C, Wang D (eds) Abiotic stress in plants. IntechOpen, London, pp 509–517

    Google Scholar 

  • Safdari-Rostamabad M, Hosseini-Vashan SJ, Perai AH, Sarir H (2017) Nanoselenium supplementation of heat-stressed broilers: effects on performance, carcass characteristics, blood metabolites, immune response, antioxidant status, and jejunal morphology. Biol Trace Elem Res 178(1):105–116

    Article  CAS  PubMed  Google Scholar 

  • Saini S, Kaur N, Pati PK (2018) Reactive oxygen species dynamics in roots of salt sensitive and salt tolerant cultivars of rice. Anal Biochem 550:99–108

    Article  CAS  PubMed  Google Scholar 

  • Sarkar B, Bhattacharjee S, Daware A, Tribedi P, Krishnani KK, Minhas PS (2015) Selenium nanoparticles for stress-resilient fish and livestock. Nanoscale Res Lett 10(1):371

    Article  PubMed  PubMed Central  Google Scholar 

  • Semida WM, El-Mageed A, Taia A, Abdelkhalik A, Hemida KA, Abdurrahman HA, Howladar SM, Leilah AA, Rady MO (2021) Selenium modulates antioxidant activity, osmoprotectants, and photosynthetic efficiency of onion under saline soil conditions. Agronomy 11(5):855

    Article  CAS  Google Scholar 

  • Shabala S, Munns R (2017) Salinity stress: physiological constraints and adaptive mechanisms. In: Shabala S (ed) Plant stress physiology, 2nd edn. CABI, Boston, pp 24–63

    Chapter  Google Scholar 

  • Shah WH, Rasool A, Tahir I, Rehman RU (2020) Exogenously applied selenium (Se) mitigates the impact of salt stress in Setaria italica L. and Panicum miliaceum L. Nucleus 63(3):327–339

    Article  Google Scholar 

  • Shahid SA, Zaman M, Heng L (2018a) Soil salinity: historical perspectives and a world overview of the problem. In: Zaman M, Shahid SA, Heng L (eds) Guideline for salinity assessment, mitigation and adaptation using nuclear and related techniques. Springer, Cham, pp 43–53

    Google Scholar 

  • Shahid M, Niazi NK, Khalid S, Murtaza B, Bibi I, Rashid MI (2018b) A critical review of selenium biogeochemical behavior in soil-plant system with an inference to human health. Environ Pollut 234:915–934

    Article  PubMed  Google Scholar 

  • Shakibaie M, Shahverdi AR, Faramarzi MA, Hassanzadeh GR, Rahimi HR, Sabzevari O (2013) Acute and subacute toxicity of novel biogenic selenium nanoparticles in mice. Pharm Biol 51(1):58–63

    Article  CAS  PubMed  Google Scholar 

  • Shalaby TA, Abd-Alkarim E, El-Aidy F, Hamed ES, Sharaf-Eldin M, Taha N, El-Ramady H, Bayoumi Y, dos Reis AR (2021) Nano-selenium, silicon and H2O2 boost growth and productivity of cucumber under combined salinity and heat stress. Ecotoxicol Environ Saf 212:111962

    Article  CAS  PubMed  Google Scholar 

  • Sheikhalipour M, Esmaielpour B, Gohari G, Haghighi M, Jafari H, Farhadi H, Kulak M, Kalisz A (2021) Salt stress mitigation via the foliar application of chitosan-functionalized selenium and anatase titanium dioxide nanoparticles in stevia (Stevia rebaudiana Bertoni). Molecules 26(13):4090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shrivastava P, Kumar R (2015) Soil salinity: a serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J Biol Sci 22(2):123–131

    Article  CAS  PubMed  Google Scholar 

  • Sies H, Jones DP (2020) Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat Rev Mol Cell Biol 21(7):363–383

    Article  CAS  PubMed  Google Scholar 

  • Singh A, Sharma PC (2018) Recent insights into physiological and molecular regulation of salt stress in fruit crops. Adv Plants Agric Res 8(2):171–183

    Google Scholar 

  • Singh M, Kumar J, Singh S, Singh VP, Prasad SM (2015) Roles of osmoprotectants in improving salinity and drought tolerance in plants: a review. Rev Environ Sci Biotechnol 14(3):407–426

    Article  CAS  Google Scholar 

  • Soleymanzadeh R, Iranbakhsh A, Habibi G, Ardebili ZO (2020) Selenium nanoparticle protected strawberry against salt stress through modifications in salicylic acid, ion homeostasis, antioxidant machinery, and photosynthesis performance. Acta Biol Cracov Ser Bot 62(1):33–42

    CAS  Google Scholar 

  • Sotoodehnia-Korani S, Iranbakhsh A, Ebadi M, Majd A, Ardebili ZO (2020) Selenium nanoparticles induced variations in growth, morphology, anatomy, biochemistry, gene expression, and epigenetic DNA methylation in Capsicum annuum: an in vitro study. Environ Pollut 265:114727

    Article  CAS  PubMed  Google Scholar 

  • Subramanyam K, Du Laing G, Van Damme EJ (2019) Sodium selenate treatment using a combination of seed priming and foliar spray alleviates salinity stress in rice. Front Plant Sci 10:116

    Article  PubMed  PubMed Central  Google Scholar 

  • Surai PF, Kochish II (2020) Food for thought: nano-selenium in poultry nutrition and health. Anim Health Res Rev 21:103–107

    Article  PubMed  Google Scholar 

  • Tully K, Gedan K, Epanchin-Niell R, Strong A, Bernhardt ES, BenDor T, Mitchell M, Kominoski J, Jordan TE, Neubauer SC, Weston NB (2019) The invisible flood: the chemistry, ecology, and social implications of coastal saltwater intrusion. Bioscience 69(5):368–378

    Article  Google Scholar 

  • Van Oosten MJ, Pepe O, De Pascale S, Silletti S, Maggio A (2017) The role of biostimulants and bioeffectors as alleviators of abiotic stress in crop plants. Chem Biol Technol Agric 4:5

    Article  Google Scholar 

  • Wakeel A (2013) Potassium–sodium interactions in soil and plant under saline-sodic conditions. J Soil Sci Plant Nutr 176(3):344–354

    Article  CAS  Google Scholar 

  • Zahedi SM, Abdelrahman M, Hosseini MS, Hoveizeh NF, Tran LSP (2019) Alleviation of the effect of salinity on growth and yield of strawberry by foliar spray of selenium-nanoparticles. Environ Pollut 253:246–258

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Irving LJ, McGill C, Matthew C, Zhou D, Kemp P (2010) The effects of salinity and osmotic stress on barley germination rate: sodium as an osmotic regulator. Ann Bot 106(6):1027–1035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu JK, Hasegawa PM, Bressan RA, Bohnert HJ (1997) Molecular aspects of osmotic stress in plants. Crit Rev Plant Sci 16(3):253–277

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara Hawrylak-Nowak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hawrylak-Nowak, B. (2022). Selenium- and Se-Nanoparticle-Induced Improvements of Salt Stress Tolerance in Plants. In: Hossain, M.A., Ahammed, G.J., Kolbert, Z., El-Ramady, H., Islam, T., Schiavon, M. (eds) Selenium and Nano-Selenium in Environmental Stress Management and Crop Quality Improvement. Sustainable Plant Nutrition in a Changing World. Springer, Cham. https://doi.org/10.1007/978-3-031-07063-1_6

Download citation

Publish with us

Policies and ethics