Skip to main content

Microbial Production of Amines and Amino Acids by Fermentation

  • Chapter
  • First Online:
Microbial Production of High-Value Products

Part of the book series: Microbiology Monographs ((MICROMONO,volume 37))

  • 809 Accesses

Abstract

Amino acids and derived amines are widely produced and utilized industrially. Fermentation is the preferred route for amino acid production. Established fermentation processes are characterized by economies of scale. Therefore, producing strains are constantly improved with regard to titer, yield, and productivity as key performance indicators embracing the newest metabolic engineering technologies. Furthermore, metabolic engineering enabled the production of non-proteinogenic amino acids, omega-amino acids, functionalized amino acids, and diamines. In this chapter, we will focus on strain development for the fermentative production of these nitrogenous compounds by bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adkins J, Jordan J, Nielsen DR (2013) Engineering Escherichia coli for renewable production of the 5-carbon polyamide building-blocks 5-aminovalerate and glutarate. Biotechnol Bioeng 110:1726–1734

    Article  CAS  PubMed  Google Scholar 

  • Ahmed AM, Younis EEA, Osman SA et al (2009) Genetic analysis of antimicrobial resistance in Escherichia coli isolated from diarrheic neonatal calves. Vet Microbiol 136:397–402

    Article  CAS  PubMed  Google Scholar 

  • Aksnes H, Ree R, Arnesen T (2019) Co-translational, post-translational, and non-catalytic roles of N-terminal acetyltransferases. Mol Cell 73:1097–1114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ajinomoto Co., Inc. (2021) https://www.ajinomoto.co.jp/company/en/ir/event/presentation/main/011117/teaserItems1/01/linkList/01/link/FY21Q1_Results_E.pdf Accessed 27 Sep 2021

  • Babu RP, O’Connor K, Seeram R (2013) Current progress on bio-based polymers and their future trends. Prog Biomater 2:8

    Article  PubMed  PubMed Central  Google Scholar 

  • Bach TMH, Hara R, Kino K et al (2013) Microbial production of N-acetyl cis-4-hydroxy-l-proline by coexpression of the rhizobium l-proline cis-4-hydroxylase and the yeast N-acetyltransferase Mpr1. Appl Microbiol Biotechnol 97:247–257

    Article  CAS  PubMed  Google Scholar 

  • Bach TMH, Takagi H (2013) Properties, metabolisms, and applications of l-proline analogues. Appl Microbiol Biotechnol 97:6623–6634

    Article  CAS  PubMed  Google Scholar 

  • Balasubramanian S, Chen J, Wigneswaran V et al (2021) Droplet-based microfluidic high throughput screening of Corynebacterium glutamicum for efficient heterologous protein production and secretion. Front Bioeng Biotechnol 9:668513

    Article  PubMed  PubMed Central  Google Scholar 

  • Baumgart M, Unthan S, Kloß R et al (2018) Corynebacterium glutamicum chassis C1*: building and testing a novel platform host for synthetic biology and industrial biotechnology. ACS Synth Biol 7:132–144

    Article  CAS  PubMed  Google Scholar 

  • Becker J, Wittmann C (2020) Microbial production of extremolytes - high-value active ingredients for nutrition, health care, and well-being. Curr Opin Biotechnol 65:118–128

    Article  CAS  PubMed  Google Scholar 

  • Becker J, Zelder O, Häfner S et al (2011) From zero to hero—design-based systems metabolic engineering of Corynebacterium glutamicum for l-lysine production. Metab Eng 13:159–168

    Article  CAS  PubMed  Google Scholar 

  • Benninghaus L, Walter T, Mindt M et al (2021) Metabolic engineering of Pseudomonas putida for fermentative production of l-theanine. J Agric Food Chem 69:9849–9858

    Article  CAS  PubMed  Google Scholar 

  • Bernal V, Arense P, Cánovas M (2016) l-carnitine, the vitamin BT : uses and production by the secondary metabolism of bacteria. In: Industrial biotechnology of vitamins, biopigments, and antioxidants. John Wiley & Sons, Ltd, pp 389–419

    Chapter  Google Scholar 

  • Burk MJ, Burgard AP, Osterhout RE, Pharkya P (2013) Microorganisms and methods for the biosynthesis of adipate, hexamethylenediamine and 6-aminocaproic acid. BRPI1011227A8

    Google Scholar 

  • Burmeister A, Akhtar Q, Hollmann L et al (2021) (Optochemical) control of synthetic microbial coculture interactions on a microcolony level. ACS Synth Biol 10:1308–1319

    Article  CAS  PubMed  Google Scholar 

  • Burmeister A, Hilgers F, Langner A et al (2018) A microfluidic co-cultivation platform to investigate microbial interactions at defined microenvironments. Lab Chip 19:98–110

    Article  PubMed  Google Scholar 

  • Buschke N, Becker J, Schäfer R et al (2013) Systems metabolic engineering of xylose-utilizing Corynebacterium glutamicum for production of 1,5-diaminopentane. Biotechnol J 8:557–570

    Article  CAS  PubMed  Google Scholar 

  • Buschke N, Schröder H, Wittmann C (2011) Metabolic engineering of Corynebacterium glutamicum for production of 1,5-diaminopentane from hemicellulose. Biotechnol J 6:306–317

    Article  CAS  PubMed  Google Scholar 

  • Cartwright RA, Roberts EAH, Wood DJ (1954) Theanine, an amino-acid n-ethyl amide present in tea. J Sci Food Agric 5:597–599

    Article  CAS  Google Scholar 

  • Chae TU, Ahn JH, Ko Y-S et al (2020) Metabolic engineering for the production of dicarboxylic acids and diamines. Metab Eng 58:2–16

    Article  CAS  PubMed  Google Scholar 

  • Chae TU, Kim WJ, Choi S et al (2015) Metabolic engineering of Escherichia coli for the production of 1,3-diaminopropane, a three carbon diamine. Sci Rep 5:13040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen J, Wang Y, Guo X et al (2020) Efficient bioproduction of 5-aminolevulinic acid, a promising biostimulant and nutrient, from renewable bioresources by engineered Corynebacterium glutamicum. Biotechnol Biofuels 13:41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng J, Luo Q, Duan H et al (2020) Efficient whole-cell catalysis for 5-aminovalerate production from l-lysine by using engineered Escherichia coli with ethanol pretreatment. Sci Rep 10:990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cho JS, Choi KR, Prabowo CPS et al (2017) CRISPR/Cas9-coupled recombineering for metabolic engineering of Corynebacterium glutamicum. Metab Eng 42:157–167

    Article  CAS  PubMed  Google Scholar 

  • Choi JW, Yim SS, Lee SH et al (2015) Enhanced production of gamma-aminobutyrate (GABA) in recombinant Corynebacterium glutamicum by expressing glutamate decarboxylase active in expanded pH range. Microb Cell Factories 14:21

    Article  CAS  Google Scholar 

  • Cleto S, Jensen JVK, Wendisch VF, Lu TK (2016) Corynebacterium glutamicum metabolic engineering with CRISPR interference (CRISPRi). ACS Synth Biol 5:375–385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cody WL, He JX, Reily MD et al (1997) Design of a potent combined pseudopeptide endothelin-A/endothelin-B receptor antagonist, Ac-dBhg16-Leu-Asp-Ile-[NMe]Ile-Trp21 (PD 156252): examination of its pharmacokinetic and spectral properties. J Med Chem 40:2228–2240

    Article  CAS  PubMed  Google Scholar 

  • Costas AM, White AK, Metcalf WW (2001) Purification and characterization of a novel phosphorus-oxidizing enzyme from Pseudomonas stutzeri WM88. J Biol Chem 276:17429–17436

    Article  CAS  PubMed  Google Scholar 

  • Czech L, Poehl S, Hub P et al (2018) Tinkering with osmotically controlled transcription allows enhanced production and excretion of ectoine and hydroxyectoine from a microbial cell factory. Appl Environ Microbiol 84:e01772-17

    Article  PubMed  PubMed Central  Google Scholar 

  • Dasu VV, Nakada Y, Ohnishi-Kameyama M et al (2006) Characterization and a role of Pseudomonas aeruginosa spermidine dehydrogenase in polyamine catabolism. Microbiology 152:2265–2272

    Article  CAS  PubMed  Google Scholar 

  • Della Corte D, van Beek HL, Syberg F et al (2020) Engineering and application of a biosensor with focused ligand specificity. Nat Commun 11:4851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dong Y, Zhang H, Wang X et al (2021) Enhancing ectoine production by recombinant Escherichia coli through step-wise fermentation optimization strategy based on kinetic analysis. Bioprocess Biosyst Eng 44:1557–1566

    Article  CAS  PubMed  Google Scholar 

  • Ducker GS, Rabinowitz JD (2017) One-carbon metabolism in health and disease. Cell Metab 25:27–42

    Article  CAS  PubMed  Google Scholar 

  • Dusny C, Grünberger A (2020) Microfluidic single-cell analysis in biotechnology: from monitoring towards understanding. Curr Opin Biotechnol 63:26–33

    Article  CAS  PubMed  Google Scholar 

  • Eikmanns BJ, Metzger M, Reinscheid D et al (1991) Amplification of three threonine biosynthesis genes in Corynebacterium glutamicum and its influence on carbon flux in different strains. Appl Microbiol Biotechnol 34:617–622

    Article  CAS  PubMed  Google Scholar 

  • Evonik Industries (2016a) Evonik to acquire technology from METEX for the fermentative production of methionine—Evonik Industries. https://corporate.evonik.com/en/media/press-releases/nutrition-and-care/evonik-to-acquire-technology-from-metex-for-the-fermentative-production-of-methionine-106336.html. Accessed 6 Aug 2021

  • Evonik Industries (2016b) Evonik starts construction of second methionine complex in Singapore - Evonik Industries. https://corporate.evonik.com/en/investor-relations/evonik-starts-construction-of-second-methionine-complex-in-singapore-106948.html. Accessed 6 Aug 2021

  • Feng L, Zhang Y, Fu J et al (2016) Metabolic engineering of Corynebacterium glutamicum for efficient production of 5-aminolevulinic acid. Biotechnol Bioeng 113:1284–1293

    Article  CAS  PubMed  Google Scholar 

  • Flores S, Gosset G, Flores N et al (2002) Analysis of carbon metabolism in Escherichia coli strains with an inactive phosphotransferase system by 13C labeling and NMR spectroscopy. Metab Eng 4:124–137

    Article  CAS  PubMed  Google Scholar 

  • Frese M, Sewald N (2015) Enzymatic halogenation of tryptophan on a gram scale. Angew Chem Int Ed 54:298–301

    Article  CAS  Google Scholar 

  • Georgi T, Rittmann D, Wendisch VF (2005) Lysine and glutamate production by Corynebacterium glutamicum on glucose, fructose and sucrose: roles of malic enzyme and fructose-1,6-bisphosphatase. Metab Eng 7:291–301

    Article  CAS  PubMed  Google Scholar 

  • Gießelmann G, Dietrich D, Jungmann L et al (2019) Metabolic engineering of Corynebacterium glutamicum for high-level ectoine production: design, combinatorial assembly, and implementation of a transcriptionally balanced heterologous ectoine pathway. Biotechnol J 14:e1800417

    Article  PubMed  CAS  Google Scholar 

  • Global Amino Acids Market (2021) | COVID-19 Impact, Methionine, MSG, Valine. https://industry-experts.com/verticals/food-and-beverage/global-amino-acids-market-products-and-applications. Accessed 6 Aug 2021

    Google Scholar 

  • Gordon DJ, Tappe R, Meredith SC (2002) Design and characterization of a membrane permeable N-methyl amino acid-containing peptide that inhibits Aβ1–40 fibrillogenesis. J Pept 60:37–55

    Article  CAS  Google Scholar 

  • Graf M, Haas T, Müller F et al (2019) Continuous adaptive evolution of a fast-growing Corynebacterium glutamicum strain independent of protocatechuate. Front Microbiol 10:1648

    Article  PubMed  PubMed Central  Google Scholar 

  • Grünberger A, Wiechert W, Kohlheyer D (2014) Single-cell microfluidics: opportunity for bioprocess development. Curr Opin Biotechnol 29:15–23

    Article  PubMed  CAS  Google Scholar 

  • Guengerich FP, Waterman MR, Egli M (2016) Recent structural insights into cytochrome P450 function. Trends Pharmacol Sci 37:625–640

    Article  CAS  PubMed  Google Scholar 

  • Guo X, Li M, Li H et al (2021) Enhanced cadaverine production by engineered Escherichia coli using soybean residue hydrolysate (SRH) as a sole nitrogen source. Appl Biochem Biotechnol 193:533–543

    Article  CAS  PubMed  Google Scholar 

  • Guo Z-W, Ou X-Y, Liang S et al (2020) Recruiting a phosphite dehydrogenase/formamidase-driven antimicrobial contamination system in Bacillus subtilis for nonsterilized fermentation of acetoin. ACS Synth Biol 9:2537–2545

    Article  CAS  PubMed  Google Scholar 

  • Hagihara R, Ohno S, Hayashi M et al (2021) Production of l-theanine by Escherichia coli in the absence of supplemental ethylamine. Appl Environ Microbiol 87:e00031–e00021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamana K, Matsuzaki S (1992) Polyamines as a chemotaxonomic marker in bacterial systematics. Crit Rev Microbiol 18:261–283

    Article  CAS  PubMed  Google Scholar 

  • Hammer PE, Hill DS, Lam ST et al (1997) Four genes from Pseudomonas fluorescens that encode the biosynthesis of pyrrolnitrin. Appl Environ Microbiol 63:2147–2154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haupka C, Brito LF, Busche T et al (2021) Genomic and transcriptomic investigation of the physiological response of the methylotroph bacillus methanolicus to 5-aminovalerate. Front Microbiol 12:664598

    Article  PubMed  PubMed Central  Google Scholar 

  • Haupka C, Delépine B, Irla M et al (2020) Flux enforcement for fermentative production of 5-Aminovalerate and Glutarate by Corynebacterium glutamicum. Catalysts 10:1065

    Article  CAS  Google Scholar 

  • Henke NA, Austermeier S, Grothaus IL et al (2020) Corynebacterium glutamicum CrtR and its orthologs in actinobacteria: conserved function and application as genetically encoded biosensor for detection of geranylgeranyl pyrophosphate. Int J Mol Sci 21:5482

    Article  CAS  PubMed Central  Google Scholar 

  • Henke NA, Wiebe D, Pérez-García F et al (2018) Coproduction of cell-bound and secreted value-added compounds: simultaneous production of carotenoids and amino acids by Corynebacterium glutamicum. Bioresour Technol 247:744–752

    Article  CAS  PubMed  Google Scholar 

  • Hennig G, Haupka C, Brito LF et al (2020) Methanol-essential growth of Corynebacterium glutamicum: adaptive laboratory evolution overcomes limitation due to methanethiol assimilation pathway. Int J Mol Sci 21:3617

    Article  CAS  PubMed Central  Google Scholar 

  • Herrmann KM (1995) The shikimate pathway as an entry to aromatic secondary metabolism. Plant Physiol 107:7–12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirota R, Abe K, Katsuura Z-I et al (2017) A novel biocontainment strategy makes bacterial growth and survival dependent on phosphite. Sci Rep 7:44748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hyslop JF, Lovelock SL, Watson AJB et al (2019) N-Alkyl-α-amino acids in nature and their biocatalytic preparation. J Biotechnol 293:56–65

    Article  CAS  PubMed  Google Scholar 

  • Ikai H, Yamamoto S (1994) Cloning and expression in Escherichia coli of the gene encoding a novel L-2,4-diaminobutyrate decarboxylase of Acinetobacter baumannii. FEMS Microbiol Lett 124:225–228

    CAS  PubMed  Google Scholar 

  • Ikai H, Yamamoto S (1997) Identification and analysis of a gene encoding l-2,4-diaminobutyrate:2-ketoglutarate 4-aminotransferase involved in the 1,3-diaminopropane production pathway in Acinetobacter baumannii. J Bacteriol 179:5118–5125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ikeda N, Miyamoto M, Adachi N et al (2013) Direct cadaverine production from cellobiose using β-glucosidase displaying Escherichia coli. AMB Express 3:67

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Irla M, Heggeset TMB, Nærdal I et al (2019) Corrigendum: genome-based genetic tool development for Bacillus methanolicus: theta- and rolling circle-replicating plasmids for inducible gene expression and application to methanol-based cadaverine production. Front Microbiol 10:425

    Article  PubMed  PubMed Central  Google Scholar 

  • Jensen JVK, Eberhardt D, Wendisch VF (2015) Modular pathway engineering of Corynebacterium glutamicum for production of the glutamate-derived compounds ornithine, proline, putrescine, citrulline, and arginine. J Biotechnol 214:85–94

    Article  CAS  PubMed  Google Scholar 

  • Jensen JVK, Wendisch VF (2013) Ornithine cyclodeaminase-based proline production by Corynebacterium glutamicum. Microb Cell Factories 12:1–10

    Article  CAS  Google Scholar 

  • Jiao J, Ma Y, Chen S et al (2016) Melatonin-producing endophytic bacteria from grapevine roots promote the abiotic stress-induced production of endogenous melatonin in their hosts. Front Plant Sci 7:1387

    Article  PubMed  PubMed Central  Google Scholar 

  • Jorge JMP, Leggewie C, Wendisch VF (2016) A new metabolic route for the production of gamma-aminobutyric acid by Corynebacterium glutamicum from glucose. Amino Acids 48:2519–2531

    Article  CAS  PubMed  Google Scholar 

  • Jorge JMP, Pérez-García F, Wendisch VF (2017) A new metabolic route for the fermentative production of 5-aminovalerate from glucose and alternative carbon sources. Bioresour Technol 245:1701–1709

    Article  CAS  PubMed  Google Scholar 

  • Jurischka S, Bida A, Dohmen-Olma D et al (2020) A secretion biosensor for monitoring sec-dependent protein export in Corynebacterium glutamicum. Microb Cell Factories 19:11

    Article  CAS  Google Scholar 

  • Kalinowski J, Cremer J, Bachmann B et al (1991) Genetic and biochemical analysis of the aspartokinase from Corynebacterium glutamicum. Mol Microbiol 5:1197–1204

    Article  CAS  PubMed  Google Scholar 

  • Kanda K, Ishida T, Hirota R et al (2014) Application of a phosphite dehydrogenase gene as a novel dominant selection marker for yeasts. J Biotechnol 182–183:68–73

    Article  PubMed  CAS  Google Scholar 

  • Kawaguchi H, Sasaki M, Vertès AA et al (2008) Engineering of an l-arabinose metabolic pathway in Corynebacterium glutamicum. Appl Microbiol Biotechnol 77:1053–1062

    Article  CAS  PubMed  Google Scholar 

  • Kawaguchi H, Vertès AA, Okino S et al (2006) Engineering of a xylose metabolic pathway in Corynebacterium glutamicum. Appl Environ Microbiol 72:3418–3428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kerbs A, Mindt M, Schwardmann L, Wendisch VF (2021) Sustainable production of N-methylphenylalanine by reductive methylamination of phenylpyruvate using engineered Corynebacterium glutamicum. Microorganisms 9:824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kerr JS, Ruppert CL, Tozzi CA et al (1987) Reduction of chronic hypoxic pulmonary hypertension in the rat by an inhibitor of collagen production. Am Rev Respir Dis 135:300–306

    CAS  PubMed  Google Scholar 

  • Kholy ER, Eikmanns BJ, Gutmann M, Sahm H (1993) Glutamate dehydrogenase is not essential for glutamate formation by Corynebacterium glutamicum. Appl Environ Microbiol 59:2329–2331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kiefer P, Heinzle E, Wittmann C (2002) Influence of glucose, fructose and sucrose as carbon sources on kinetics and stoichiometry of lysine production by Corynebacterium glutamicum. J Ind Microbiol Biotechnol 28:338–343

    Article  CAS  PubMed  Google Scholar 

  • Kim HT, Baritugo K-A, Oh YH et al (2018) Metabolic engineering of Corynebacterium glutamicum for the high-level production of cadaverine that can be used for the synthesis of biopolyamide 510. ACS Sustainable Chem Eng 6:5296–5305

    Article  CAS  Google Scholar 

  • Kimura T, Sugahara I, Hanai K, Tonomura Y (1992) Purification and characterization of γ-glutamylmethylamide synthetase from Methylophaga sp. AA-30. Biosci Biotechnol Biochem 56:708–711

    Article  CAS  PubMed  Google Scholar 

  • Kind S, Jeong WK, Schröder H, Wittmann C (2010) Systems-wide metabolic pathway engineering in Corynebacterium glutamicum for bio-based production of diaminopentane. Metab Eng 12:341–351

    Article  CAS  PubMed  Google Scholar 

  • Kind S, Kreye S, Wittmann C (2011) Metabolic engineering of cellular transport for overproduction of the platform chemical 1,5-diaminopentane in Corynebacterium glutamicum. Metab Eng 13:617–627

    Article  CAS  PubMed  Google Scholar 

  • Ko YJ, Kim M, You SK et al (2021) Animal-free heme production for artificial meat in Corynebacterium glutamicum via systems metabolic and membrane engineering. Metab Eng 66:217–228

    Article  CAS  PubMed  Google Scholar 

  • Koga R, Miyoshi Y, Sakaue H et al (2017) Mouse d-amino-acid oxidase: distribution and physiological substrates. Front Mol Biosci 4:82

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kugler P, Fröhlich D, Wendisch VF (2020) Development of a biosensor for crotonobetaine-CoA ligase screening based on the elucidation of Escherichia coli carnitine metabolism. ACS Synth Biol 9:2460–2471

    Article  CAS  PubMed  Google Scholar 

  • Kugler P, Trumm M, Frese M, Wendisch VF (2021) l-Carnitine production through biosensor-guided construction of the Neurospora crassa biosynthesis pathway in Escherichia coli. Front Bioeng Biotechnol 9:671321

    Article  PubMed  PubMed Central  Google Scholar 

  • Kung HF, Wagner C (1970) The enzymatic synthesis of N-methylalanine. Biochim Biophys Acta 201:513–516

    Article  CAS  PubMed  Google Scholar 

  • Kurata HT, Marton LJ, Nichols CG (2006) The polyamine binding site in inward rectifier K+ channels. J Gen Physiol 127:467–480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kwak DH, Lim HG, Yang J et al (2017) Synthetic redesign of Escherichia coli for cadaverine production from galactose. Biotechnol Biofuels 10:20

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lamont IL, Martin LW, Sims T et al (2006) Characterization of a gene encoding an acetylase required for pyoverdine synthesis in Pseudomonas aeruginosa. J Bacteriol 188:3149–3152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laslo T, von Zaluskowski P, Gabris C et al (2012) Arabitol metabolism of Corynebacterium glutamicum and its regulation by AtlR. J Bacteriol 194:941–955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lau MK (2018) Recombinant bacterial cells producing (S)-2-amino-6-hydroxypimelate. US9890405B2

    Google Scholar 

  • Lee HL, Kim S-Y, Kim EJ et al (2019) Synthesis of methylated anthranilate derivatives using engineered strains of Escherichia coli. J Microbiol Biotechnol 29:839–844

    Article  CAS  PubMed  Google Scholar 

  • Lee J-H, Wendisch VF (2017) Production of amino acids—genetic and metabolic engineering approaches. Bioresour Technol 245:1575–1587

    Article  CAS  PubMed  Google Scholar 

  • Lei M, Peng X, Sun W et al (2021) Nonsterile l-lysine fermentation using engineered phosphite-grown Corynebacterium glutamicum. ACS Omega 6:10160–10167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lim HG, Seo SW, Jung GY (2013) Engineered Escherichia coli for simultaneous utilization of galactose and glucose. Bioresour Technol 135:564–567

    Article  CAS  PubMed  Google Scholar 

  • Liu L-K, Abdelwahab H, Martin Del Campo JS et al (2016) The structure of the antibiotic deactivating, N-hydroxylating rifampicin monooxygenase*. J Biol Chem 291:21553–21562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lubitz D, Jorge JMP, Pérez-García F et al (2016) Roles of export genes cgmA and lysE for the production of l-arginine and l-citrulline by Corynebacterium glutamicum. Appl Microbiol Biotechnol 100:8465–8474

    Article  CAS  PubMed  Google Scholar 

  • Luka Z, Mudd SH, Wagner C (2009) Glycine N-methyltransferase and regulation of S-adenosylmethionine levels. J Biol Chem 284:22507–22511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma H, Fan X, Cai N et al (2020) Efficient fermentative production of l-theanine by Corynebacterium glutamicum. Appl Microbiol Biotechnol 104:119–130

    Article  CAS  PubMed  Google Scholar 

  • Ma W, Wang J, Li Y et al (2018) Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) co-produced with l-isoleucine in Corynebacterium glutamicum WM001. Microb Cell Factories 17:93

    Article  CAS  Google Scholar 

  • Meiswinkel TM, Gopinath V, Lindner SN et al (2013b) Accelerated pentose utilization by Corynebacterium glutamicum for accelerated production of lysine, glutamate, ornithine and putrescine. Microb Biotechnol 6:131–140

    Article  PubMed  CAS  Google Scholar 

  • Meiswinkel TM, Rittmann D, Lindner SN, Wendisch VF (2013a) Crude glycerol-based production of amino acids and putrescine by Corynebacterium glutamicum. Bioresour Technol 145:254–258

    Article  CAS  PubMed  Google Scholar 

  • Michael JP (2017) Chapter one—acridone alkaloids. In: Knölker H-J (ed) The alkaloids: chemistry and biology. Academic Press, pp 1–108

    Google Scholar 

  • Mihara H, Muramatsu H, Kakutani R et al (2005) N-methyl-l-amino acid dehydrogenase from Pseudomonas putida. FEBS J 272:1117–1123

    Article  CAS  PubMed  Google Scholar 

  • Mimitsuka T, Sawai H, Hatsu M, Yamada K (2007) Metabolic engineering of Corynebacterium glutamicum for cadaverine fermentation. Biosci Biotechnol Biochem 71:2130–2135

    Article  CAS  PubMed  Google Scholar 

  • Mindt M, Hannibal S, Heuser M et al (2019a) Fermentative production of N-alkylated glycine derivatives by recombinant Corynebacterium glutamicum using a mutant of imine reductase DpkA from Pseudomonas putida. Front Bioeng Biotechnol 7:232

    Article  PubMed  PubMed Central  Google Scholar 

  • Mindt M, Heuser M, Wendisch VF (2019b) Xylose as preferred substrate for sarcosine production by recombinant Corynebacterium glutamicum. Bioresour Technol 281:135–142

    Article  CAS  PubMed  Google Scholar 

  • Mindt M, Risse JM, Gruß H et al (2018) One-step process for production of N-methylated amino acids from sugars and methylamine using recombinant Corynebacterium glutamicum as biocatalyst. Sci Rep 8:12895

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mindt M, Walter T, Kugler P, Wendisch VF (2020) Microbial engineering for production of N-functionalized amino acids and amines. Biotechnol J 15:1900451

    Article  CAS  Google Scholar 

  • Mir R, Jallu S, Singh TP (2015) The shikimate pathway: review of amino acid sequence, function and three-dimensional structures of the enzymes. Crit Rev Microbiol 41:172–189

    Article  CAS  PubMed  Google Scholar 

  • Miscevic D, Mao J-Y, Kefale T et al (2021) Strain engineering for high-level 5-aminolevulinic acid production in Escherichia coli. Biotechnol Bioeng 118:30–42

    Article  CAS  PubMed  Google Scholar 

  • Moritzer A-C, Minges H, Prior T et al (2019) Structure-based switch of regioselectivity in the flavin-dependent tryptophan 6-halogenase Thal. J Biol Chem 294:2529–2542

    Article  CAS  PubMed  Google Scholar 

  • Motomura K, Sano K, Watanabe S et al (2018) Synthetic phosphorus metabolic pathway for biosafety and contamination management of cyanobacterial cultivation. ACS Synth Biol 7:2189–2198

    Article  CAS  PubMed  Google Scholar 

  • Mugford ST, Louveau T, Melton R et al (2013) Modularity of plant metabolic gene clusters: a trio of linked genes that are collectively required for acylation of triterpenes in oat. Plant Cell 25:1078–1092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mügge C, Heine T, Baraibar AG et al (2020) Flavin-dependent N-hydroxylating enzymes: distribution and application. Appl Microbiol Biotechnol 104:6481–6499

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Muramatsu H, Mihara H, Goto M et al (2005) A new family of NAD(P)H-dependent oxidoreductases distinct from conventional Rossmann-fold proteins. J Biosci Bioeng 99:541–547

    Article  CAS  PubMed  Google Scholar 

  • Muramatsu H, Mihara H, Kakutani R et al (2004) Enzymatic synthesis of N-methyl-l-phenylalanine by a novel enzyme, N-methyl-l-amino acid dehydrogenase, from Pseudomonas putida. Tetrahedron Asymmetry 15:2841–2843

    Article  CAS  Google Scholar 

  • Na D, Yoo SM, Chung H et al (2013) Metabolic engineering of Escherichia coli using synthetic small regulatory RNAs. Nat Biotechnol 31:170–174

    Article  CAS  PubMed  Google Scholar 

  • Nærdal I, Pfeifenschneider J, Brautaset T, Wendisch VF (2015) Methanol-based cadaverine production by genetically engineered bacillus methanolicus strains. Microb Biotechnol 8:342–350

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nakagawa M (1970) Constituents in tea leaf and their contribution to the taste of green tea liquor. Jpn Agric Res Q 5:43–47

    CAS  Google Scholar 

  • Narukawa M, Morita K, Hayashi Y (2008) l-theanine elicits an umami taste with inosine 5′-monophosphate. Biosci Biotechnol Biochem 72:3015–3017

    Article  CAS  PubMed  Google Scholar 

  • Neilands JB (1993) Siderophores. Arch Biochem Biophys 302:1–3

    Article  CAS  PubMed  Google Scholar 

  • Neubauer PR, Widmann C, Wibberg D et al (2018) A flavin-dependent halogenase from metagenomic analysis prefers bromination over chlorination. PLoS One 13:e0196797

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nguyen AQD, Schneider J, Reddy GK, Wendisch VF (2015b) Fermentative production of the diamine putrescine: system metabolic engineering of Corynebacterium glutamicum. Meta 5:211–231

    CAS  Google Scholar 

  • Nguyen AQD, Schneider J, Wendisch VF (2015a) Elimination of polyamine N-acetylation and regulatory engineering improved putrescine production by Corynebacterium glutamicum. J Biotechnol 201:75–85

    Article  CAS  PubMed  Google Scholar 

  • Nikkei (2016) Mitsui unit to beef up US output of amino acid for feed. In: Nikkei Asia. https://asia.nikkei.com/Business/Mitsui-unit-to-beef-up-US-output-of-amino-acid-for-feed. Accessed 6 Aug 2021

  • Ning Y, Wu X, Zhang C et al (2016) Pathway construction and metabolic engineering for fermentative production of ectoine in Escherichia coli. Metab Eng 36:10–18

    Article  CAS  PubMed  Google Scholar 

  • Nishizawa T, Aldrich CC, Sherman DH (2005) Molecular analysis of the rebeccamycin l-amino acid oxidase from Lechevalieria aerocolonigenes ATCC 39243. J Bacteriol 187:2084–2092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noh M, Yoo SM, Kim WJ, Lee SY (2017) Gene expression knockdown by modulating synthetic small RNA expression in Escherichia coli. Cell Syst 5:418–426.e4

    Article  CAS  PubMed  Google Scholar 

  • Onaka H, Taniguchi S, Igarashi Y, Furumai T (2003) Characterization of the biosynthetic gene cluster of rebeccamycin from Lechevalieria aerocolonigenes ATCC 39243. Biosci Biotechnol Biochem 67:127–138

    Article  CAS  PubMed  Google Scholar 

  • Ou X-Y, Wu X-L, Peng F et al (2019) Metabolic engineering of a robust Escherichia coli strain with a dual protection system. Biotechnol Bioeng 116:3333–3348

    Article  CAS  PubMed  Google Scholar 

  • Pastor JM, Salvador M, Argandoña M et al (2010) Ectoines in cell stress protection: uses and biotechnological production. Biotechnol Adv 28:782–801

    Article  CAS  PubMed  Google Scholar 

  • Pérez-García F, Brito LF, Wendisch VF (2019) Function of l-pipecolic acid as compatible solute in Corynebacterium glutamicum as basis for its production under hyperosmolar conditions. Front Microbiol 10:340

    Article  PubMed  PubMed Central  Google Scholar 

  • Pérez-García F, Burgardt A, Kallman DR et al (2021) Dynamic co-cultivation process of Corynebacterium glutamicum strains for the fermentative production of riboflavin. Fermentation 7:11

    Article  CAS  Google Scholar 

  • Pérez-García F, Jorge JMP, Dreyszas A et al (2018) Efficient production of the dicarboxylic acid glutarate by Corynebacterium glutamicum via a novel synthetic pathway. Front Microbiol 9:2589

    Article  PubMed  PubMed Central  Google Scholar 

  • Pérez-García F, Peters-Wendisch P, Wendisch VF (2016) Engineering Corynebacterium glutamicum for fast production of l-lysine and l-pipecolic acid. Appl Microbiol Biotechnol 100:8075–8090

    Article  PubMed  CAS  Google Scholar 

  • Pérez-García F, Risse JM, Friehs K, Wendisch VF (2017a) Fermentative production of l-pipecolic acid from glucose and alternative carbon sources. Biotechnol J 12:1600646

    Article  CAS  Google Scholar 

  • Pérez-García F, Ziert C, Risse JM, Wendisch VF (2017b) Improved fermentative production of the compatible solute ectoine by Corynebacterium glutamicum from glucose and alternative carbon sources. J Biotechnol 258:59–68

    Article  PubMed  CAS  Google Scholar 

  • Peters-Wendisch PG, Schiel B, Wendisch VF et al (2001) Pyruvate carboxylase is a major bottleneck for glutamate and lysine production by Corynebacterium glutamicum. J Mol Microbiol Biotechnol 3:295–300

    CAS  PubMed  Google Scholar 

  • Petrossian TC, Clarke SG (2011) Uncovering the human methyltransferasome. Mol Cell Proteomics 10:M110.000976

    Article  PubMed  CAS  Google Scholar 

  • Poiani GJ, Kemnitzer JE, Fox JD et al (1997) Polymeric carrier of proline analogue with antifibrotic effect in pulmonary vascular remodeling. Am J Respir Crit Care Med 155:1384–1390

    Article  CAS  PubMed  Google Scholar 

  • Prabowo CPS, Shin JH, Cho JS et al (2020) Microbial production of 4-amino-1-butanol, a four-carbon amino alcohol. Biotechnol Bioeng 117:2771–2780

    Article  CAS  PubMed  Google Scholar 

  • Prell C, Busche T, Rückert C et al (2021) Adaptive laboratory evolution accelerated glutarate production by Corynebacterium glutamicum. Microb Cell Factories 20:97

    Article  CAS  Google Scholar 

  • Qian Z-G, Xia X-X, Lee SY (2009) Metabolic engineering of Escherichia coli for the production of putrescine: a four carbon diamine. Biotechnol Bioeng 104:651–662

    CAS  PubMed  Google Scholar 

  • Qian Z-G, Xia X-X, Lee SY (2011) Metabolic engineering of Escherichia coli for the production of cadaverine: a five carbon diamine. Biotechnol Bioeng 108:93–103

    Article  CAS  PubMed  Google Scholar 

  • Reshamwala SMS, Pagar SK, Velhal VS et al (2014) Construction of an efficient Escherichia coli whole-cell biocatalyst for d-mannitol production. J Biosci Bioeng 118:628–631

    Article  CAS  PubMed  Google Scholar 

  • Rhee HJ, Kim E-J, Lee JK (2007) Physiological polyamines: simple primordial stress molecules. J Cell Mol Med 11:685–703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richter AA, Mais C-N, Czech L et al (2019) Biosynthesis of the stress-protectant and chemical chaperon ectoine: biochemistry of the transaminase EctB. Front Microbiol 10:2811

    Article  PubMed  PubMed Central  Google Scholar 

  • Rioz-Martínez A, Kopacz M, de Gonzalo G et al (2011) Exploring the biocatalytic scope of a bacterial flavin-containing monooxygenase. Org Biomol Chem 9:1337–1341

    Article  PubMed  CAS  Google Scholar 

  • Rohde B, Hans J, Martens S et al (2008) Anthranilate N-methyltransferase, a branch-point enzyme of acridone biosynthesis. Plant J 53:541–553

    Article  CAS  PubMed  Google Scholar 

  • Sasikumar K, Hannibal S, Wendisch VF, Nampoothiri KM (2021) Production of biopolyamide precursors 5-amino valeric acid and putrescine from rice straw hydrolysate by engineered Corynebacterium glutamicum. Front Bioeng Biotechnol 9:635509

    Article  PubMed  PubMed Central  Google Scholar 

  • Schneider J, Eberhardt D, Wendisch VF (2012) Improving putrescine production by Corynebacterium glutamicum by fine-tuning ornithine transcarbamoylase activity using a plasmid addiction system. Appl Microbiol Biotechnol 95:169–178

    Article  CAS  PubMed  Google Scholar 

  • Schneider J, Wendisch VF (2010) Putrescine production by engineered Corynebacterium glutamicum. Appl Microbiol Biotechnol 88:859–868

    Article  CAS  PubMed  Google Scholar 

  • Schnepel C, Minges H, Frese M, Sewald N (2016) A high-throughput fluorescence assay to determine the activity of tryptophan halogenases. Angew Chem Int Ed 55:14159–14163

    Article  CAS  Google Scholar 

  • Schnepel C, Sewald N (2017) Enzymatic halogenation: a timely strategy for regioselective C−H activation. Chemistry 23:12064–12086

    Article  CAS  PubMed  Google Scholar 

  • Schultenkämper K, Brito LF, Wendisch VF (2020) Impact of CRISPR interference on strain development in biotechnology. Biotechnol Appl Biochem 67:7–21

    Article  PubMed  CAS  Google Scholar 

  • Schwardmann LS, Dransfeld AK, Schäffer T, Wendisch VF (2022) Metabolic engineering of Corynebacterium glutamicum for sustainable production of the aromatic dicarboxylic acid dipicolinic acid. Microorganisms 10:730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seltmann G, Holst O (2013) The bacterial cell wall. Springer Science & Business Media

    Google Scholar 

  • Sgobba E, Stumpf AK, Vortmann M et al (2018) Synthetic Escherichia coli-Corynebacterium glutamicum consortia for l-lysine production from starch and sucrose. Bioresour Technol 260:302–310

    Article  CAS  PubMed  Google Scholar 

  • Sgobba E, Wendisch VF (2020) Synthetic microbial consortia for small molecule production. Curr Opin Biotechnol 62:72–79

    Article  CAS  PubMed  Google Scholar 

  • Shaw AJ, Lam FH, Hamilton M et al (2016) Metabolic engineering of microbial competitive advantage for industrial fermentation processes. Science 353:583–586

    Article  CAS  PubMed  Google Scholar 

  • Sheng Q, Wu X, Jiang Y et al (2021) Highly efficient biosynthesis of l-ornithine from mannitol by using recombinant Corynebacterium glutamicum. Bioresour Technol 327:124799

    Article  CAS  PubMed  Google Scholar 

  • Shim J, Shin Y, Lee I, Kim SY (2017) l-Methionine production. Adv Biochem Eng Biotechnol 159:153–177

    CAS  PubMed  Google Scholar 

  • Soe CZ, Pakchung AAH, Codd R (2012) Directing the biosynthesis of putrebactin or desferrioxamine B in Shewanella putrefaciens through the upstream inhibition of ornithine decarboxylase. Chem Biodivers 9:1880–1890

    Article  CAS  PubMed  Google Scholar 

  • Stella RG, Wiechert J, Noack S, Frunzke J (2019) Evolutionary engineering of Corynebacterium glutamicum. Biotechnol J 14:e1800444

    Article  PubMed  CAS  Google Scholar 

  • Strijbis K, Vaz FM, Distel B (2010) Enzymology of the carnitine biosynthesis pathway. IUBMB Life 62:357–362

    CAS  PubMed  Google Scholar 

  • Sturgill G, Rather PN (2004) Evidence that putrescine acts as an extracellular signal required for swarming in Proteus mirabilis. Mol Microbiol 51:437–446

    Article  CAS  PubMed  Google Scholar 

  • Sugiyama Y, Nakamura A, Matsumoto M et al (2016) A novel putrescine exporter SapBCDF of Escherichia coli. J Biol Chem 291:26343–26351

    Article  CAS  PubMed  Google Scholar 

  • Suzuki H, Kumagai H (2002) Autocatalytic processing of gamma-glutamyltranspeptidase. J Biol Chem 277:43536–43543

    Article  CAS  PubMed  Google Scholar 

  • Tabor CW, Tabor H (1985) Polyamines in microorganisms. Microbiol Rev 49:81–99

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tachiki T (1986) Glutamine synthetase of some fermentation bacteria: function and application. Korean J Microbiol Biotechnol:506–508

    Google Scholar 

  • Takahashi C, Shirakawa J, Tsuchidate T et al (2012) Robust production of gamma-amino butyric acid using recombinant Corynebacterium glutamicum expressing glutamate decarboxylase from Escherichia coli. Enzym Microb Technol 51:171–176

    Article  CAS  Google Scholar 

  • Takashi T, Takeshi Y, Masashi U et al (1996) Purification and some properties of glutaminase from Pseudomonas nitroreducens IFO 12694. Biosci Biotechnol Biochem 60:1160–1164

    Article  CAS  PubMed  Google Scholar 

  • Takatsuma Y, Kamio Y (2004) Molecular dissection of the Selenomonas ruminantium cell envelope and lysine decarboxylase involved in the biosynthesis of a polyamine covalently linked to the cell wall peptidoglycan layer. Biosci Biotechnol Biochem 68:1–19

    Article  Google Scholar 

  • Tan S, Shi F, Liu H et al (2020) Dynamic control of 4-hydroxyisoleucine biosynthesis by modified l-isoleucine biosensor in recombinant Corynebacterium glutamicum. ACS Synth Biol 9:2378–2389

    Article  CAS  PubMed  Google Scholar 

  • Täuber S, Blöbaum L, Wendisch VF, Grünberger A (2021) Growth response and recovery of Corynebacterium glutamicum colonies on single-cell level upon defined pH stress pulses. Front Microbiol 12:711893

    Article  PubMed  PubMed Central  Google Scholar 

  • Tesch M, Eikmanns B, de Graaf A, Sahm H (1998) Ammonia assimilation in Corynebacterium glutamicum and a glutamate dehydrogenase-deficient mutant. Biotechnol Lett 20:953–957

    Article  CAS  Google Scholar 

  • Ting W-W, Ng I-S (2020) Metabolic manipulation through CRISPRi and gene deletion to enhance cadaverine production in Escherichia coli. J Biosci Bioeng 130:553–562

    Article  CAS  PubMed  Google Scholar 

  • Tsai G, Lane H-Y, Yang P et al (2004) Glycine transporter I inhibitor, N-methylglycine (sarcosine), added to antipsychotics for the treatment of schizophrenia. Biol Psychiatry 55:452–456

    Article  CAS  PubMed  Google Scholar 

  • Tsuge Y, Matsuzawa H (2021) Recent progress in production of amino acid-derived chemicals using Corynebacterium glutamicum. World J Microbiol Biotechnol 37:49

    Article  CAS  PubMed  Google Scholar 

  • van Pée KH, Hölzer M (1999) Specific enzymatic chlorination of tryptophan and tryptophan derivatives. Adv Exp Med Biol 467:603–609

    Article  PubMed  Google Scholar 

  • VanDrisse CM, Escalante-Semerena JC (2019) Protein acetylation in bacteria. Annu Rev Microbiol 73:111–132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Veldmann KH, Dachwitz S, Risse JM et al (2019b) Bromination of L-tryptophan in a fermentative process with Corynebacterium glutamicum. Front Bioeng Biotechnol 7:219

    Article  PubMed  PubMed Central  Google Scholar 

  • Veldmann KH, Minges H, Sewald N et al (2019a) Metabolic engineering of Corynebacterium glutamicum for the fermentative production of halogenated tryptophan. J Biotechnol 291:7–16

    Article  CAS  PubMed  Google Scholar 

  • von Kamp A, Klamt S (2017) Growth-coupled overproduction is feasible for almost all metabolites in five major production organisms. Nat Commun 8:15956

    Article  CAS  Google Scholar 

  • Vortmann M, Stumpf AK, Sgobba E et al (2021) A bottom-up approach towards a bacterial consortium for the biotechnological conversion of chitin to l-lysine. Appl Microbiol Biotechnol 105:1547–1561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vrljic M, Sahm H, Eggeling L (1996) A new type of transporter with a new type of cellular function: l-lysine export from Corynebacterium glutamicum. Mol Microbiol 22:815–826

    Article  CAS  PubMed  Google Scholar 

  • Wahlang B, Falkner KC, Cave MC, Prough RA (2015) Role of cytochrome P450 monooxygenase in carcinogen and chemotherapeutic drug metabolism. Adv Pharmacol 74:1–33

    Article  CAS  PubMed  Google Scholar 

  • Walter T, Al Medani N, Burgardt A et al (2020) Fermentative N-Methylanthranilate production by engineered Corynebacterium glutamicum. Microorganisms 8:866

    Article  CAS  PubMed Central  Google Scholar 

  • Wang L, Li G, Deng Y (2020) Diamine biosynthesis: research progress and application prospects. Appl Environ Microbiol 86:e01972-20

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang Q, Zhang J, Al Makishah NH et al (2021) Advances and perspectives for genome editing tools of Corynebacterium glutamicum. Front Microbiol 12:654058

    Article  PubMed  PubMed Central  Google Scholar 

  • Wendisch VF (2020) Metabolic engineering advances and prospects for amino acid production. Metab Eng 58:17–34

    Article  CAS  PubMed  Google Scholar 

  • Wendisch VF, Bott M, Eikmanns BJ (2006) Metabolic engineering of Escherichia coli and Corynebacterium glutamicum for biotechnological production of organic acids and amino acids. Curr Opin Microbiol 9:268–274

    Article  CAS  PubMed  Google Scholar 

  • Wendisch VF, Eberhardt D, Herbst M, Vold Korgaard Jensesn J (2016a) Biotechnological production of amino acids and nucleotides. In: Bicas J, Maróstica M Jr, Pastore G (eds) Biotechnological production of natural ingredients for food industry. Bentham Science Publishers, pp 60–163

    Google Scholar 

  • Wendisch VF, Jorge JMP, Pérez-García F, Sgobba E (2016b) Updates on industrial production of amino acids using Corynebacterium glutamicum. World J Microbiol Biotechnol 32:105

    Article  PubMed  CAS  Google Scholar 

  • Wendisch VF, Mindt M, Pérez-García F (2018) Biotechnological production of mono- and diamines using bacteria: recent progress, applications, and perspectives. Appl Microbiol Biotechnol 102:3583–3594

    Article  CAS  PubMed  Google Scholar 

  • Werdehausen R, Kremer D, Brandenburger T et al (2012) Lidocaine metabolites inhibit glycine transporter 1: a novel mechanism for the analgesic action of systemic lidocaine? Anesthesiology 116:147–158

    Article  CAS  PubMed  Google Scholar 

  • Wieschalka S, Blombach B, Eikmanns BJ (2012) Engineering Corynebacterium glutamicum for the production of pyruvate. Appl Microbiol Biotechnol 94:449–459

    Article  CAS  PubMed  Google Scholar 

  • Williams J, Sergi D, McKune AJ et al (2019) The beneficial health effects of green tea amino acid l-theanine in animal models: promises and prospects for human trials. Phytother Res 33:571–583

    Article  PubMed  Google Scholar 

  • Wolf S, Becker J, Tsuge Y et al (2021) Advances in metabolic engineering of Corynebacterium glutamicum to produce high-value active ingredients for food, feed, human health, and well-being. Essays Biochem 65:197–212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wördemann R, Wiefel L, Wendisch VF, Steinbüchel A (2021) Incorporation of alternative amino acids into cyanophycin by different cyanophycin synthetases heterologously expressed in Corynebacterium glutamicum. AMB Express 11:55

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wu X-Y, Guo X-Y, Zhang B et al (2019) Recent advances of l-ornithine biosynthesis in metabolically engineered Corynebacterium glutamicum. Front Bioeng Biotechnol 7:440

    Article  PubMed  Google Scholar 

  • Xue C, Hsu K-M, Chiu C-Y et al (2021) Fabrication of bio-based polyamide 56 and antibacterial nanofiber membrane from cadaverine. Chemosphere 266:128967

    Article  CAS  PubMed  Google Scholar 

  • Ying H, Tao S, Wang J et al (2017) Expanding metabolic pathway for de novo biosynthesis of the chiral pharmaceutical intermediate l-pipecolic acid in Escherichia coli. Microb Cell Factories 16:52

    Article  CAS  Google Scholar 

  • Yu X, Shi F, Liu H et al (2021) Programming adaptive laboratory evolution of 4-hydroxyisoleucine production driven by a lysine biosensor in Corynebacterium glutamicum. AMB Express 11:66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zanger UM, Schwab M (2013) Cytochrome P450 enzymes in drug metabolism: regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol Ther 138:103–141

    Article  CAS  PubMed  Google Scholar 

  • Zhang B, Gao G, Chu X-H, Ye B-C (2019) Metabolic engineering of Corynebacterium glutamicum S9114 to enhance the production of l-ornithine driven by glucose and xylose. Bioresour Technol 284:204–213

    Article  CAS  PubMed  Google Scholar 

  • Zhao D, Yu Y, Shen Y et al (2019) Melatonin synthesis and function: evolutionary history in animals and plants. Front Endocrinol 10:249

    Article  Google Scholar 

  • Zhou X, Wang F, Hu H et al (2011) Assessment of sustainable biomass resource for energy use in China. Biomass Bioenergy 35:1–11

    Article  Google Scholar 

  • Zhu L, Mack C, Wirtz A et al (2020) Regulation of γ-aminobutyrate (GABA) utilization in Corynebacterium glutamicum by the PucR-type transcriptional regulator GabR and by alternative nitrogen and carbon sources. Front Microbiol 11:544045

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volker F. Wendisch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wendisch, V.F., Kerbs, A. (2022). Microbial Production of Amines and Amino Acids by Fermentation. In: Rehm, B.H.A., Wibowo, D. (eds) Microbial Production of High-Value Products. Microbiology Monographs, vol 37. Springer, Cham. https://doi.org/10.1007/978-3-031-06600-9_3

Download citation

Publish with us

Policies and ethics