Skip to main content

Phytoremediation of Environmental Matrices Contaminated with Photosystem II-Inhibiting Herbicides

  • Chapter
  • First Online:
Pesticides Bioremediation

Abstract

Excessive use of agrochemicals, including photosystem II (PS II)-inhibiting herbicides, especially after 1950, resulted in significant contamination of environmental matrices. Although some of these photosynthesis-inhibiting herbicides, including atrazine or simazine, have been banned in many countries due to their endocrine disrupting activities, their residues from agricultural field runoff persist mainly in sediments and can be released in aquatic environments where they can adversely affect non-target species. Phytoremediation is an inexpensive environmentally friendly method that uses diverse types of plants to decontaminate soils and aquatic ecosystems from inorganic and organic contaminants. This chapter provides a comprehensive overview focused on the phytoremediation of substrates contaminated with PS II-inhibiting herbicides using grasses, aquatic plants, seaweeds and seagrasses, algae and cyanobacteria, woody species, crops, and transgenic plants. The mechanism of action of PS II-inhibiting herbicides and the development of plant resistance to these herbicides are described. The beneficial impact of microbial species on the degradation of herbicides by microbial species in the rhizosphere is discussed, and the removal of herbicides from the soil using electrokinetic-assisted phytoremediation is briefly mentioned.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AMR:

Ametryn

ATP:

Adenosine triphosphate

ATZ:

Atrazine

BCF:

Bioconcentration factor

CAT:

Catalase

Chl:

Chlorophyll

CYA:

Cyanuric acid

Cys:

Cysteine

DDA:

Desethyldeisopropylatrazine

DEA:

Desethylatrazine

DIA:

Desisopropylatrazine

DOM:

Dissolved organic matter

GST:

Glutathione-S-transferase

HA:

Hydroxyatrazine

HXZ:

Hexazinone

IC50:

Herbicide concentration that is required for 50% inhibition

ISO:

Isoproturon

LAC:

Laccase

MTZ:

Metribuzin

NADPH:

Nicotinamide adenine dinucleotide phosphate, reduced

PAH:

Polycyclic aromatic hydrocarbons

PCBs:

Polychlorinated biphenyls

PET:

Photosynthetic electron transport

Pheo:

Pheophytin

PQ:

Plastoquinone

PRO:

Prometryn

PS:

Photosystem

RC:

Reactive center

ROS:

Reactive oxygen species

SIM:

Simazine (SIM)

SNP:

Nitroprusside

TBR:

Terbutryn

TBZ:

Terbuthylazine

TF:

Translocation factor

WOC:

Water oxidizing complex

References

  • Abdelsalam IM, Elshobary M, Eladawy MM et al (2019) Utilization of multi-tasking non-edible plants for phytoremediation and bioenergy source: A review. Phyton Int J Exp Bot: 69–90

    Google Scholar 

  • Abimbola O, Mittelstet A, Messer T et al (2021) Modeling and prioritizing interventions using pollution hotspots for reducing nutrients, atrazine and E. coli concentrations in a watershed. Sustainability 13:103

    Google Scholar 

  • Aguiar TR, Bortolozo FR, Hansel FA et al (2015) Riparian buffer zones as pesticide filters of no-till crops. Environ Sci and Pollut Res 22: 10618–10626

    Article  CAS  Google Scholar 

  • Aguiar LM, Souza MD, de Laia ML et al (2020a) Metagenomic analysis reveals mechanisms of atrazine biodegradation promoted by tree species. Environ Pollut 267:115636

    Article  CAS  Google Scholar 

  • Aguiar LM, dos Santos JB, Barroso GM et al (2020b) Phytoremediation by Eremanthus crotonoides and Inga striata decay atrazine and clomazone residues in the soil. Int J Phytorem 22:827–833

    Article  CAS  Google Scholar 

  • Akhtar ABT, Yasar A, Ali R et al (2017) Phytoremediation using aquatic macrophytes. In: Ansari A, Gill S, Gill R, Lanza G, Newman L (eds) Phytoremediation. Springer, Cham, pp 259–276

    Chapter  Google Scholar 

  • Alam MD (2021) Seaweed effects on plant growth and environmental remediation: a review. J Phycol 13:122-129

    Google Scholar 

  • Alberto D, Couee I, Sulmon C (2017) Root-level exposure reveals multiple physiological toxicity of triazine xenobiotics in Arabidopsis thaliana. J Plant Physiol 212:105–114

    Article  CAS  Google Scholar 

  • Albright VC, Murphy IJ, Anderson JA et al (2013) Fate of atrazine in switchgrass-soil column system. Chemosphere 90:1847–1853

    Article  CAS  Google Scholar 

  • Albright VC, Coats JR (2014) Disposition of atrazine metabolites following uptake and degradation of atrazine in switchgrass. Int J Phytorem 16: 62–72

    Article  CAS  Google Scholar 

  • Antonacci A, Celso FL, Barone G et al (2020) Novel atrazine-binding biomimetics inspired to the D1 protein from the photosystem II of Chlamydomonas reinhardtii. Int J Biol Macromol 163:817–823

    Article  CAS  Google Scholar 

  • Azab E, Hegazy AK, El-Sharnouby ME et al (2016) Phytoremediation of the organic xenobiotic simazine by P450-1A2 transgenic Arabidopsis thaliana plants. Int J Phytorem 18:738–746

    Google Scholar 

  • Azab E, Hegazy AK, Gobouri AA et al (2020) Impact of transgenic Arabidopsis thaliana plants on herbicide Isoproturon phytoremediation through expressing human cytochrome P450-1A2. Biology Basel 9 (11):362

    Article  CAS  Google Scholar 

  • Babu DS, Srivastava V, Nidheesh PV et al (2019) Detoxification of water and wastewater by advanced oxidation processes. Sci Total Environ 696:133961

    Article  CAS  Google Scholar 

  • Baigorria E, Galhardi JA, Fraceto LF (2021) Trends in polymers networks applied to the removal of aqueous pollutants: a review. J Clean Prod 295:126451

    Article  CAS  Google Scholar 

  • Barber J (1999) Organisation of the photosystem two light harvesting system. In: Argyroudi-Akoyunoglou H, Senger H (eds) The chloroplast: From molecular biology to biotechnology. Kluwer Academic Publishers, Dordrecht, pp 11–18

    Chapter  Google Scholar 

  • Barber J (2016) Photosystem II: the water splitting enzyme of photosynthesis and the origin of oxygen in our atmosphere. Q Rev Biophys 49:e14

    Article  Google Scholar 

  • Barber J, Tran PD (2013) From natural to artificial photosynthesis. J R Soc Interface 10:20120984

    Article  CAS  Google Scholar 

  • Barot M, Kumar N (2021) Remediation action on persistent organic pollutants by wonder weeds and associated microbiomes. In: Kumar A, Singh VK, Singh P, Mishra VK (eds) Microbe mediated remediation of environmental contaminants. Woodhead Publishing, Duxford, pp 355–368

    Chapter  Google Scholar 

  • Beaulieu M, Cabana H, Taranu Z et al (2020a) Predicting atrazine concentrations in waterbodies across the contiguous United States: The importance of land use, hydrology, and water physicochemistry. Limnol Oceanogr 65:2966–2983

    Article  CAS  Google Scholar 

  • Beaulieu M, Cabana H, Huot Y (2020b) Adverse effects of atrazine, DCMU and metolachlor on phytoplankton cultures and communities at environmentally relevant concentrations using Fast Repetition Rate Fluorescence. Sci Total Environ 712:136239

    Article  CAS  Google Scholar 

  • Bhat SA, Qadri H, Cui GY et al (2020) Remediation of pesticides through microbial and phytoremediation techniques. In: Qadri H, Bhat RA, Mehmood MA, Dar GH (eds) Fresh water pollution dynamics and remediation. Springer Nature Singapore, Singapore, pp. 235–245

    Chapter  Google Scholar 

  • Bi YF, Miao SS, Lu YC et al (2012) Phytotoxicity, bioaccumulation and degradation of isoproturon in green algae. J Hazard Mater 243:242–249

    Article  CAS  Google Scholar 

  • Bicalho STT, Langenbach T (2012) Distribution of the herbicide atrazine in a microcosm with riparian forest plants. J Environ SciHealth B 47:505–511

    Article  CAS  Google Scholar 

  • Bicalho STT, Langenbach T (2013) The fate of tebuthiuron in microcosm with riparian forest seedlings. Geoderma 207:66–70

    Article  CAS  Google Scholar 

  • Boechat CL, Miranda RD, Lacerda JJD et al (2021) Transgenic plants and rhizosphere-associated microbiota in phytoremediation of heavy metals and organic pollutants. In: Kumar V, Saxena G, Shah MP (eds) Bioremediation for environmental sustainability. Elsevier, Amsterdam, pp 299–328

    Chapter  Google Scholar 

  • Boithias L, Sauvage S, Merlina G et al (2014) New insight into pesticide partition coefficient Kd for modelling pesticide fluvial transport: application to an agricultural catchment in south-western France. Chemosphere 99:134–142

    Article  CAS  Google Scholar 

  • Bombo AB, Pereira AES, Lusa MG et al (2019) A mechanistic view of interactions of a nanoherbicide with target organism. J Agric Food Chem 67:4453–4462

    Article  CAS  Google Scholar 

  • Bonanno G, Veneziano V, Orlando-Bonaca M (2020) Comparative assessment of trace element accumulation and biomonitoring in seaweed Ulva lactuca and seagrass Posidonia oceanica. Sci Total Environ 718:137413

    Article  CAS  Google Scholar 

  • Borse TH, Maheshwari VL, Baviskar MP (2000) Effect of diphenyl carbazide on the metribuzin induced inhibition of photosystem-II photochemistry. J Plant Biochem Biotechnol 9:119–121

    Article  CAS  Google Scholar 

  • Bouldin JL, Farris JL, Moore MT et al (2006) Hydroponic uptake of atrazine and lambda-cyhalothrin in Juncus effusus and Ludwigia peploides. Chemosphere 65:1049–57

    Article  CAS  Google Scholar 

  • Brar A, Kumar M, Vivekanand V (2017) Photoautotrophic microorganisms and bioremediation of industrial effluents: current status and future prospects. 3 Biotech 7:18

    Article  Google Scholar 

  • Breda-Alves F, Fernandes VD, Chia MA (2021) Understanding the environmental roles of herbicides on cyanobacteria, cyanotoxins, and cyanoHABs. Aquat Ecol (2021) 55:347-361

    Article  CAS  Google Scholar 

  • Burges A, Alkorta I, Epelde L et al (2018) From phytoremediation of soil contaminants to phytomanagement of ecosystem services in metal contaminated sites. Int J Phytorem 20:384-397

    Article  CAS  Google Scholar 

  • Burken JG, Schnoor JL (1997) Uptake and metabolism of atrazine by poplar trees. Environ Sci Technol 31:1399–1406

    Article  CAS  Google Scholar 

  • Campos MM, Faria VH, Teodoro TS et al (2013) Evaluation of the capacity of the cyanobacterium Microcystis novacekii to remove atrazine from a culture medium. J Environ Sci Health B 48:101–107

    Article  CAS  Google Scholar 

  • Cao B, Zhang Y, Wang ZY et al (2018) Insight into the variation of bacteria structure in atrazine-contaminated soil regulating by potential phytoremediator: Pennisetum americanum (L.) K. Schum. Front Microbiol 9:864

    Article  Google Scholar 

  • Carafa R, Marinov D, Dueri S et al (2009) A bioaccumulation model for herbicides in Ulva rigida and Tapes philippinarum in Sacca di Goro lagoon (Northern Adriatic). Chemosphere 74:1044–1052

    Article  CAS  Google Scholar 

  • Caron E, Lafrance P, Auclair JC et al (2010) Impact of grass and grass with poplar buffer strips on atrazine and metolachlor losses in surface runoff and subsurface infiltration from agricultural plots. J Environ Qual 39:617–629

    Article  CAS  Google Scholar 

  • Castelo-Grande T, Augusto PA, Estevez AM et al (2017) Application of ultrasound-assisted supercritical extraction to soil remediation. Chem Eng Technol 40:691–698

    Article  CAS  Google Scholar 

  • Cejudo-Espinosa E, Ramos-Valdivia AC, Esparza-Garcia F et al (2009) Short-term accumulation of atrazine by three plants from a wetland model system. Arch Environ Contam Toxicol 56:201–208

    Article  CAS  Google Scholar 

  • Chalkley R, Child F, Al-Thaqafi K et al (2019) Macroalgae as spatial and temporal bioindicators of coastal metal pollution following remediation and diversion of acid mine drainage. Ecotoxicol Environ Saf 182:UNSP 109458

    Google Scholar 

  • Chang SW, Lee SJ, Je CH (2005) Phytoremediation of atrazine by poplar trees: Toxicity, uptake, and transformation. J Environ Sci HealthB 40:801–811.

    Article  CAS  Google Scholar 

  • Chapman RL (2013) Algae: the world’s most important “plants”– an introduction. Mitig Adapt Strat Glob Chang 18:5–12

    Article  Google Scholar 

  • Chen TT, Su YH (2018) Uptake by rice seedlings and in-plant degradation of atrazine as influenced by the oxidative stress induced by added arsenic or phosphate deficiency. Hum Ecol Risk Assess 24:1550–1564

    Article  CAS  Google Scholar 

  • Chen L, Zhou SB, Xu YH et al (2020) Effective glyphosate degradation through the combination of ozone/hydrogen peroxide oxidation and coagulation. Desalin Water Treat 204:377–387

    Article  CAS  Google Scholar 

  • Cheney D, Rajic L, Sly E et al (2014) Uptake of PCBs contained in marine sediments by the green macroalga Ulva rigida. Mar Pollut Bull 88:207-214

    Google Scholar 

  • Ciampi P, Esposito C, Bartsch E et al (2021) 3D dynamic model empowering the knowledge of the decontamination mechanisms and controlling the complex remediation strategy of a contaminated industrial site. Sci Total Environ 793:148649

    Article  CAS  Google Scholar 

  • Commission Regulation 149 (2008) Amending Regulation (EC) No 396/2005 of the European Parliament and of the Council by establishing Annexes II, III and IV setting maximum residue levels for products covered by Annex I thereto. J EU L 58/1

    Google Scholar 

  • Coninx L, Martinova V, Rineau F (2017) Mycorrhiza-assisted phytoremediation. In: Cuypers A, Vagronsveld J (eds) Phytoremediation. Academic Press, London, pp 127–188

    Chapter  Google Scholar 

  • Cui S, Hough R, Yates K et al (2020) Effects of season and sediment-water exchange processes on the partitioning of pesticides in the catchment environment: Implications for pesticides monitoring. Sci Total Environ 698:134228

    Article  CAS  Google Scholar 

  • Dang HT, Malone JM, Boutsalis P et al (2017) Identification of a target-site mutation conferring resistance to triazine herbicides in oriental mustard (Sisymbrium orientale L.) from Australia. Weed Biol Manag 17:153–160

    Article  CAS  Google Scholar 

  • Danielescu S, Van Stempvoort DR, Bickerton G (2020) Use of mature willows (Salix nigra) for hydraulic control of landfill-impacted groundwater in a temperate climate. J Environ Manage 272:111106

    Article  CAS  Google Scholar 

  • Del Buono D, Pannacci E, Bartucca ML et al (2016) Use of two grasses for the phytoremediation of aqueous solutions polluted with terbuthylazine. Int J Phytorem 18(9):885-891

    Article  CAS  Google Scholar 

  • Deng H, Ye ZH, Wong MH (2004) Accumulation of lead, zinc, copper and cadmium by 12 wetland plant species thriving in metal contaminated sites in China. Environ Pollut 132:29–40

    Article  CAS  Google Scholar 

  • de Oliveira JL, Campos EVR, da Silva CMG et al (2015) Solid lipid nanoparticles co-loaded with simazine and atrazine: Preparation, characterization, and evaluation of herbicidal activity. J Agric Food Chem 63:422-432

    Article  CAS  Google Scholar 

  • de Oliveira DM, Cavalcante RP, da Silva LD et al (2019) Identification of intermediates, acute toxicity removal, and kinetics investigation to the Ametryn treatment by direct photolysis (UV254), UV254/H2O2, Fenton, and photo-Fenton processes. Environ Sci Pollut Res 26:4348–4366

    Article  CAS  Google Scholar 

  • Dhankher OP, Doty SL, Meagher RB et al (2011) Biotechnological approaches for phytoremediation. In: Altman A, Hasegawa PM (eds) Plant Biotechnology and agriculture. Academic Press, New York, pp 309–328

    Google Scholar 

  • Dhanwal P, Kumar A, Dudeja S et al (2017) Recent advances in phytoremediation technology. In: Kumar R, Sharma A, Ahluwalia S (eds) Advances in environmental biotechnology. Springer Nature, Singapore, pp 227–241

    Chapter  Google Scholar 

  • Dolatabadi M, Ghaneian MT, Wang CQ et al (2021) Electro-Fenton approach for highly efficient degradation of the herbicide 2,4-dichlorophenoxyacetic acid from agricultural wastewater: Process optimization, kinetic and mechanism. J Mol Liq 334:116116

    Article  CAS  Google Scholar 

  • Dominguez JJA, Inoue C, Chien MF (2020) Hydroponic approach to assess rhizodegradation by sudangrass (Sorghum x drummondii) reveals pH- and plant age-dependent variability in bacterial degradation of polycyclic aromatic hydrocarbons (PAHs). J Hazard Mater 387:121695

    Article  CAS  Google Scholar 

  • Dong XF, Liang SX, Shi ZH et al (2016) Development of multi-residue analysis of herbicides in cereal grain by ultra-performance liquid chromatography-electrospray ionization-mass spectrometry. Food Chem 192:432–440

    Article  CAS  Google Scholar 

  • Dong J, Wang L, Ma F et al (2017) Effects of Funnelliformis mosseae inoculation on alleviating atrazine damage in Canna indica L. var. flava Roxb. Int J Phytorem 19:46–55

    Article  CAS  Google Scholar 

  • dos Santos NMC, da Costa VAM, de Araújo FV et al (2018) Phytoremediation of Brazilian tree species in soils contaminated by herbicides. Environ Sci Pollut Res 25:27561–27568

    Article  CAS  Google Scholar 

  • dos Santos EA, da Silva US, Barroso GM et al (2020) Tolerance and remedial potential of trees submitted to atrazine and sulfentrazone in the rhizosphere. Int J Phytorem 22:78–86

    Article  CAS  Google Scholar 

  • Dou RN, Sun JT, Deng FC et al (2020) Contamination of pyrethroids and atrazine in greenhouse and open-field agricultural soils in China. Sci Total Environ 701:134916

    Article  CAS  Google Scholar 

  • Douglass JF, Radosevich M, Tuovinen OH (2014) Mineralization of atrazine in the river water intake and sediments of a constructed flow-through wetland. Ecol Eng 72:35–39

    Article  Google Scholar 

  • Dsikowitzky L, Nguyen TMI, Konzer L et al (2020) Occurrence and origin of triazine herbicides in a tropical coastal area in China: A potential ecosystem threat. Estuar Coast Shelf Sci 235:106612

    Article  CAS  Google Scholar 

  • Eapen S, Singh S, D'Souza SF (2007) Advances in development of transgenic plants for remediation of xenobiotic pollutants. Biotechnol Adv 25: 442–451

    Article  CAS  Google Scholar 

  • Ekperusi AO, Sikoki FD, Nwachukwu EO (2019) Application of common duckweed (Lemna minor) in phytoremediation of chemicals in the environment: State and future perspective. Chemosphere 223:285–309

    Article  CAS  Google Scholar 

  • El Rasafi T, Pereira R, Pinto G et al (2021) Potential of Eucalyptus globulus for the phytoremediation of metals in a Moroccan iron mine soil—a case study. Environ Sci Pollut Res 28:15782-15793

    Article  CAS  Google Scholar 

  • Esquerdo AA, Galvan PJV, Gadea IS et al (2020) Activated carbon and ozone to reduce simazine in water. Water 12(10):2900

    Article  CAS  Google Scholar 

  • European Commission 2004/248/EC: Commission Decision of 10 March 2004 concerning the non-inclusion of atrazine in Annex I to Council Directive 91/414/EEC and the withdrawal of authorisations for plant protection products containing this active substance

    Google Scholar 

  • Fasani E, Manara A, Martini F et al (2018) The potential of genetic engineering of plants for the remediation of soils contaminated with heavy metals. Plant Cell Environ 41:1201–1232

    Article  CAS  Google Scholar 

  • Fayiga AO (2019) Remediation of inorganic and organic contaminants in military ranges. Environ Chem 16:81-91

    Article  CAS  Google Scholar 

  • Fiore RD, dos Santos JB, Ferreira EA et al (2019) Selection of arboreal species to compose and remedy riparian forests next to agricultural areas. Ecol Eng 131: 9–15

    Article  Google Scholar 

  • Flores F, Collier CJ, Mercurio P et al (2013) Phytotoxicity of four photosystem II herbicides to tropical seagrasses. PLoS One 8:e75798

    Article  CAS  Google Scholar 

  • Franco J, Matamoros V (2016) Mitigation of polar pesticides across a vegetative filter strip. A mesocosm study. Environ Sci Pollut Res 23:25402–25411

    Article  CAS  Google Scholar 

  • Gabriele I, Race M, Papirio S et al (2021) Phytoremediation of pyrene-contaminated soils: A critical review of the key factors affecting the fate of pyrene. J Environ Manage 293:112805

    Article  CAS  Google Scholar 

  • Gamiz B, Velarde P, Spokas KA et al (2019) Changes in sorption and bioavailability of herbicides in soil amended with fresh and aged biochar. Geoderma 337:341–349

    Article  CAS  Google Scholar 

  • Gao YP, Fang JG, Du M et al (2017) Response of the eelgrass (Zostera marina L.) to the combined effects of high temperatures and the herbicide, atrazine. Aquat Bot 142: 41–47

    Article  CAS  Google Scholar 

  • Gao YP, Fang JG, Li WH et al (2019) Effects of atrazine on the physiology, sexual reproduction, and metabolism of eelgrass (Zostera marina L.). Aquat Bot 153:8–14

    Article  CAS  Google Scholar 

  • Gao L, Zhang XW, Fan LH et al (2021) Algae-based approach for desalination: an emerging energy-passive and environmentally friendly desalination technology. ACS Sustain Chem Eng 9(26):8663–8678

    Article  CAS  Google Scholar 

  • Garrido-Cardenas JA, Esteban-Garcia B, Agueera A et al (2020) Wastewater treatment by advanced oxidation process and their worldwide research trends. Int J Environ Res Public Health 17:170

    Article  CAS  Google Scholar 

  • Ghavi A, Bagherian G, Rezaei-Vahidian H (2021) Degradation of paraquat herbicide using hybrid AOP process: statistical optimization, kinetic study, and estimation of electrical energy consumption. Environ Sci Europe 33(1):117

    Article  CAS  Google Scholar 

  • Gikas GD, Perez-Villanueva M, Tsioras M et al (2018) Low-cost approaches for the removal of terbuthylazine from agricultural wastewater: constructed wetlands and biopurification system. Chem Eng J 335:647–656

    Article  CAS  Google Scholar 

  • Gomez L, Contreras A, Bolonio D et al (2019) Phytoremediation with trees. In: Canovas FM (ed) Molecular physiology and biotechnology of trees. Elsevier, Amsterdam, pp 281–321

    Chapter  Google Scholar 

  • Gonzalez JM, Murphy LR, Penn CJ et al (2020) Atrazine removal from water by activated charcoal cloths. Int Soil Water Conserv Res 8:205–212

    Article  Google Scholar 

  • González-Barreiro O, Rioboo C, Herrero C (2006) Removal of triazine herbicides from freshwater systems using photosynthetic microorganisms. Environ Pollut 144:266–271

    Article  CAS  Google Scholar 

  • Grasselli F, Bussolati S, Ramoni R et al (2018) Simazine, a triazine herbicide, disrupts swine granulosa cell functions. Anim Reprod 15:3–11

    Article  Google Scholar 

  • Guimaraes FP, Aguiar R, Karam D et al (2011) Potential of macrophytes for removing atrazine from aqueous solution. Planta Daninha 29:1137–1147

    Article  Google Scholar 

  • Gunarathne V, Mayakaduwa S, Ashiq A et al (2019) Transgenic plants: Benefits, applications, and potential risks in phytoremediation. In: Prasad MNV (ed) Transgenic plant technology for remediation of toxic metals and metalloids. Academic Press, London, pp 89–102

    Chapter  Google Scholar 

  • Han Y, Lee J, Kim C et al (2021) Uranium rhizofiltration by Lactuca sativa, Brassica campestris L., Raphanus sativus L., Oenanthe javanica under different hydroponic conditions. Minerals 11 41

    Article  CAS  Google Scholar 

  • Harper AP, Finger BJ, Green MP (2020) Chronic atrazine exposure beginning prenatally impacts liver function and sperm concentration with multi-generational consequences in mice. Front Endocrinol 11:580124

    Article  Google Scholar 

  • Haynes D, Ralph P, Prange J, Dennison B (2000) The impact of the herbicide diuron on photosynthesis in three species of tropical seagrass. Mar Pollut Bull 41:288–293

    Article  CAS  Google Scholar 

  • Hayes TB, Khoury V, Narayan A et al (2020) Atrazine induces complete feminization and chemical castration in male African clawed frogs (Xenopus laevis). Proc Natl Acad Sci U S A 107:4612–4617

    Article  Google Scholar 

  • He YJ, Langenhoff AAM, Sutton NB et al (2017) Metabolism of Ibuprofen by Phragmites australis: Uptake and phytodegradation. Environ Sci Technol 51:4576-4584

    Article  CAS  Google Scholar 

  • He HJ, Liu YO, You SH et al (2019) A review on recent treatment technology for herbicide atrazine in contaminated environment. Int J Environ Res Public Health 16:5129

    Article  CAS  Google Scholar 

  • Heemann TP, Arantes S, Andrade E et al (2018) Phytoremediation capacity of forest species to herbicides in two types of soils. Floresta e Ambiente 25:e20170465

    Article  Google Scholar 

  • Hirschberg J, Bleecker A, Kyle DJ et al (1984) The molecular basis of triazine herbicide resistance in higher plant chloroplasts. Z Naturforsch 39: 412–420

    Article  Google Scholar 

  • Horak I, Horn S, Pieters R (2021) Agrochemicals in freshwater systems and their potential as endocrine disrupting chemicals: A South African context. Environ Pollut 268A:115718

    Article  CAS  Google Scholar 

  • Hou X, Huang X, Ai Z et al (2017) Ascorbic acid induced atrazine degradation. J Hazard Mater 327:71–78

    Article  CAS  Google Scholar 

  • Houjayfa OM, Noubissi E, Ngassoum MB (2020) Mobility studies of atrazine in the soil-plant system in two Cameroonian vegetables Amaranthus hybridus and Corchorus olitorius. Environ Sustainability Indic 6:100036

    Article  Google Scholar 

  • Hrouzková S, Matisová E (2012) Endocrine disrupting pesticides. In: Soundararajan RP (ed) Pesticide-advances in chemical and botanical pesticides. InTech, Rijeka, pp 99–126

    Google Scholar 

  • Hu N, Xu YF, Sun C et al (2021) Removal of atrazine in catalytic degradation solutions by microalgae Chlorella sp. and evaluation of toxicity of degradation products via algal growth and photosynthetic activity. Ecotoxicol Environ Saf 207:111546

    Article  CAS  Google Scholar 

  • Huang H, Zhang S, Shan XQ et al (2007) Effect of arbuscular mycorrhizal fungus (Glomus caledonium) on the accumulation and metabolism of atrazine in maize (Zea mays L.) and atrazine dissipation in soil. Environ Pollut 146:452–457

    Article  CAS  Google Scholar 

  • Hughes RG, Potouroglou M, Ziauddin Z et al (2018) Seagrass wasting disease: Nitrate enrichment and exposure to a herbicide (Diuron) increases susceptibility of Zostera marina to infection. Mar Pollut Bull 134:94–98

    Article  CAS  Google Scholar 

  • Hussein MH, Abdullah AM, Din NIBE et al (2017) Biosorption potential of the microchlorophyte Chlorella vulgaris for some pesticides. J Fertil Pestic 8:177

    Article  Google Scholar 

  • Hwang JI, Hinz FO, Albano JP, Wilson PC (2021) Enhanced dissipation of trace level organic contaminants by floating treatment wetlands established with two macrophyte species: A mesocosm study. Chemosphere 267:129159

    Article  CAS  Google Scholar 

  • Ibañez SG, Paisio CE, Oller ALW et al (2015) Overview and new insights of genetically ingineered plants for improving phytoremediation. In: Ansari AA, Gill SS, Gill R, Lanza GR, Newman L (eds) Phytoremediation: Management of environmental contaminants. Springer International, Cham, pp 99–113

    Google Scholar 

  • Ilyas H, Masih I, van Hullebusch ED (2021) A decision tree framework to support design, operation, and performance assessment of constructed wetlands for the removal of emerging organic contaminants. Sci Total Environ 760:143334

    Article  CAS  Google Scholar 

  • Jampílek J, Kráľová K (2021) Seaweeds as indicators and potential remediators of metal pollution. In: Ibrahim HM, El-Din S, El-Beltagi H, Abd-Elsalam KA (eds) Plant growth-promoting microbes for sustainable biotic and abiotic stress management. Springer Nature, Cham, pp 51–92

    Google Scholar 

  • Jiang Z, Jiang D, Zhou QH et al (2020) Enhancing the atrazine tolerance of Pennisetum americanum (L.) K. Schum by inoculating with indole-3-acetic acid producing strain Pseudomonas chlororaphis PAS18. Ecotoxicol Environ Saf 202:110854

    Google Scholar 

  • Jin ZP, Luo K, Zhang S et al (2012) Bioaccumulation and catabolism of prometryne in green algae. Chemosphere 87:278–284

    Article  CAS  Google Scholar 

  • Jing R, Fusi S, Kjellerup BV (2018) Remediation of polychlorinated biphenyls (PCBs) in contaminated soils and sediment: state of knowledge and perspectives. Front Environ Sci 6:79

    Article  Google Scholar 

  • Ju C, Zhang HC, Wu RL et al (2020) Upward translocation of acetochlor and atrazine in wheat plants depends on their distribution in roots. Sci Total Environ 703:135636

    Article  CAS  Google Scholar 

  • Kabra AN, Ji MK, Choi J et al (2014) Toxicity of atrazine and its bioaccumulation and biodegradation in a green microalga, Chlamydomonas mexicana. Environ Sci Pollut Res 21:12270–12278

    Article  CAS  Google Scholar 

  • Kanwar VS, Sharma A, Srivastav AL (2020) Phytoremediation of toxic metals present in soil and water environment: a critical review. Environ Sci Pollut Res 27(36):44835-44860

    Article  CAS  Google Scholar 

  • Kaur R, Kaur H (2021). Solar driven photocatalysis - an efficient method for removal of pesticides from water and wastewater. Biointerface Res Appl Chem 11: 9071–9084

    CAS  Google Scholar 

  • Kawahigashi H, Hirose S, Ohkawa H (2005) Transgenic rice plants expressing human CYP1A1 remediate the triazine herbicides atrazine and simazine. J Agric Food Chem 53:8557–8564

    Article  CAS  Google Scholar 

  • Kelly J, McDonnell C, Skillen N et al (2021) Enhanced photocatalytic degradation of 2-methyl-4-chlorophenoxyacetic acid (MCPA) by the addition of H2O2. Chemosphere 275:130082

    Article  CAS  Google Scholar 

  • Khrunyk Y, Schiewer S, Carstens KL et al (2017) Uptake of C14-atrazine by prairie grasses in a phytoremediation setting. Int J Phytorem 19:104–112

    Article  CAS  Google Scholar 

  • Komives T, Gullner G, Rennenberg H, Casida JE (2003) Ability of poplar (Populus spp.) to detoxify chloroacetanilide herbicides. Water Air Soil Pollut: Focus 3:277–283

    Article  CAS  Google Scholar 

  • Kristanti RA, Ngu WJ, Yuniarto A et al (2021) Rhizofiltration for removal of inorganic and organic pollutants in groundwater: a review. Biointerface Res Applied Chemistry 11:12326–12347

    Article  CAS  Google Scholar 

  • Kráľová K, Masarovičová E, Jampílek J (2019) Plant responses to stress induced by toxic metals and their nanoforms. In: Pessarakli M, (ed) Handbook of plant and crop stress, 4th ed. CRC Press, Boca Raton, pp 479–522

    Google Scholar 

  • Kráľová K, Jampílek J (2021) Impact of metal nanoparticles on marine and freshwater algae. In: Pessarakli M, (ed) Handbook of plant and crop physiology, 4th ed. CRC Press, Boca Raton, pp 889–921

    Chapter  Google Scholar 

  • Kucherova AE, Shubin IN, Pas'ko TV (2018) Perspective sorbents based on zeolite modified with nanostructures for the purification of aqueous media from organic impurities. Nanotechnol Russ 13:327–330

    Article  CAS  Google Scholar 

  • Kumar A, Singh JS (2017) Cyanoremediation: A green-clean tool for decontamination of synthetic pesticides from agro- and aquatic ecosystems. In: Singh JS, Seneviratne G (eds) Agro-environmental sustainability, vol 2, Managing environmental pollution. Springer International Publishing, Cham, pp 59–83

    Chapter  Google Scholar 

  • Kumar S, Singh R, Behera M et al (2019) Restoration of pesticide-contaminated sites through plants. In: Pandey VC, Bauddh K (eds) Phytomanagement of polluted sites. Elsevier, Amsterdam, pp 313–327

    Chapter  Google Scholar 

  • Kumar M, Bolan NS, Hoang SA et al (2021) Remediation of soils and sediments polluted with polycyclic aromatic hydrocarbons: To immobilize, mobilize, or degrade? J Hazard Mater 420:126534

    Article  CAS  Google Scholar 

  • la Cecilia D, Maggi F (2016) Kinetics of atrazine, deisopropylatrazine, and deethylatrazine soil biodecomposers. J Environ Manage 183:673–686

    Article  CAS  Google Scholar 

  • Lafleur B, Sauvé S, Vo Duy S, Labrecque M (2016) Phytoremediation of groundwater contaminated with pesticides using short-rotation willow crops: A case study of an apple orchard. Int J Phytorem 18:1128–1135

    Google Scholar 

  • LeBaron HM, McFarland JE, Burnside OC (2008) The triazine herbicides: A milestone in the development of weed control technology. In: LeBaron HM, McFarland JE, Burnside OC (eds) The triazine herbicides, 50 years revolutionizing agriculture. Elsevier, Amsterdam, pp 1–12

    Google Scholar 

  • Lewis-Russ A, Hicks E, Haramut J (2009) Phytopumping for hydraulic control of an arsenic plume. Remediation- J Environ Cleanup Costs Technol Tech 19:91–100

    Google Scholar 

  • Li HD, Qu MJ, Lu X et al (2019a) Evaluation of the potential of Potamogeton crispus and Potamogeton crispus on phytoremediation of atrazine. Int J Environ Anal Chem 99:243–257

    Article  CAS  Google Scholar 

  • Li H, Zhao QY, Huang H (2019b) Current states and challenges of salt-affected soil remediation by cyanobacteria. Sci Total Environ 669:258–272

    Article  CAS  Google Scholar 

  • Limmer M, Burken J (2016) Phytovolatilization of organic contaminants. Environ Sci Technol 50:6632–6643

    Article  CAS  Google Scholar 

  • Lin ZQ, Hussein H, Ye ZH (2007) Phytorestoration of metal-contaminated industrial wasteland: A greenhouse feasibility study. In Sarkar D, Datta R, Hannigan R (eds), Concepts and applications in environmental geochemistry. Elsevier, Oxford, pp 487–501

    Chapter  Google Scholar 

  • Lin CH, Lerch RN, Garrett HE et al (2008) Bioremediation of atrazine-contaminated soil by forage grasses: transformation, uptake, and detoxification. J Environ Qual 37:196–206

    Article  CAS  Google Scholar 

  • Lin CH, Lerch RN, Kremer RJ et al (2011) Stimulated rhizodegradation of atrazine by selected plant species. J Environ Qual 40:1113–1121

    Article  CAS  Google Scholar 

  • Lin Z, Zhen Z, Chen CE et al (2018) Rhizospheric effects on atrazine speciation and degradation in laterite soils of Pennisetum alopecuroides (L.) Spreng. Environ Sci Pollut Res 25:12407–12418

    Article  CAS  Google Scholar 

  • Liu WT, Ni JC, Zhou QX (2013). Uptake of heavy metals by trees: Prospects for phytoremediation. Mater Sci Forum (743–744):768–781.

    Article  CAS  Google Scholar 

  • Liu X, Hong HJ, Wu XL et al (2016) Synthesis of TiO2-reduced graphene oxide nanocomposites for efficient adsorption and photodegradation of herbicides. Water Air Soil Pollut 227:21

    Article  CAS  Google Scholar 

  • Liu Y, Ma LY, Lu YC et al (2017) Comprehensive analysis of degradation and accumulation of ametryn in soils and in wheat, maize, ryegrass and alfalfa plants. Ecotoxicol Environ Saf 140:264–270

    Article  CAS  Google Scholar 

  • Liu XY, Shen SY, Zhang XY et al (2020a) Effect of enhancers on the phytoremediation of soils polluted by pyrene and Ni using Sudan grass (Sorghum sudanense (Piper) Stapf.). Environ Sci Pollut Res 27:41639–41646

    Article  CAS  Google Scholar 

  • Liu C, Neve P, Glasgow L et al (2020b) Modeling the sustainability and economics of stacked herbicide-tolerant traits and early weed management strategy for waterhemp (Amaranthus tuberculatus) control. Weed Sci 68:179–185

    Article  Google Scholar 

  • Liu XY, Hong Y (2021) Microalgae-based wastewater treatment and recovery with biomass and value-added products: a brief review. Curr Pollut Res 7:227-245

    Article  CAS  Google Scholar 

  • Lopez-Miranda JL, Silva R, Molina GA et al (2020) Evaluation of a dynamic bioremediation system for the removal of metal ions and toxic dyes using Sargassum spp. J Mar Sci Eng 8:899

    Google Scholar 

  • Lu YC, Luo F, Pu ZJ et al (2016) Enhanced detoxification and degradation of herbicide atrazine by a group of O-methyltransferases in rice. Chemosphere 165:487–496

    Article  CAS  Google Scholar 

  • Lu H, Yu Q, Han HP, Owen MJ, Powles SB (2019a) Metribuzin resistance in a wild radish (Raphanus raphanistrum) population via both psbA gene mutation and enhanced metabolism. J Agric Food Chem 67:1353–1359

    Google Scholar 

  • Lu H, Yu Q, Han HP et al (2019b) A novel psbA mutation (Phe274-Val) confers resistance to PSII herbicides in wild radish (Raphanus raphanistrum). Pest Manag Sci 75:144–151

    Google Scholar 

  • Ma LY, Zhang N, Liu JT et al (2019) Uptake of atrazine in a paddy crop activates an epigenetic mechanism for degrading the pesticide in plants and environment. Environ Int 131:105014

    Article  CAS  Google Scholar 

  • Ma HJ, Lu H, Han HP et al (2020) Metribuzin resistance via enhanced metabolism in a multiple herbicide resistant Lolium rigidum population. Pest Manag Sci 76: 3785–3791

    Article  CAS  Google Scholar 

  • Maestri E, Marmiroli N (2011) Transgenic plants for phytoremediation. Int J Phytorem 13:264–279

    Article  Google Scholar 

  • Majumder A, Ray S, Jha S (2016) Hairy roots and phytoremediation. In: Pavlov A, Bley T (eds) Bioprocessing of plant in vitro systems. Reference series in phytochemistry. Springer Cham, pp 1–24

    Google Scholar 

  • Malea P, Kevrekidis T (2014) Trace element patterns in marine macroalgae. Sci Total Environ 494:144–157

    Article  CAS  Google Scholar 

  • Mandal A, Kumar A, Singh N (2021) Sorption mechanisms of pesticides removal from effluent matrix using biochar: Conclusions from molecular modelling studies validated by single-, binary and ternary solute experiments. J Environ Manage 295:113104

    Article  CAS  Google Scholar 

  • Marican A, Durán-Lara EF (2018) A review on pesticide removal through different processes. Environ Sci Pollut Res 25:2051–2064

    Article  CAS  Google Scholar 

  • Marmiroli M, Pietrini F, Maestri E et al (2011) Growth, physiological and molecular traits in Salicaceae trees investigated for phytoremediation of heavy metals and organics. Tree Physiol 31:1319-1334

    Article  CAS  Google Scholar 

  • Masarovičová E, Kráľová K, Kummerová M (2010a) Principles of classification of medicinal plants as hyperaccumulators or excluders. Acta Physiol Plant 32:823–829

    Article  Google Scholar 

  • Masarovičová E, Kráľová K, Šeršeň F (2010b) Plant responses to toxic metal stress. In: Pessarakli M (ed) Handbook of plant and crop stress, 3rd ed. CRC Press, Boca Raton, pp 595–634

    Google Scholar 

  • Masarovičová E, Kráľová K (2012) Plant-heavy metal interaction: Phytoremediation, biofortification and nanoparticles. In: Montanaro E (ed) Advances in selected plant physiology aspects. IntechOpen, Rijeka, pp 75–102

    Google Scholar 

  • Masarovičová E, Kráľová K (2017) Essential elements and toxic metals in some crops, medicinal plants, and trees. In: Ansari AA, Gill SS, Gill R, Lanza GR, Newman L (eds), Phytoremediation: Management of environmental contaminants, vol. 5. Springer International Publishing, Cham, pp 183–255

    Chapter  Google Scholar 

  • Masarovičová E, Kráľová K (2018) Woody species in phytoremediation applications for contaminated soils. In: Ansari AA, Gill S, Gill R, Lanza G, Newman L (eds), Phytoremediation. Springer Nature, Cham, pp 319–373

    Chapter  Google Scholar 

  • Mataruga Z, Jaric S, Kostic O et al (2020) The potential of elm trees (Ulmus glabra Huds.) for the phytostabilisation of potentially toxic elements in the riparian zone of the Sava River. Environ Sci Pollut Res 27:4309–4324

    Article  CAS  Google Scholar 

  • McKnight AM, Gannon TW, Yelverton F (2022) Phytoremediation potential of three terrestrial plant species for removal of atrazine, azoxystrobin, and imidacloprid. Int J Phytorem 24: 187-195

    Google Scholar 

  • Merini LJ, Calabró-López A, Massot F et al (2012) Atrazine phytoremediation in Humid Pampa plots (Argentina) under intensive agriculture management. Congreso; Reunión de la Sociedad Argentina de Investigación Bioquímica y Biología Molecular (SAIB); Persistent Organic Contaminants -35, 2012 https://www.conicet.gov.ar/new_scp/detalle.php?keywords=&id=45986&congresos=yes&detalles=yes&congr_id=8803239

  • Mimmo T, Bartucca ML, Del Buono D et al (2015) Italian ryegrass for the phytoremediation of solutions polluted with terbuthylazine. Chemosphere 119:31–36

    Article  CAS  Google Scholar 

  • Moeder M, Carranza-Diaz O, Lopez-Angulo G et al (2017) Potential of vegetated ditches to manage organic pollutants derived from agricultural runoff and domestic sewage: A case study in Sinaloa (Mexico). Sci Total Environ 598:1106–1115

    Article  CAS  Google Scholar 

  • Mohseni A, Fan LH, Roddick FA (2021) Impact of microalgae species and solution salinity on algal treatment of wastewater reverse osmosis concentrate. Chemosphere 285:131487

    Article  CAS  Google Scholar 

  • Mohsenpour SF, Hennige S, Willoughby N et al (2021) Integrating micro-algae into wastewater treatment: A review. Sci Total Environ 752: 142168

    Article  CAS  Google Scholar 

  • Moola AK, Balasubramanian P, Satjsh L et al (2021) Hairy roots as a source for phytoremediation. In: Aravind J, Kamaraj M, Prashanthi Devi M, Rajakumar S (eds) Strategies and tools for pollutant mitigation. Springer, Cham. pp 29-47

    Chapter  Google Scholar 

  • Murphy IJ, Coats JR (2011) The capacity of switch grass (Panicum virgatum) to degrade atrazine in a phytoremediation setting. Environ Toxicol Chem 30:715–722

    Article  CAS  Google Scholar 

  • Negri AP, Flores F, Mercurio P et al (2015) Lethal and sub-lethal chronic effects of the herbicide diuron on seagrass. Aquat Toxicol 165:73–83

    Article  CAS  Google Scholar 

  • Nguyen PM, Afzal M, Ullah I et al (2019) Removal of pharmaceuticals and personal care products using constructed wetlands: effective plant-bacteria synergism may enhance degradation efficiency. Environ Sci Polut Res 26:21109-21126

    Article  Google Scholar 

  • Ni J, Sun SX, Zheng Y et al (2018) Removal of prometryn from hydroponic media using marsh pennywort (Hydrocotyle vulgaris L.). Int J Phytorem 20:909–913

    Article  CAS  Google Scholar 

  • Nie J, Sun YQ, Zhou YY et al (2020) Bioremediation of water containing pesticides by microalgae: Mechanisms, methods, and prospects for future research. Sci Total Environ 707:136080

    Article  CAS  Google Scholar 

  • Nissim WG, Palm E, Pandolfi C et al (2021) Willow and poplar for the phyto-treatment of landfill leachate in Mediterranean climate. J Environ Manage 277: 111454

    Article  CAS  Google Scholar 

  • Nödler K, Licha T, Voutsa D (2013) Twenty years later –Atrazine concentrations in selected coastal waters of the Mediterranean and the Baltic Sea. Mar Pollut Bull 70: 112–118

    Article  CAS  Google Scholar 

  • Oettmeier W (1985) Interference by herbicides with photosynthetic electron transfer. In: Hedom PA, Cutler HG, Hammock BD, Menn JJ, Moreland DE, Plimmer JR (eds) Bioregulators for pest control. American Chemical Society, Washington, DC, pp 19–33

    Chapter  Google Scholar 

  • Oettmeier W, Masson K, Johanningmeier U (1982) Evidence of two different herbicide binding proteins at the reducing side of photosystem II. Biochim Biophys Acta 679: 376

    Article  CAS  Google Scholar 

  • Ojemaye CY, Onwordi CT, Pampanin DM et al (2020) Presence and risk assessment of herbicides in the marine environment of Camps Bay (Cape Town, South Africa). Sci Total Environ 738:140346

    Article  CAS  Google Scholar 

  • Ojuederie OB, Igwe DO, Popoola JO (2022) Transgenic plant-mediated phytoremediation: Applications, challenges, and prospects. In: Pandey V (ed) Assisted Phytoremediation. Elsevier, Amsterdam, pp 179-202

    Chapter  Google Scholar 

  • Olisah C, Human RD, Rubidge G et al (2021) Organophosphate pesticides sequestered in tissues of a seagrass species - Zostera capensis from a polluted watershed. J Environ Manage 300:113657

    Article  CAS  Google Scholar 

  • Orton F, Lutz I, Kloas W et al (2009) Endocrine disrupting effects of herbicides and pentachlorophenol: In vitro and in vivo evidence. Environ Sci Technol 43: 2144–2150

    Article  CAS  Google Scholar 

  • Pacheco MM, Hoeltz M, Moraes MSA, Schneider RCS (2015) Microalgae: Cultivation techniques and wastewater phycoremediation. J Environ Sci Health A 50:585–601

    CAS  Google Scholar 

  • Pandey VC, Sahu N, Singh DP (2020) Physiological profiling of invasive plant species for ecological restoration of fly ash deposits. Urban For Urban Green 54: 126773

    Article  Google Scholar 

  • Panja S, Sarkar D, Datta R (2018) Vetiver grass (Chrysopogon zizanioides) is capable of removing insensitive high explosives from munition industry wastewater. Chemosphere 209:920–927

    Article  CAS  Google Scholar 

  • Pannacci E, Del Buono D, Bartucca ML et al (2020) Herbicide uptake and regrowth ability of tall fescue and orchardgrass in S-metolachlor-contaminated leachates from sand pot experiment. Agriculture 10(10):487

    Article  CAS  Google Scholar 

  • Papadopoulos N, Zalidis G (2019) The use of Typha latifolia L. in constructed wetland microcosms for the remediation of herbicide terbuthylazine. Environ Process 6: 985–1003

    Article  CAS  Google Scholar 

  • Park S, Kim S, Jin H et al (2014) Impaired development of female mouse offspring maternally exposed to simazine. Environ Toxicol Pharmacol 38:845–851

    Article  CAS  Google Scholar 

  • Pascal-Lorber S, Laurent F (2011) Phytoremediation techniques for pesticide contaminations. In: E. Lichtfouse (ed.), Alternative farming systems, biotechnology, drought stress and ecological fertilization. Springer Science+Business Media, Dordrecht, pp 77–105

    Chapter  Google Scholar 

  • Pecev-Marinkovic E, Miletic A, Tosic S et al (2019) Optimization and validation of the kinetic spectrophotometric method for quantitative determination of the pesticide atrazine and its application in infant formulae and cereal-based baby food. J Sci Food Agric 99:5424–5431

    Article  CAS  Google Scholar 

  • Perez DJ, Doucette WJ, Moore MT (2022) Atrazine uptake, translocation, bioaccumulation and biodegradation in cattail (Typha latifolia) as a function of exposure time. Chemosphere 287(Part 1): 132104

    Article  CAS  Google Scholar 

  • Phouthavong-Murphy JC, Merrill AK, Zamule S et al (2020) Phytoremediation potential of switchgrass (Panicum virgatum), two United States native varieties, to remove bisphenol-A (BPA) from aqueous media. Sci Rep 10:835

    Article  CAS  Google Scholar 

  • Pi N, Ng JZ, Kelly BC (2017) Bioaccumulation of pharmaceutically active compounds and endocrine disrupting chemicals in aquatic macrophytes: Results of hydroponic experiments with Echinodorus horemanii and Eichhornia crassipes. Sci Total Environ 601:812–820

    Article  CAS  Google Scholar 

  • Pico Y, Alvarez-Ruiz R, Alfarhan AH et al (2019) Uptake and accumulation of emerging contaminants in soil and plant treated with wastewater under real-world environmental conditions in the Al Hayer area (Saudi Arabia). Sci Total Environ 652:562–572

    Article  CAS  Google Scholar 

  • Pimenta JAA, Fukumoto AAF, Madeira TB et al (2020) Adsorbent selection for pesticides removal from drinking water. Environ Technol. doi: https://doi.org/10.1080/09593330.2020.1847203

  • Pintar A, Stipicevic S, Svecnjak Z et al (2020) Crop sensitivity to mesotrione residues in two soils: Field and laboratory bioassays. Chil J Agric Res 80(4):496-504

    Article  Google Scholar 

  • Poonam Kumar N (2019) Natural and artificial soil amendments for the efficient phytoremediation of contaminated soil. In: Arora NK, Kumar NK (eds) Phyto and rhizo remediation, microorganisms for sustainability, vol. 9. Springer Nature Singapore, Singapore, pp 1–32

    Chapter  Google Scholar 

  • Prabakarana K, Lia J, Anandkumara A et al (2019) Managing environmental contamination through phytoremediation by invasive plants: A review. Ecol Eng 138:28–37

    Article  Google Scholar 

  • Prasad MNV (2019) Transgenic plant technology for remediation of toxic metals and metalloids. Amsterdam: Elsevier.

    Google Scholar 

  • Preisler AC, Pereira AES, Campos EVR et al (2020) Atrazine nanoencapsulation improves pre-emergence herbicidal activity against Bidens pilosa without enhancing long-term residual effect on Glycine max. Pest Manag Sci 76:141-149

    Article  CAS  Google Scholar 

  • Prosser RS, Hoekstra PF, Gene S et al (2020) A review of the effectiveness of vegetated buffers to mitigate pesticide and nutrient transport into surface waters from agricultural areas. J Environ Manage 261:110210

    Article  CAS  Google Scholar 

  • Purcell M, Leroux GD, Carpentier R (1991) Interaction of the electron donor diphenylcarbazide with the herbicide-binding niche of photosystem II. Biochim Biophys Acta Bioenerg 1058;374–378

    Article  CAS  Google Scholar 

  • Qu MJ, Li HD, Li N et al (2017) Distribution of atrazine and its phytoremediation by submerged macrophytes in lake sediments. Chemosphere 168:1515–1522

    Article  CAS  Google Scholar 

  • Qu M, Li N, Li H et al (2018) Phytoextraction and biodegradation of atrazine by Myriophyllum spicatum and evaluation of bacterial communities involved in atrazine degradation in lake sediment. Chemosphere 209:439–448

    Article  CAS  Google Scholar 

  • Qu MJ, Liu GL, Zhao JW et al (2020) Fate of atrazine and its relationship with environmental factors in distinctly different lake sediments associated with hydrophytes. Environ Pollut 256:113371

    Article  CAS  Google Scholar 

  • Qu HJ, Ma CX, Xiao J et al (2021) Co-planting of Quercus nuttallii Quercus pagoda with Solanum nigrum enhanced their phytoremediation potential to multi-metal contaminated soil, Int J Phytorem 23(10):1104-1112

    Article  CAS  Google Scholar 

  • Rad LR, Anbia M (2021) Zeolite-based composites for the adsorption of toxic matters from water: A review. J Environ Chem Eng (5):106088

    Google Scholar 

  • Radziemska M, Vaverkova MD, Baryla A (2017) Phytostabilization-management strategy for stabilizing trace elements in contaminated soils. Int J Environ Res Public Health 14:958

    Article  CAS  Google Scholar 

  • Rani SJ, Usha R (2013) Transgenic plants: Types, benefits, public concerns and future. J Pharm Res 6:879–883

    Google Scholar 

  • Rekhate CV, Srivastava JK (2020) Recent advances in ozone-based advanced oxidation processes for treatment of wastewater- A review. Chem Eng J Adv 3:100031

    Article  Google Scholar 

  • Ribeiro VHV, Alencar BTB, dos Santos NMC et al (2019) Sensitivity of the macrophytes Pistia stratiotes and Eichhornia crassipes to hexazinone and dissipation of this pesticide in aquatic ecosystems. Ecotoxicol Environ Saf 168:177-183

    Article  CAS  Google Scholar 

  • Robinson B, McIvor I (2013) Phytomanagement of contaminated sites using poplars and willows. In: Leung, DWM (ed) Recent advances towards improved phytoremediation of heavy metal pollution. Bentham Science Publishers. Sharjah, pp 119–133

    Chapter  Google Scholar 

  • Rocha F, Lucas-Borja ME, Pereira P et al (2020) Cyanobacteria as a nature-based biotechnological tool for restoring salt-affected soils. Agronomy-Basel 10: 1321

    Article  CAS  Google Scholar 

  • Rodrigues ET, Alpendurada MF, Ramos F et al (2018) Environmental and human health risk indicators for agricultural pesticides in estuaries. Ecotoxicol Environ Saf 150:224–231

    Article  CAS  Google Scholar 

  • Rodriguez K, Sanchez V, Lopez-Bellido FJ (2022) Electrokinetic-assisted phytoremediation. In: Pandey V (ed) Assisted Phytoremediation. Elsevier, Amsterdam, pp 371-398

    Chapter  Google Scholar 

  • Rohr JR (2021) The Atrazine saga and its importance to the future of toxicology, science, and environmental and human health. Environ Toxicol Chem 40:1544-1558

    Article  CAS  Google Scholar 

  • Romita R, Rizzi V, Semeraro P et al (2019) Operational parameters affecting the atrazine removal from water by using cyclodextrin based polymers as efficient adsorbents for cleaner Technologies. Environ Technol Innov 16:100454

    Article  Google Scholar 

  • Ronka S (2016a) Removal of triazine-based herbicides on specific polymeric sorbent: batch studies. Pure Appl Chem 88:1167–1177

    Article  CAS  Google Scholar 

  • Ronka S (2016b) Removal of triazine-based herbicides on specific polymeric sorbent: fixed bed column studies. Pure Appl Chem 88:1179–1189

    Article  CAS  Google Scholar 

  • Rutherford AW, Krieger-Liszkay A (2001) Herbicide-induced oxidative stress in photosystem II. Trends Biochem Sci 26:648–53

    Article  CAS  Google Scholar 

  • Saldarriaga-Hernandez S, Hernandez-Vargas G, Iqbal HMN et al (2020) Bioremediation potential of Sargassum sp. biomass to tackle pollution in coastal ecosystems: Circular economy approach. Sci Total Environ 715:136978

    Google Scholar 

  • Sanchez V, Lopez-Bellido FJ, Canizares P et al (2017) Assessing the phytoremediation potential of crop and grass plants for atrazine-spiked soils. Chemosphere 185:119–126

    Article  CAS  Google Scholar 

  • Sanchez V, Lopez-Bellido FJ, Canizares P et al (2018) Can electrochemistry enhance the removal of organic pollutants by phytoremediation? J Environ Manage 225:280–287

    Article  CAS  Google Scholar 

  • Sanchez V, Francisco, Lopez-Bellido J et al (2019) Enhancing the removal of atrazine from soils by electrokinetic-assisted phytoremediation using ryegrass (Lolium perenne L.). Chemosphere 232:204–212

    Article  CAS  Google Scholar 

  • Sanchez V, Lopez-Bellido FJ, Rodrigo MA et al (2020) A mesocosm study of electrokinetic-assisted phytoremediation of atrazine-polluted soils. Sep Purif Technol 233:116044

    Article  CAS  Google Scholar 

  • Sangami S, Manu B (2017a) Optimization of Fenton's oxidation of herbicide dicamba in water using response surface methodology. Appl Water Sci 7:4269–4280

    Article  CAS  Google Scholar 

  • Sangami S, Manu B (2017b) Fenton's treatment of actual agriculture runoff water containing herbicides. Water Sci Technol 75:451–461

    Article  CAS  Google Scholar 

  • Saravanan A, Kumar PS, Vo DVN et al (2021) Photocatalysis for removal of environmental pollutants and fuel production: a review. Environ Chem Lett 19: 441–463

    Article  CAS  Google Scholar 

  • Schachtschneider K, Chamier J, Somerset V (2017) Phytostabilization of metals by indigenous riparian vegetation. Water SA 43:177–185

    Article  CAS  Google Scholar 

  • Schnoor JL, Licht LA, McCutcheon SC et al (1995) Phytoremediation of organic and nutrient contaminants. Environ Sci Technol 29:318A–323A

    Article  CAS  Google Scholar 

  • Schwitzguébel JP (2017) Phytoremediation of soils contaminated by organic compounds: hype, hope and facts. J Soil Sediment 17:1492–1502

    Article  CAS  Google Scholar 

  • Sene L, Converti A, Secchi GAR et al (2010) New aspects on atrazine biodegradation. Braz Arch Biol Technol 53:487–496

    Article  CAS  Google Scholar 

  • Shahid MJ, Arskan M, Ali S (2018) Floating wetlands: A sustainable tool for wastewater treatment. Clean 46:1800120

    Google Scholar 

  • Sharma P, Bakshi P, Khamma K et al (2021) Plant and microbe association for degradation of xenobiotics focusing transgenic plants. In: Prasad MNV (ed) Handbook of assisted and amendment enhanced sustainable remediation technology. John Wiley & Sons, Ltd., Hoboken, NJ, pp 201-516

    Google Scholar 

  • Shawky A, Alhaddad M, Mohamed RM et al (2020) Magnetically separable and visible light-active Ag/NiCo2O4 nanorods prepared by a simple route for superior photodegradation of atrazine in water. Prog Nat Sci Mater In 30:160–167

    Article  CAS  Google Scholar 

  • Sheoran V, Sheoran AS, Poonia P (2016) Factors affecting phytoextraction: A Review. Pedosphere 26:148–166

    Google Scholar 

  • Singh N, Megharaj M, Kookana RS et al (2004) Atrazine and simazine degradation in Pennisetum rhizosphere. Chemosphere 56:257–263

    Article  CAS  Google Scholar 

  • Singh S, Kumar V, Datta S et al (2020) Glyphosate uptake, translocation, resistance emergence in crops, analytical monitoring, toxicity and degradation: a review. Environ Chem Lett 18:663–702

    Article  CAS  Google Scholar 

  • Singh S, Saha L, Kumar M et al (2021) Phytoremediation potential of invasive species growing in mining dumpsite. In: Bauddh K, Korstad J, Sharma P (eds) Phytorestoration of abandoned mining and oil drilling sites. Elsevier, Amsterdam, pp 287–305

    Chapter  Google Scholar 

  • Sivaram AK, Subashchandrabose SR, Logeshwaran P (2020) Rhizodegradation of PAHs differentially altered by C3 and C4 plants. Sci Rep 10:16109

    Article  CAS  Google Scholar 

  • Stemler A, Murphy J (1985) Inhibition of HCO3 binding to photosystem II by atrazine at a low-affinity herbicide binding site. Plant Physiol 77:179–182

    Article  CAS  Google Scholar 

  • Subashchandrabose SR, Ramakrishnan B, Megharaj M et al (2013) Mixotrophic cyanobacteria and microalgae as distinctive biological agents for organic pollutant degradation. Environ Int 51:59–72

    Article  CAS  Google Scholar 

  • Sui Y, Yang H (2013) Bioaccumulation and degradation of atrazine in several Chinese ryegrass genotypes. Environ Sci Process Impacts 15:2338–2344

    Article  CAS  Google Scholar 

  • Sulmon C, Gouesbet G, Binet F et al (2007) Sucrose amendment enhances phytoaccumulation of the herbicide atrazine in Arabidopsis thaliana. Environ Pollut 145:507–515

    Article  CAS  Google Scholar 

  • Sun SX, Li YM, Zheng Y et al (2016) Uptake of 2,4-bis(isopropylamino)-6-methylthio-s-triazine by vetiver grass (Chrysopogon zizanioides L.) from hydroponic media. Bull Environ Contam Toxicol 96:550–555

    Google Scholar 

  • Sun X, Liu ZW, Jiang QC et al (2019a) Concentrations of various elements in seaweed and seawater from Shen'ao Bay, Nan'ao Island, Guangdong coast, China: Environmental monitoring and the bioremediation potential of the seaweed. Sci Total Environ 659:632–639

    Article  CAS  Google Scholar 

  • Sun S, Lv P, Datta R et al (2019b) Uptake of 2,4-bis(isopropylamino)-6-methylthio-s-triazine by Canna indica. J Environ Biol 40:577–583

    Article  CAS  Google Scholar 

  • Sun C, Xu YF, Hu NT et al (2020) To evaluate the toxicity of atrazine on the freshwater microalgae Chlorella sp. using sensitive indices indicated by photosynthetic parameters. Chemosphere 244:125514

    Article  CAS  Google Scholar 

  • Sundhar S, Shakila RJ, Jeyasekaran G et al (2020) Risk assessment of organochlorine pesticides in seaweeds along the Gulf of Mannar, Southeast India. Mar Pollut Bull 161:111709, Part B

    Article  CAS  Google Scholar 

  • Suo FY, You XW, Ma YQ et al (2019) Rapid removal of triazine pesticides by P doped biochar and the adsorption mechanism. Chemosphere 235:918–925

    Article  CAS  Google Scholar 

  • Szewczyk R, Rozalska S, Mironenka J et al (2020) Atrazine biodegradation by mycoinsecticide Metarhizium robertsii: Insights into its amino acids and lipids profile. J Environ Manage 262:110304

    Article  CAS  Google Scholar 

  • Takahashi R, Hasegawa K, Takano A et al (2010) Structures and binding sites of phenolic herbicides in the QB pocket of photosystem II. Biochemistry 49:5445–5454

    Article  CAS  Google Scholar 

  • Tang J, Hoagland KD, Siegfried BD (1998) Uptake and bioconcentration of atrazine by selected freshwater algae. Environ Toxicol Chem 17:1085–1090

    Article  CAS  Google Scholar 

  • Tarla DN, Erickson LE, Hettiarachchi GM et al (2020) Phytoremediation and bioremediation of pesticide-contaminated soil. Appl Sci 10:1217

    Article  CAS  Google Scholar 

  • Teofilo TMD, Mendes KF, Fernandes BCC et al (2020) Phytoextraction of diuron, hexazinone, and sulfometuron-methyl from the soil by green manure species. Chemosphere 256:127059

    Article  CAS  Google Scholar 

  • Tian BB, Zhou JH, Xie F et al (2019) Impact of surfactant and dissolved organic matter on uptake of atrazine in maize and its mobility in soil. J Soils Sediments 19:599–608

    Article  CAS  Google Scholar 

  • Toledo-Jaldin HP, Blanco-Flores A, Sanchez-Mendieta V et al (2018) Influence of the chain length of surfactant in the modification of zeolites and clays. Removal of atrazine from water solutions. Environ Technol 39:2679–2690

    Article  CAS  Google Scholar 

  • Tonelli FMP, Tonelli FCP, Nunes NAD et al (2020) Mechanisms and importance of phytoremediation. In: Bhat RA, Hakeem KR (eds) Bioremediation and biotechnology, vol 4. Springer Nature Switzerland, Cham, pp 125–141

    Chapter  Google Scholar 

  • Trebst A (1991) The molecular basis of resistance to photosystem II herbicides. In: Caseley JC, Cussans GW, Atkin RK (eds) Herbicide resistance in weeds and crops. Butterworth-Heinemann, Oxford, pp 145–164

    Chapter  Google Scholar 

  • Tripathi S, Singh VK, Srivastava P et al (2020) Phytoremediation of organic pollutants: current status and future directions. In: Singh P, Kumar A, Borthakur A (eds) Abatement of environmental pollutants. Elsevier, Amsterdam, pp 81–105

    Chapter  Google Scholar 

  • Tu C, Ma LQ (2002) Effects of arsenic concentrations and forms on arsenic uptake by the hyperaccumulator ladder brake. J Environ Qual 31:641–647

    Article  CAS  Google Scholar 

  • Vail AW, Wang P, Uefuji H et al (2015) Biodegradation of atrazine by three transgenic grasses and alfalfa expressing a modified bacterial atrazine chlorohydrolase gene. Transgenic Res 24:475–488

    Article  CAS  Google Scholar 

  • van Rensen JJS, de Vos OJ (1992) Biochemical mechanisms of resistance to photosystem II herbicides. In: Denholm I, Devonshire AL, Hollomon DW (eds), Resistance ’91: Achievements and developments in combating pesticide resistance. Springer, Dordrecht, pp 251–261

    Chapter  Google Scholar 

  • Vennapusa AR, Faleco F, Vieira B et al (2018) Prevalence and mechanism of atrazine resistance in waterhemp (Amaranthus tuberculatus) from Nebraska. Weed Science 66: 595–602

    Article  Google Scholar 

  • Verma SR (2013) Genetically modified plants: Public and scientific perceptions. ISRN Biotechnology 2013:820671

    Article  CAS  Google Scholar 

  • Vieira LAJ, Alves RDFB, Menezes-Silva PE et al (2021a) Water contamination with atrazine: is nitric oxide able to improve Pistia stratiotes phytoremediation capacity? Environ Pollut 272:115971

    Article  CAS  Google Scholar 

  • Vieira WT, Bispo MD, Farias SD et al (2021b) Activated carbon from macauba endocarp (Acrocomia aculeate) for removal of atrazine: Experimental and theoretical investigation using descriptors based on DFT. J Environ Chem Eng 9(1):105155

    Article  CAS  Google Scholar 

  • Vo HNP, Ngo HH, Guo WS et al (2020) Microalgae for saline wastewater treatment: a critical review. Crit Rev Environ Sci Technol 50:1224–1265

    Article  CAS  Google Scholar 

  • Wan YJ, Tran TM, Nguyen VT et al (2021) Neonicotinoids, fipronil, chlorpyrifos, carbendazim, chlorotriazines, chlorophenoxy herbicides, bentazon, and selected pesticide transformation products in surface water and drinking water from northern Vietnam. Sci Total Environ 750:141507

    Article  CAS  Google Scholar 

  • Wang XC, Zhao HM (2007) Uptake and biodegradation of polycyclic aromatic hydrocarbons by marine seaweed. J Coast Res 50:1056-1061

    Google Scholar 

  • Wang QH, Zhang W, Li C et al (2012) Phytoremediation of atrazine by three emergent hydrophytes in a hydroponic system. Water Sci Technol 66:1282–1288

    Article  CAS  Google Scholar 

  • Wang Q, Li C, Chen C et al (2018) Effectiveness of narrow grass hedges in reducing atrazine runoff under different slope gradient conditions. Environ Sci Pollut Res 25:7672–7680

    Article  CAS  Google Scholar 

  • Wang XC, Liu QL (2020) Spatial and temporal distribution characteristics of triazine herbicides in typical agricultural regions of Liaoning, China. Bull Environ Contam Toxicol 105:899–905

    Article  CAS  Google Scholar 

  • Wang F, Gao J, Zhai WJ et al (2021) Accumulation, distribution and removal of triazine pesticides by Eichhornia crassipes in water-sediment microcosm. Ecotoxicol Environ Saf 219:112236

    Article  CAS  Google Scholar 

  • Whitmarsh J (1998) Electron transport and energy transduction. In: Raghavendra AS (ed) Photosynthesis: A comprehensive treatise. Cambridge University Press, Cambridge, pp 87–110

    Google Scholar 

  • Whitmarsh J, Govindjee (1999) The photosynthetic process. In: Singhal GS, Renger G, Sopory SK, Irrgang KD, Govindjee (eds) Concepts in photobiology: Photosynthesis and photomorphogenesis. Narosa Publishing House, New Delhi, pp 11–51

    Chapter  Google Scholar 

  • Wilkinson AD, Collier CJ, Flores F et al P (2015a) Acute and additive toxicity of ten photosystem-II herbicides to seagrass. Sci Rep 5:17443

    Google Scholar 

  • Wilkinson AD, Collier CJ, Flores F et al (2015b) A miniature bioassay for testing the acute phytotoxicity of photosystem II herbicides on seagrass. PLoS One 10:e0117541

    Article  CAS  Google Scholar 

  • Wilkinson AD, Collier CJ, Flores F et al (2017) Combined effects of temperature and the herbicide diuron on Photosystem II activity of the tropical seagrass Halophila ovalis. Sci Rep 7:45404

    Article  Google Scholar 

  • WSSA (2011) Summary of Herbicide Mechanism of Action According to the Weed Science Society of America (WSSA). https://wssa.net/wp-content/uploads/WSSA-Mechanism-of-Action.pdf

  • Yadav SK, Thawale PR, Kulkarni AV et al (2010) Phytoremediation technology for wastewater treatment: high rate transpiration system. Int J Environ Pollut 43:117–128

    Article  CAS  Google Scholar 

  • Yadav A, Batra NG, Sharma S (2016) Phytoremediation and phytotechnologies. Int J Pure Appl Biosci 4:327–331

    Article  Google Scholar 

  • Yang LQ, Li HM, Zhang YY et al (2019) Environmental risk assessment of triazine herbicides in the Bohai Sea and the Yellow Sea and their toxicity to phytoplankton at environmental concentrations. Environ Int 133:105175, Part A

    Article  CAS  Google Scholar 

  • Yao B, Gu XJ, Shu YG et al. (2019) Degradation of atrazine and changes in soil biological indices throughout dendroremediation using poplars. J For Res 30:2331–2339

    Article  CAS  Google Scholar 

  • Yu HJ, Kim J, Lee CS (2019) Nutrient removal and microalgal biomass production from different anaerobic digestion effluents with Chlorella species. Sci Rep 9:6123

    Article  CAS  Google Scholar 

  • Usmani Minaxi Z, Sharma Tiit, Lukk Yevgen, Karpichev Vijay Kumar, Thakur Vivek, Kumar Abdelmounaaim, Allaoui Abhishek Kumar, Awasthi Vijai Kumar, Gupta (2022) Developments in enzyme and microalgae based biotechniques to remediate micropollutants from aqueous systems—A review. Critical Reviews in Environmental Science and Technology 52(10) 1684-1729 10.1080/10643389.2020.1862551

    Google Scholar 

  • Zhang BY, Zheng JS, Sharp RG (2010) Phytoremediation in engineered wetlands: Mechanisms and applications. Procedia Environ Sci 2:1315–1325

    Article  Google Scholar 

  • Zhang JJ, Lu, YC, Yang H (2014) Chemical modification and degradation of atrazine in Medicago sativa through multiple pathways. J Agric Food Chem 62:9657–9668

    Article  CAS  Google Scholar 

  • Zhang JJ, Lu YC, Zhang SH et al (2016) Identification of transcriptome involved in atrazine detoxification and degradation in alfalfa (Medicago sativa) exposed to realistic environmental contamination. Ecotoxicol Environ Saf 130:103–112

    Article  CAS  Google Scholar 

  • Zhang JJ, Gao S, Xu JY et al (2017a) Degrading and phytoextracting atrazine residues in rice (Oryza sativa) and growth media intensified by a phase II mechanism modulator. Environ Sci Technol 51:11258–11268

    Article  CAS  Google Scholar 

  • Zhang JJ, Xu JY, Lu FF et al (2017b) Detoxification of atrazine by low molecular weight thiols in alfalfa (Medicago sativa). Chem Res Toxicol 30:1835–1846

    Article  CAS  Google Scholar 

  • Zhang Q, Kong WQ, Wei LF et al (2020) Uptake, phytovolatilization, and interconversion of 2,4-dibromophenol and 2,4-dibromoanisole in rice plants. Environ Int 142:105888

    Article  CAS  Google Scholar 

  • Zhang Y, Yang C, Zheng Z et al (2021) Mechanism for various phytotoxicity of atrazine in soils to soybean: insights from soil sorption abilities and dissolved organic matter properties. J Environ Manage 297:113220

    Article  CAS  Google Scholar 

  • Zhao XY, Bai SW, Li CY et al (2019) Bioaugmentation of atrazine removal in constructed wetland: Performance, microbial dynamics, and environmental impacts. Bioresour Technol 289:121618

    Google Scholar 

  • Zhou Z, Liu XT, Sun K et al (2019) Persulfate-based advanced oxidation processes (AOPs) for organic-contaminated soil remediation: A review. Chem Eng J 372:836–851

    Article  CAS  Google Scholar 

  • Zorrilla LM, Gibson EK, Stoker TE (2010) The effects of simazine, a chlorotriazine herbicide, on pubertal development in the female Wistar rat. Reprod Toxicol 29:393–400

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Doctor Jon Nield, Principal Research Fellow in the School of Biological and Chemical Sciences, The Queen Mary University of London for courtesy to use the scheme of PS II (http://jonnield.com/en/psIIimages/PSII.html). This work was supported by the Slovak Research and Development Agency, project APVV-17-0318, and VEGA 1/0116/22.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kráľová, K., Jampílek, J. (2022). Phytoremediation of Environmental Matrices Contaminated with Photosystem II-Inhibiting Herbicides. In: Siddiqui, S., Meghvansi, M.K., Chaudhary, K.K. (eds) Pesticides Bioremediation. Springer, Cham. https://doi.org/10.1007/978-3-030-97000-0_2

Download citation

Publish with us

Policies and ethics