Skip to main content

Ethanol Production from Xylose Through GM Saccharomyces cerevisiae

  • Chapter
  • First Online:
Bioethanol Production

Abstract

The second most important fermentable sugar found in lignocellulosic hydrolysates is xylose (pentose). Sugars such as C6 and C5 are used to produce a large amount of C2H5OH from lignocellulosic hydrolysates. The well-known yeast Saccharomyces cerevisiae is the desired microorganism for C2H5OH manufacturing. However, surprisingly, S. cerevisiae is not capable of using or fermenting xylose naturally. Over the last 15 years, it has aimed to increase yeast's potential to consume xylose and ferment it into ethanol. Xylose metabolism or uptake, redox imbalance, xylulokinase overexpression, and PPP have all been used to engineer yeasts capable of generating C2H5OH from pentose substrate. This study examines the research on genetically engineered strains of S. cerevisiae and xylose fermentation into C2H5OH.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stephanopoulos, G. (2007). Challenges in engineering microbes for biofuels production. Science, 315(5813), 801–804.

    Article  CAS  PubMed  Google Scholar 

  2. Helle, S. S., Murray, A., Lam, J., Cameron, D. R., & Duff, S. J. (2004). Xylose fermentation by genetically modified Saccharomyces cerevisiae 259ST in spent sulfite liquor. Bioresource Technology, 92(2), 163–171.

    Article  CAS  PubMed  Google Scholar 

  3. Schneider, H., Wang, P. Y., Chan, Y. K., & Maleszka, R. (1981). Conversion of d-xylose into ethanol by the yeast Pachysolen tannophilus. Biotechnology Letters, 3(2), 89–92.

    Article  CAS  Google Scholar 

  4. Batt, C. A., Caryallo, S., Easson, D. D., Jr., Akedo, M., & Sinskey, A. J. (1986). Direct evidence for a xylose metabolic pathway in Saccharomyces cerevisiae. Biotechnology and Bioengineering, 28(4), 549–553.

    Article  CAS  PubMed  Google Scholar 

  5. Kim, S. R., Ha, S. J., Wei, N., Oh, E. J., & Jin, Y. S. (2012). Simultaneous co-fermentation of mixed sugars: A promising strategy for producing cellulosic ethanol. Trends in Biotechnology, 30(5), 274–282.

    Article  PubMed  CAS  Google Scholar 

  6. Cai, Z., Zhang, B., & Li, Y. (2012). Engineering Saccharomyces cerevisiae for efficient anaerobic xylose fermentation: Reflections and perspectives. Biotechnology Journal, 7(1), 34–46.

    Article  CAS  PubMed  Google Scholar 

  7. Rolland, F., Winderickx, J., & Thevelein, J. M. (2002). Glucose-sensing and-signalling mechanisms in yeast. FEMS Yeast Research, 2(2), 183–201.

    Article  CAS  PubMed  Google Scholar 

  8. Jeffries, T. W., Grigoriev, I. V., Grimwood, J., Laplaza, J. M., Aerts, A., Salamov, A., Schmutz, J., Lindquist, E., Dehal, P., Shapiro, H., & Jin, Y. S. (2007). Genome sequence of the lignocellulose-bioconverting and xylose-fermenting yeast Pichia stipitis. Nature Biotechnology, 25(3), 319–326.

    Article  CAS  PubMed  Google Scholar 

  9. Slininger, P. J., Bothast, R. J., Van Cauwenberge, J. E., & Kurtzman, C. P. (1982). Conversion of d-xylose to ethanol by the yeast Pachysolen tannophilus. Biotechnology and Bioengineering, 24(2), 371–384.

    Article  CAS  PubMed  Google Scholar 

  10. Jeffries, T. W. (2006). Engineering yeasts for xylose metabolism. Current Opinion in Biotechnology, 17(3), 320–326.

    Article  CAS  PubMed  Google Scholar 

  11. Traff, K. L., Otero Cordero, R. R., Van Zyl, W. H., & Hahn-Hagerdal, B. (2001). Deletion of the GRE3 aldose reductase gene and its influence on xylose metabolism in recombinant strains of Saccharomyces cerevisiae expressing the xylA and XKS1 genes. Applied and Environmental Microbiology, 67(12), 5668–5674.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Slininger, P. J., Bothast, R. J., Okos, M. R., & Ladisch, M. R. (1985). Comparative evaluation of ethanol production by xylose-fermenting yeasts presented high xylose concentrations. Biotechnology Letters, 7(6), 431–436.

    Article  CAS  Google Scholar 

  13. Du Preez, J. C., Bosch, M., & Prior, B. A. (1986). The fermentation of hexose and pentose sugars by Candida shehatae and Pichia stipitis. Applied Microbiology and Biotechnology, 23(3), 228–233.

    Article  Google Scholar 

  14. Kötter, P., & Ciriacy, M. (1993). Xylose fermentation by Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 38(6), 776–783.

    Article  Google Scholar 

  15. Van Zyl, W. H., Eliasson, A., Hobley, T., & Hahn-Hägerdal, B. (1999). Xylose utilisation by recombinant strains of Saccharomyces cerevisiae on different carbon sources. Applied Microbiology and Biotechnology, 52(6), 829–833.

    Article  PubMed  Google Scholar 

  16. Johansson, B., Christensson, C., Hobley, T., & Hahn-Hägerdal, B. (2001). Xylulokinase overexpression in two strains of Saccharomyces cerevisiae also expressing xylose reductase and xylitol dehydrogenase and its effect on fermentation of xylose and lignocellulosic hydrolysate. Applied and Environmental Microbiology, 67(9), 4249–4255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Toivari, M. H., Aristidou, A., Ruohonen, L., & Penttilä, M. (2001). Conversion of xylose to ethanol by recombinant Saccharomyces cerevisiae: Importance of xylulokinase (XKS1) and oxygen availability. Metabolic Engineering, 3(3), 236–249.

    Article  CAS  PubMed  Google Scholar 

  18. Jeppsson, M., Johansson, B., Hahn-Hägerdal, B., & Gorwa-Grauslund, M. F. (2002). Reduced oxidative pentose phosphate pathway flux in recombinant xylose-utilizing Saccharomyces cerevisiae strains improves the ethanol yield from xylose. Applied and Environmental Microbiology, 68(4), 1604–1609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Jeppsson, M., Träff, K., Johansson, B., Hahn-Hägerdal, B., & Gorwa-Grauslund, M. F. (2003). Effect of enhanced xylose reductase activity on xylose consumption and product distribution in xylose-fermenting recombinant Saccharomyces cerevisiae. FEMS Yeast Research, 3(2), 167–175.

    Article  CAS  PubMed  Google Scholar 

  20. Jin, Y. S., & Jeffries, T. W. (2003). Changing flux of xylose metabolites by altering expression of xylose reductase and xylitol dehydrogenase in recombinant Saccharomyces cerevisiae. In Biotechnology for Fuels and Chemicals (pp. 277–285). Humana Press.

    Google Scholar 

  21. Verho, R., Londesborough, J., Penttilä, M., & Richard, P. (2003). Engineering redox cofactor regeneration for improved pentose fermentation in Saccharomyces cerevisiaeApplied and Environmental Microbiology, 69(10), 5892–5897

    Google Scholar 

  22. Träff-Bjerre, K. L., Jeppsson, M., Hahn-Hägerdal, B., & Gorwa-Grauslund, M. F. (2004). Endogenous NADPH-dependent aldose reductase activity influences product formation during xylose consumption in recombinant Saccharomyces cerevisiae. Yeast, 21(2), 141–150.

    Article  PubMed  CAS  Google Scholar 

  23. Karhumaa, K., Hahn-Hägerdal, B., & Gorwa-Grauslund, M. F. (2005). Investigation of limiting metabolic steps in the utilization of xylose by recombinant Saccharomyces cerevisiae using metabolic engineering. Yeast, 22(5), 359–368.

    Article  CAS  PubMed  Google Scholar 

  24. Kuyper, M., Hartog, M. M., Toirkens, M. J., Almering, M. J., Winkler, A. A., van Dijken, J. P., & Pronk, J. T. (2005). Metabolic engineering of a xylose-isomerase-expressing Saccharomyces cerevisiae strain for rapid anaerobic xylose fermentation. FEMS Yeast Research, 5(4–5), 399–409.

    Article  CAS  PubMed  Google Scholar 

  25. Pitkänen, J. P., Rintala, E., Aristidou, A., Ruohonen, L., & Penttilä, M. (2005). Xylose chemostat isolates of Saccharomyces cerevisiae show altered metabolite and enzyme levels compared with xylose, glucose, and ethanol metabolism of the original strain. Applied Microbiology and Biotechnology, 67(6), 827–837.

    Article  PubMed  CAS  Google Scholar 

  26. Jeppsson, M., Bengtsson, O., Franke, K., Lee, H., Hahn-Hägerdal, B., & Gorwa-Grauslund, M. F. (2006). The expression of a Pichia stipitis xylose reductase mutant with higher KM for NADPH increases ethanol production from xylose in recombinant Saccharomyces cerevisiae. Biotechnology and Bioengineering, 93(4), 665–673.

    Article  CAS  PubMed  Google Scholar 

  27. Karhumaa, K., Fromanger, R., Hahn-Hägerdal, B., & Gorwa-Grauslund, M. F. (2007). High activity of xylose reductase and xylitol dehydrogenase improves xylose fermentation by recombinant Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 73(5), 1039–1046.

    Article  CAS  PubMed  Google Scholar 

  28. Karhumaa, K., Sanchez, R. G., Hahn-Hägerdal, B., & Gorwa-Grauslund, M. F. (2007). Comparison of the xylose reductase-xylitol dehydrogenase and the xylose isomerase pathways for xylose fermentation by recombinant Saccharomyces cerevisiae. Microbial Cell Factories, 6(1), 1–10.

    Article  CAS  Google Scholar 

  29. Verduyn, C., Postma, E., Scheffers, W. A., & Van Dijken, J. P. (1992). Effect of benzoic acid on metabolic fluxes in yeasts: A continuous-culture study on the regulation of respiration and alcoholic fermentation. Yeast, 8(7), 501–517.

    Article  CAS  PubMed  Google Scholar 

  30. Bruinenberg, P. M., de Bot, P. H., van Dijken, J. P., & Scheffers, W. A. (1984). NADH-linked aldose reductase: The key to anaerobic alcoholic fermentation of xylose by yeasts. Applied Microbiology and Biotechnology, 19(4), 256–260.

    Article  CAS  Google Scholar 

  31. Verduyn, C., Van Kleef, R., Frank, J., Schreuder, H., Van Dijken, J. P., & Scheffers, W. A. (1985). Properties of the NAD (P) H-dependent xylose reductase from the xylose-fermenting yeast Pichia stipitis. Biochemical Journal, 226(3), 669–677.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bolen, P. L., Roth, K. A., & Freer, S. N. (1986). Affinity purifications of aldose reductase and xylitol dehydrogenase from the xylose-fermenting yeast Pachysolen tannophilus. Applied and Environmental Microbiology, 52(4), 660–664.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Rizzi, M., Erlemann, P., Bui-Thanh, N. A., & Dellweg, H. (1988). Xylose fermentation by yeasts. Applied Microbiology and Biotechnology, 29(2), 148–154.

    Article  CAS  Google Scholar 

  34. Yang, V. W., & Jeffries, T. W. (1990). Purification and properties of xylitol dehydrogenase from the xylose-fermenting yeast Candida shehatae. Applied Biochemistry and Biotechnology, 26(2), 197–206.

    Article  CAS  Google Scholar 

  35. Deng, X. X., & Ho, N. W. (1990). Xylulokinase activity in various yeasts including Saccharomyces cerevisiae containing the cloned xylulokinase gene. Applied Biochemistry and Biotechnology, 24(1), 193–199.

    Article  PubMed  Google Scholar 

  36. Rodriguez-Peña, J. M., Cid, V. J., Arroyo, J., & Nombela, C. (1998). The YGR194c (XKS1) gene encodes the xylulokinase from the budding yeast Saccharomyces cerevisiae. FEMS Microbiology Letters, 162(1), 155–160.

    Article  PubMed  Google Scholar 

  37. Träff, K. L., Jönsson, L. J., & Hahn-Hägerdal, B. (2002). Putative xylose and arabinose reductases in Saccharomyces cerevisiae. Yeast, 19(14), 1233–1241.

    Article  PubMed  CAS  Google Scholar 

  38. Richard, P., Toivari, M. H., & Penttilä, M. (1999). Evidence that the gene YLR070c of Saccharomyces cerevisiae encodes a xylitol dehydrogenase. FEBS Letters, 457(1), 135–138.

    Article  CAS  PubMed  Google Scholar 

  39. Yang, V. W., & Jeffries, T. W. (1997). Regulation of phosphotransferases in glucose-and xylose-fermenting yeasts. In Biotechnology for fuels and chemicals (pp. 97–108). Humana Press.

    Google Scholar 

  40. Richard, P., Toivari, M. H., & Penttilä, M. (2000). The role of xylulokinase in Saccharomyces cerevisiae xylulose catabolism. FEMS Microbiology Letters, 190(1), 39–43.

    Article  CAS  PubMed  Google Scholar 

  41. Toivari, M. H., Salusjärvi, L., Ruohonen, L., & Penttilä, M. (2004). Endogenous xylose pathway in Saccharomyces cerevisiae. Applied and Environmental Microbiology, 70(6), 3681–3686.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Vongsuvanlert, V., & Tani, Y. (1988). Purification and characterization of xylose isomerase of a methanol yeast, Candida boidinii, which is involved in sorbitol production from glucose. Agricultural and Biological Chemistry, 52(7), 1817–1824.

    CAS  Google Scholar 

  43. Banerjee, S., Archana, A., & Satyanarayana, T. (1994). Xylose metabolism in a thermophilic mouldMalbranchea pulchella var. sulfurea TMD-8. Current Microbiology29(6), 349–352.

    Google Scholar 

  44. Harhangi, H. R., Akhmanova, A. S., Emmens, R., van der Drift, C., de Laat, W. T., van Dijken, J. P., Jetten, M. S., Pronk, J. T., & Op den Camp, H. J. (2003). Xylose metabolism in the anaerobic fungus Piromyces sp. strain E2 follows the bacterial pathway. Archives of Microbiology, 180(2), 134–141.

    Google Scholar 

  45. Rizzi, M., Harwart, K., Erlemann, P., Bui-Thanh, N. A., & Dellweg, H. (1989). Purification and properties of the NAD+ -xylitol-dehydrogenase from the yeast Pichia stipitis. Journal of Fermentation and Bioengineering, 67, 20–24.

    Article  CAS  Google Scholar 

  46. Tantirungkij, M., Nakashima, N., Seki, T., & Yoshida, T. (1993). Construction of xylose-assimilating Saccharomyces cerevisiae. Journal of Fermentation and Bioengineering, 75(2), 83–88.

    Article  CAS  Google Scholar 

  47. Agbogbo, F. K., & Coward-Kelly, G. (2008). Cellulosic ethanol production using the naturally occurring xylose-fermenting yeast, Pichia stipitis. Biotechnology Letters, 30(9), 1515–1524.

    Article  CAS  PubMed  Google Scholar 

  48. Bruinenberg, P. M., de Bot, P. H., van Dijken, J. P., & Scheffers, W. A. (1983). The role of redox balances in the anaerobic fermentation of xylose by yeasts. European Journal of Applied Microbiology and Biotechnology, 18(5), 287–292.

    Article  CAS  Google Scholar 

  49. Debus, D., Methner, H., Schulze, D., & Dellweg, H. (1983). Fermentation of xylose with the yeast Pachysolen tannophilus. European Journal of Applied Microbiology and Biotechnology, 17(5), 287–291.

    Article  CAS  Google Scholar 

  50. Hahn-Hägerdal, B., Karhumaa, K., Larsson, C. U., Gorwa-Grauslund, M., Görgens, J., & Van Zyl, W. H. (2005). Role of cultivation media in the development of yeast strains for large scale industrial use. Microbial Cell Factories, 4(1), 1–16.

    Article  CAS  Google Scholar 

  51. Walfridsson, M., Anderlund, M., Bao, X., & Hahn-Hägerdal, B. (1997). Expression of different levels of enzymes from the Pichia stipitis XYL1 and XYL2 genes in Saccharomyces cerevisiae and its effects on product formation during xylose utilisation. Applied Microbiology and Biotechnology, 48(2), 218–224.

    Article  CAS  PubMed  Google Scholar 

  52. Eliasson, A., Hofmeyr, J. H. S., Pedler, S., & Hahn-Hägerdal, B. (2001). The xylose reductase/xylitol dehydrogenase/xylulokinase ratio affects product formation in recombinant xylose-utilising Saccharomyces cerevisiae. Enzyme and Microbial Technology, 29(4–5), 288–297.

    Article  CAS  Google Scholar 

  53. Johansson, B., & Hahn-Hägerdal, B. (2002). Overproduction of pentose phosphate pathway enzymes using a new CRE–loxP expression vector for repeated genomic integration in Saccharomyces cerevisiae. Yeast, 19(3), 225–231.

    Article  CAS  PubMed  Google Scholar 

  54. Matsushika, A., & Sawayama, S. (2008). Efficient bioethanol production from xylose by recombinant Saccharomyces cerevisiae requires high activity of xylose reductase and moderate xylulokinase activity. Journal of Bioscience and Bioengineering, 106(3), 306–309.

    Article  CAS  PubMed  Google Scholar 

  55. Amore, R., Wilhelm, M., & Hollenberg, C. P. (1989). The fermentation of xylose—an analysis of the expression of Bacillus and Actinoplanes xylose isomerase genes in yeast. Applied Microbiology and Biotechnology, 30(4), 351–357.

    Article  CAS  Google Scholar 

  56. Moes, C. J., Pretorius, I. S., & Van Zyl, W. H. (1996). Cloning and expression of the Clostridium thermosulfurogenes D-xylose isomerase gene (xylA) in Saccharomyces cerevisiae. Biotechnology Letters, 18(3), 269–274.

    Article  CAS  Google Scholar 

  57. Walfridsson, M., Bao, X., Anderlund, M., Lilius, G., Bülow, L., & Hahn-Hägerdal, B. (1996). Ethanolic fermentation of xylose with Saccharomyces cerevisiae harboring the Thermus thermophilus xylA gene, which expresses an active xylose (glucose) isomerase. Applied and Environmental Microbiology, 62(12), 4648–4651.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kuyper, M., Harhangi, H. R., Stave, A. K., Winkler, A. A., Jetten, M. S., de Laat, W. T., den Ridder, J. J., Op den Camp, H. J., van Dijken, J. P., & Pronk, J. T. (2003). High-level functional expression of a fungal xylose isomerase: The key to efficient ethanolic fermentation of xylose by Saccharomyces cerevisiae? FEMS Yeast Research, 4(1), 69–78.

    Article  CAS  PubMed  Google Scholar 

  59. Madhavan, A., Tamalampudi, S., Ushida, K., Kanai, D., Katahira, S., Srivastava, A., Fukuda, H., Bisaria, V. S., & Kondo, A. (2009). Xylose isomerase from polycentric fungus Orpinomyces: Gene sequencing, cloning, and expression in Saccharomyces cerevisiae for bioconversion of xylose to ethanol. Applied Microbiology and Biotechnology, 82(6), 1067–1078.

    Article  CAS  PubMed  Google Scholar 

  60. Brat, D., Boles, E., & Wiedemann, B. (2009). Functional expression of a bacterial xylose isomerase in Saccharomyces cerevisiae. Applied and Environmental Microbiology, 75(8), 2304–2311.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Lönn, A., Träff-Bjerre, K. L., Otero, R. C., Van Zyl, W. H., & Hahn-Hägerdal, B. (2003). Xylose isomerase activity influences xylose fermentation with recombinant Saccharomyces cerevisiae strains expressing mutated xylA from Thermus thermophilus. Enzyme and Microbial Technology, 32(5), 567–573.

    Article  CAS  Google Scholar 

  62. Aristidou, A., & Penttilä, M. (2000). Metabolic engineering applications to renewable resource utilization. Current Opinion in Biotechnology, 11(2), 187–198.

    Article  CAS  PubMed  Google Scholar 

  63. Barnett, J. A. (1976). The utilization of sugars by yeasts. Advances in Carbohydrate Chemistry and Biochemistry, 32, 125–234.

    Article  CAS  PubMed  Google Scholar 

  64. Amore, R., Kötter, P., Küster, C., Ciriacy, M., & Hollenberg, C. P. (1991). Cloning and expression in Saccharomyces cerevisiae of the NAD (P) H-dependent xylose reductase-encoding gene (XYL1) from the xylose-assimilating yeast Pichia stipitis. Gene, 109(1), 89–97.

    Article  CAS  PubMed  Google Scholar 

  65. Hallborn, J., Walfridsson, M., Airaksinen, U., Ojamo, H., Hahn-Hägerdal, B., Penttilä, M., & Keränen, S. (1991). Xylitol production by recombinant Saccharomyces cerevisiae. Bio/Technology, 9(11), 1090–1095.

    Article  CAS  Google Scholar 

  66. Takuma, S., Nakashima, N., Tantirungkij, M., Kinoshita, S., Okada, H., Sew, T., & Yoshida, T. (1991). Isolation of xylose reductase gene ofPichia stipitis and its expression in Saccharomyces cerevisiae. Applied Biochemistry and Biotechnology, 28(1), 327–340.

    Article  PubMed  Google Scholar 

  67. Bruinenberg, P. M. (1986). The NADP (H) redox couple in yeast metabolism. Antonie van Leeuwenhoek, 52(5), 411–429.

    Article  CAS  PubMed  Google Scholar 

  68. Walfridsson, M., Hallborn, J., Penttilä, M., Keränen, S., & Hahn-Hägerdal, B. (1995). Xylose-metabolizing Saccharomyces cerevisiae strains overexpressing the TKL1 and TAL1 genes encoding the pentose phosphate pathway enzymes transketolase and transaldolase. Applied and Environmental Microbiology61(12), 4184–4190

    Google Scholar 

  69. Boles, E., Lehnert, W., & Zimmermann, F. K. (1993). The role of the NAD-dependent glutamate dehydrogenase in restoring growth on glucose of a Saccharomyces cerevisiae phosphoglucose isomerase mutant. European Journal of Biochemistry, 217(1), 469–477.

    Article  CAS  PubMed  Google Scholar 

  70. Müller, S., Boles, E., May, M., & Zimmermann, F. K. (1995). Different internal metabolites trigger the induction of glycolytic gene expression in Saccharomyces cerevisiae. Journal of Bacteriology, 177(15), 4517–4519.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Wieczorke, R., Krampe, S., Weierstall, T., Freidel, K., Hollenberg, C. P., & Boles, E. (1999). Concurrent knock-out of at least 20 transporter genes is required to block uptake of hexoses in Saccharomyces cerevisiae. FEBS Letters, 464(3), 123–128.

    Article  CAS  PubMed  Google Scholar 

  72. Schepper, M., Diderich, J. A., van Hoek, W. P. M., Luttik, M. A. H., van Dijken, J. P., Pronk, J. T., Klaassen, P., De Mattos, J. T., van Dam, K., & Kruckeberg, A. L. (1998). Glucose uptake kinetics and transcription of HXT genes in chemostat cultures of Saccharomyces cerevisiae. In EC Framework IV Symposium Yeast as a Cell Factory (pp. 37–38). Delft University of Technology.

    Google Scholar 

  73. Sedlak, M., & Ho, N. W. (2004). Characterization of the effectiveness of hexose transporters for transporting xylose during glucose and xylose co-fermentation by a recombinant Saccharomyces yeast. Yeast, 21(8), 671–684.

    Article  CAS  PubMed  Google Scholar 

  74. Hamacher, T., Becker, J., Gárdonyi, M., Hahn-Hägerdal, B., & Boles, E. (2002). Characterization of the xylose-transporting properties of yeast hexose transporters and their influence on xylose utilization. Microbiology, 148(9), 2783–2788.

    Article  CAS  PubMed  Google Scholar 

  75. Kuhn, A., van Zyl, C., van Tonder, A. N. D. R. É., & Prior, B. A. (1995). Purification and partial characterization of an aldo-keto reductase from Saccharomyces cerevisiae. Applied and Environmental Microbiology, 61(4), 1580–1585.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Ford, G., & Ellis, E. M. (2001). Three aldo–keto reductases of the yeast Saccharomyces cerevisiae. Chemico-Biological Interactions, 130, 685–698.

    Article  PubMed  Google Scholar 

  77. Ye Jeong, E., Sopher, C., Seon Kim, I., & Lee, H. (2001). Mutational study of the role of tyrosine-49 in the Saccharomyces cerevisiae xylose reductase. Yeast, 18(11), 1081–1089.

    Article  Google Scholar 

  78. Jeong, E. Y., Kim, I. S., & Lee, H. (2002). Identification of lysine-78 as an essential residue in the Saccharomyces cerevisiae xylose reductase. FEMS Microbiology Letters, 209(2), 223–228.

    Article  CAS  PubMed  Google Scholar 

  79. Ditzelmüller, G., Kubicek, C. P., Wöhrer, W., & Röhr, M. (1984). Xylose metabolism in Pachysolen tannophilus: Purification and properties of xylose reductase. Canadian Journal of Microbiology, 30(11), 1330–1336.

    Article  Google Scholar 

  80. Van Zyl, C., Prior, B. A., Kilian, S. G., & Kock, J. L. (1989). D-xylose utilization by Saccharomyces cerevisiae. Microbiology, 135(11), 2791–2798.

    Article  Google Scholar 

  81. Lunzer, R., Mamnun, Y., Haltrich, D., Kulbe, K. D., & Nidetzky, B. (1998). Structural and functional properties of a yeast xylitol dehydrogenase, a Zn2+-containing metalloenzyme similar to medium-chain sorbitol dehydrogenases. Biochemical Journal, 336(1), 91–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Ditzelmüller, G., Kubicek, C. P., Wöhrer, W., & Röhr, M. (1984). Xylitol dehydrogenase from Pachysolen tannophilus. FEMS Microbiology Letters, 25(2–3), 195–198.

    Article  Google Scholar 

  83. Rizzi, M., Harwart, K., Erlemann, P., Bui-Thanh, N. A., & Dellweg, H. (1989). Purification and properties of the NAD+-xylitol-dehydrogenase from the yeast Pichia stipitis. Journal of Fermentation and Bioengineering, 67(1), 20–24.

    Article  CAS  Google Scholar 

  84. Rizzi, M., Harwart, K., Bui-Thanh, N. A., & Dellweg, H. (1989). A kinetic study of the NAD+-xylitol-dehydrogenase from the yeast Pichia stipitis. Journal of Fermentation and Bioengineering, 67(1), 25–30.

    Article  CAS  Google Scholar 

  85. Du Preez, J. C. (1994). Process parameters and environmental factors affecting d-xylose fermentation by yeasts. Enzyme and Microbial Technology, 16(11), 944–956.

    Article  Google Scholar 

  86. Bruinenberg, P. M., Van Dijken, J. P., & Scheffers, W. A. (1983). A theoretical analysis of NADPH production and consumption in yeasts. Microbiology, 129(4), 953–964.

    Article  CAS  Google Scholar 

  87. Nissen, T. L., Anderlund, M., Nielsen, J., Villadsen, J., & Kielland-Brandt, M. C. (2001). Expression of a cytoplasmic transhydrogenase in Saccharomyces cerevisiae results in formation of 2-oxoglutarate due to depletion of the NADPH pool. Yeast, 18(1), 19–32.

    Article  CAS  PubMed  Google Scholar 

  88. Anderlund, M., Rådström, P., & Hahn-Hägerdal, B. (2001). Expression of bifunctional enzymes with xylose reductase and xylitol dehydrogenase activity in Saccharomyces cerevisiae alters product formation during xylose fermentation. Metabolic Engineering, 3(3), 226–235.

    Article  CAS  PubMed  Google Scholar 

  89. Bicho, P. A., Runnals, P. L., Cunningham, J. D., & Lee, H. (1988). Induction of xylose reductase and xylitol dehydrogenase activities in Pachysolen tannophilus and Pichia stipitis on mixed sugars. Applied and Environmental Microbiology, 54(1), 50–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Saleh, A. A., Watanabe, S., Annaluru, N., Kodaki, T., & Makino, K. (2006, November). Construction of various mutants of xylose metabolizing enzymes for efficient conversion of biomass to ethanol. In Nucleic acids symposium series (Vol. 50, No. 1, pp. 279–280). Oxford University Press.

    Google Scholar 

  91. Kostrzynska, M., Sopher, C. R., & Lee, H. (1998). Mutational analysis of the role of the conserved lysine-270 in the Pichia stipitis xylose reductase. FEMS Microbiology Letters, 159(1), 107–112.

    Article  CAS  PubMed  Google Scholar 

  92. Wang, P. Y., & Schneider, H. (1980). Growth of yeasts on d-xylulose. Canadian Journal of Microbiology, 26(9), 1165–1168.

    Article  CAS  PubMed  Google Scholar 

  93. Yu, S., Jeppsson, H., & Hahn-Hägerdal, B. (1995). Xylulose fermentation by Saccharomyces cerevisiae and xylose-fermenting yeast strains. Applied Microbiology and Biotechnology, 44(3), 314–320.

    Article  CAS  PubMed  Google Scholar 

  94. Chang, S. F., & Ho, N. W. (1988). Cloning the yeast xylulokinase gene for the improvement of xylose fermentation. Applied Biochemistry and Biotechnology, 17(1), 313–318.

    Article  CAS  PubMed  Google Scholar 

  95. Ho, N. W., Chen, Z., & Brainard, A. P. (1998). Genetically engineered Saccharomyces yeast capable of effective cofermentation of glucose and xylose. Applied and Environmental Microbiology, 64(5), 1852–1859.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Ligthelm, M. E., Prior, B. A., du Preez, J. C., & Brandt, V. (1988). An investigation of D-{1-13C} xylose metabolism in Pichia stipitis under aerobic and anaerobic conditions. Applied Microbiology and Biotechnology, 28(3), 293–296.

    Article  CAS  Google Scholar 

  97. Senac, T., & Hahn-Hägerdal, B. (1990). Intermediary metabolite concentrations in xylulose-and glucose-fermenting Saccharomyces cerevisiae cells. Applied and Environmental Microbiology, 56(1), 120–126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Martı́n, C., & Jönsson, L. J. (2003). Comparison of the resistance of industrial and laboratory strains of Saccharomyces and Zygosaccharomyces to lignocellulose-derived fermentation inhibitors. Enzyme and Microbial Technology32(3-4), 386–395.

    Google Scholar 

  99. Brandberg, T., FranzéN, C. J., & Gustafsson, L. (2004). The fermentation performance of nine strains of Saccharomyces cerevisiae in batch and fed-batch cultures in dilute-acid wood hydrolysate. Journal of Bioscience and Bioengineering, 98(2), 122–125.

    Article  CAS  PubMed  Google Scholar 

  100. Zaldivar, J., Borges, A., Johansson, B., Smits, H., Villas-Bôas, S., Nielsen, J., & Olsson, L. (2002). Fermentation performance and intracellular metabolite patterns in laboratory and industrial xylose-fermenting Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 59(4), 436–442.

    CAS  PubMed  Google Scholar 

  101. Sonderegger, M., Jeppsson, M., Larsson, C., Gorwa-Grauslund, M. F., Boles, E., Olsson, L., Spencer-Martins, I., Hahn-Hägerdal, B., & Sauer, U. (2004). Fermentation performance of engineered and evolved xylose-fermenting Saccharomyces cerevisiae strains. Biotechnology and bioengineering, 87(1), 90–98.

    Article  CAS  PubMed  Google Scholar 

  102. Olsson, L., Soerensen, H. R., Dam, B. P., Christensen, H., Krogh, K. M., & Meyer, A. S. (2006). Separate and simultaneous enzymatic hydrolysis and fermentation of wheat hemicellulose with recombinant xylose utilizing Saccharomyces cerevisiae. In Twenty-Seventh Symposium on Biotechnology for Fuels and Chemicals (pp. 117–129). Humana Press.

    Google Scholar 

  103. Matsushika, A., Inoue, H., Murakami, K., Takimura, O., & Sawayama, S. (2009). Bioethanol production performance of five recombinant strains of laboratory and industrial xylose-fermenting Saccharomyces cerevisiae. Bioresource Technology, 100(8), 2392–2398.

    Article  CAS  PubMed  Google Scholar 

  104. Garay-Arroyo, A., Covarrubias, A. A., Clark, I., Nino, I., Gosset, G., & Martinez, A. (2004). Response to different environmental stress conditions of industrial and laboratory Saccharomyces cerevisiae strains. Applied Microbiology and Biotechnology, 63(6), 734–741.

    Article  CAS  PubMed  Google Scholar 

  105. Nilsson, A., Gorwa-Grauslund, M. F., Hahn-Hägerdal, B., & Lidén, G. (2005). Cofactor dependence in furan reduction by Saccharomyces cerevisiae in fermentation of acid-hydrolyzed lignocellulose. Applied and Environmental Microbiology, 71(12), 7866–7871.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Eliasson, A., Boles, E., Johansson, B., Österberg, M., Thevelein, J. M., Spencer-Martins, I., Juhnke, H., & Hahn-Hägerdal, B. (2000). Xylulose fermentation by mutant and wild-type strains of Zygosaccharomyces and Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 53(4), 376–382.

    Article  CAS  PubMed  Google Scholar 

  107. Johansson, B., & Hahn-Hägerdal, B. (2002). The non-oxidative pentose phosphate pathway controls the fermentation rate of xylulose but not of xylose in Saccharomyces cerevisiae TMB3001. FEMS Yeast Research, 2(3), 277–282.

    CAS  PubMed  Google Scholar 

  108. Matsushika, A., Inoue, H., Watanabe, S., Kodaki, T., Makino, K., & Sawayama, S. (2009). Efficient bioethanol production by a recombinant flocculent Saccharomyces cerevisiae strain with a genome-integrated NADP+-dependent xylitol dehydrogenase gene. Applied and Environmental Microbiology, 75(11), 3818–3822.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Sonderegger, M., & Sauer, U. (2003). Evolutionary engineering of Saccharomyces cerevisiae for anaerobic growth on xylose. Applied and Environmental Microbiology, 69(4), 1990–1998.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Jin, Y. S., Laplaza, J. M., & Jeffries, T. W. (2004). Saccharomyces cerevisiae engineered for xylose metabolism exhibits a respiratory response. Applied and Environmental Microbiology, 70(11), 6816–6825.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Attfield, P. V., & Bell, P. J. (2006). Use of population genetics to derive nonrecombinant Saccharomyces cerevisiae strains that grow using xylose as a sole carbon source. FEMS Yeast Research, 6(6), 862–868.

    Article  CAS  PubMed  Google Scholar 

  112. https://www.semanticscholar.org/paper/Development-on-ethanol-production-from-xylose-by-Yang-Lu/2f36879b17504762f0d5470ccb9cc6a90e5e8987/figure/1

  113. https://www.semanticscholar.org/paper/Genetic-improvement-of-Saccharomyces-cerevisiae-for-Chu-Lee/4790ba9fb6d29584df72d891c460fa3bf9b3ae41/figure/0

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neeraj K. Aggarwal .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Aggarwal, N.K., Kumar, N., Mittal, M. (2022). Ethanol Production from Xylose Through GM Saccharomyces cerevisiae. In: Bioethanol Production. Green Chemistry and Sustainable Technology. Springer, Cham. https://doi.org/10.1007/978-3-031-05091-6_12

Download citation

Publish with us

Policies and ethics