Skip to main content

Advertisement

Log in

Biodegradation of atrazine by three transgenic grasses and alfalfa expressing a modified bacterial atrazine chlorohydrolase gene

  • Original Paper
  • Published:
Transgenic Research Aims and scope Submit manuscript

Abstract

The widespread use of atrazine and other s-triazine herbicides to control weeds in agricultural production fields has impacted surface and groundwater in the United States and elsewhere. We previously reported the cloning, sequencing, and expression of six genes involved in the atrazine biodegradation pathway of Pseudomonas sp. strain ADP, which is initiated by atzA, encoding atrazine chlorohydrolase. Here we explored the use of enhanced expression of a modified bacterial atrazine chlorohydrolase, p-AtzA, in transgenic grasses (tall fescue, perennial ryegrass, and switchgrass) and the legume alfalfa for the biodegradation of atrazine. Enhanced expression of p-AtzA was obtained by using combinations of the badnavirus promoter, the maize alcohol dehydrogenase first intron, and the maize ubiquitin promoter. For alfalfa, we used the first intron of the 5′-untranslated region tobacco alcohol dehydrogenase gene and the cassava vein mosaic virus promoter. Resistance of plants to atrazine in agar-based and hydroponic growth assays was correlated with in vivo levels of gene expression and atrazine degradation. The in planta expression of p-atzA enabled transgenic tall fescue to transform atrazine into hydroxyatrazine and other metabolites. Results of our studies highlight the potential use of transgenic plants for bioremediating atrazine in the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abramoff MD, Paulo JM, Sunanda JR (2004) Image processing with IMAGE. J Biophotonics Int 11:36–42

    Google Scholar 

  • Albright IIIVC, Murphy IJ, Anderson JA, Coats JR (2013) Fate of atrazine in switchgrass–soil column system. Chemosphere 90:1847–1853. doi:10.1016/j.chemosphere.2012.09.097

    Article  CAS  PubMed  Google Scholar 

  • An G, Ebert PR, Mitra A, Ha SB (1988) Binary vectors. Kluwer Academic Publishers, Dordrecht

    Book  Google Scholar 

  • Austin S, Bingham ET, Mathews DE, Shahan MN, Will J, Burgess RR (1995) Production and field performance of transgenic alfalfa (Medicago-Sativa L.) expressing alpha-amylase and manganese-dependent lignin peroxidase. Euphytica 85:381–393

    Article  CAS  Google Scholar 

  • Bai Y, Qu R (2001) Genetic transformation of elite turf-type cultivars. Int Turfgrass Soc Res J 9:129–136

    Google Scholar 

  • Bicalho STT, Langenbach T (2012) Distribution of the herbicide atrazine in a microcosm with riparian forest plants. J Environ Sci Health Part B Pestic Food Contam Agric Wastes 47(6):505–511. doi:10.1080/03601234.2012.665659

  • Bode M, Stöbe P, Thiede B, Schuphan I, Schmidt B (2004) Biotransformation of atrazine in transgenic tobacco cell culture expressing human P450. Pest Manag Sci 60:49–58

    Article  CAS  PubMed  Google Scholar 

  • Burken JG, Schnoor JL (1997) Uptake and metabolism of atrazine by poplar trees. Environ Sci Technol 31:1399–1406. doi:10.1021/Es960629v

    Article  CAS  Google Scholar 

  • Burnet MWM, Loveys BR, Holtum JAM, Powles SB (1993) Increased detoxification is a mechanism of simazine resistance in lolium–rigidum. Pestic Biochem Physiol 46:207–218. doi:10.1006/pest.1993.1052

    Article  CAS  Google Scholar 

  • Christensen A, Quail P (1996) Ubiquitin promoter-based vectors for high-level expression of selectable and/or screenable marker genes in monocotyledonous plants. Transgenic Res 5:213–218. doi:10.1007/bf01969712

    Article  CAS  PubMed  Google Scholar 

  • de Souza ML, Wackett LP, Boundymills KL, Mandelbaum RT, Sadowsky MJ (1995) Cloning, characterization, and expression of a gene region from Pseudomonas sp. strain adp involved in the dechlorination of atrazine. Appl Environ Microbiol 61:3373–3378

    PubMed Central  PubMed  Google Scholar 

  • de Souza ML, Sadowsky MJ, Wackett LP (1996) Atrazine chlorohydrolase from Pseudomonas sp. strain ADP: gene sequence, enzyme purification, and protein characterization. J Bacteriol 178:4894–4900

    PubMed Central  PubMed  Google Scholar 

  • Dong SJ, Qu RD (2005) High efficiency transformation of tall fescue with Agrobacterium tumefaciens. Plant Sci 168:1453–1458. doi:10.1016/j.plantsci.2005.01.008

    Article  CAS  Google Scholar 

  • Epstein E (1972) Mineral nutrition of plants: principles and perspectives. Wiley, New York

    Google Scholar 

  • Grube A, Donaldson D, Kiely T, Wu L (2011) Pesticides industry sales and usage: 2006 and 2007 market estimates. In: U.S. Environmental Protection Agency, Washington, DC

  • Guimaraes FP et al (2011) Potential of macrophytes for removing atrazine from aqueous solution. Planta Daninha 29:1137–1147

    Article  Google Scholar 

  • Henderson KL, Belden JB, Coatst JR (2007) Fate of atrazine in a grassed phytoremediation system. Environ Toxicol Chem 26:1836–1842. doi:10.1897/06-493r.1

    Article  CAS  PubMed  Google Scholar 

  • Hoekema A, Hirsch PR, Hooykaas PJJ, Schilperoort RA (1983) A binary plant vector strategy based on separation of vir-region and T-region of the Agrobacterium-tumefaciens Ti-plasmid. Nature 303:179–180. doi:10.1038/303179a0

    Article  CAS  Google Scholar 

  • Inui H, Ueyama Y, Shiota N, Okhawa Y, Ohkawa H (1999) Herbicide metabolism and cross-tolerance in transgenic potato plants expressing human CYP1A1. Pestic Biochem Physiol 64:33–46. doi:10.1006/pest.1999.2407

    Article  CAS  Google Scholar 

  • Inui H et al (2001) Metabolism of herbicides and other chemicals in human cytochrome P450 species and in transgenic potato plants co-expressing human CYP1A1, CYP2B6 and CYP2C19. J Pestic Sci 26:28–40

    Article  CAS  Google Scholar 

  • Kawahigashi H (2009) Transgenic plants for phytoremediation of herbicides. Curr Opin Biotechnol 20:225–230. doi:10.1016/j.copbio.2009.01.010

    Article  CAS  PubMed  Google Scholar 

  • Kawahigashi H, Hirose S, Ohkawa H, Ohkawa Y (2003) Transgenic rice plants expressing human CYP1A1 exude herbicide metabolites from their roots. Plant Sci 165:373–381. doi:10.1016/S0168-9452(03)00197-3

    Article  CAS  Google Scholar 

  • Kontchou CY, Gschwind N (1999) Biodegradation of s-triazine compounds by a stable mixed bacterial community. Ecotoxicol Environ Saf 43:47–56. doi:10.1006/eesa.1998.1756

    Article  CAS  PubMed  Google Scholar 

  • Li Q, Li Y, Zhu XK, Cai BL (2008) Isolation and characterization of atrazine-degrading Arthrobacter sp. AD26 and use of this strain in bioremediation of contaminated soil. J Environ Sci (China) 20:1226–1230. doi:10.1016/S1001-0742(08)62213-5

    Article  CAS  Google Scholar 

  • Lin CH, Lerch RN, Garrett HE, George MF (2008) Bioremediation of atrazine-contaminated soil by forage grasses: transformation, uptake, and detoxification. J Environ Qual 37:196–206. doi:10.2134/Jeq2006.0503

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Li XH, Cai BL, Wang SW (2010) Bioremediation of atrazine contaminated soil by Arthrobacter sp. Strain AD4. In: Bioinformatics and Biomedical Engineering (iCBBE), 2010 4th International Conference on, pp 1-4

  • Mandelbaum RT, Allan DL, Wackett LP (1995) Isolation and characterization of a pseudomonas sp. that mineralizes the S-triazine herbicide atrazine. Appl Environ Microbiol 61:1451–1457

    PubMed Central  CAS  PubMed  Google Scholar 

  • Marecik R, Bialas W, Cyplik P, Lawniczak L, Chrzanowski L (2012) Phytoremediation potential of three wetland plant species toward atrazine in environmentally relevant concentrations. Pol J Environ Stud 21:697–702

    CAS  Google Scholar 

  • Martinez B, Tomkins J, Wackett LP, Wing R, Sadowsky MJ (2001) Complete nucleotide sequence and organization of the atrazine catabolic plasmid pADP-1 from Pseudomonas sp. strain ADP. J Bacteriol 183:5684–5697. doi:10.1128/Jb.183.19.5684-5697.2001

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Merini LJ, Bobillo C, Cuadrado V, Corach D, Giulietti AM (2009) Phytoremediation potential of the novel atrazine tolerant Lolium multiflorum and studies on the mechanisms involved. Environ Pollut 157:3059–3063. doi:10.1016/j.envpol.2009.05.036

    Article  CAS  PubMed  Google Scholar 

  • Moreau C, Mouvet C (1997) Sorption and desorption of atrazine, deethylatrazine, and hydroxyatrazine by soil and aquifer solids. J Environ Qual 26:416–424

    Article  CAS  Google Scholar 

  • Murphy IJ, Coats JR (2011) The capacity of switchgrass (Panicum virgatum) to degrade atrazine in a phytoremediation setting. Environ Toxicol Chem 30:715–722. doi:10.1002/Etc.437

    Article  CAS  PubMed  Google Scholar 

  • Murphy IJ, Anderson J, Coats JR (2009) Uptake and degradation of atrazine in switchgrass (Panicum virgatum). In: Abstracts of papers of the American chemical society, vol 238

  • Pence NS et al (2000) The molecular physiology of heavy metal transport in the Zn/Cd hyperaccumulator Thlaspi caerulescens. Proc Natl Acad Sci USA 97:4956–4960. doi:10.1073/pnas.97.9.4956

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Reinhold D, Vishwanathan S, Park JJ, Oh D, Saunders FM (2010) Assessment of plant-driven removal of emerging organic pollutants by duckweed. Chemosphere 80:687–692. doi:10.1016/j.chemosphere.2010.05.045

    Article  CAS  PubMed  Google Scholar 

  • Satoh J, Kato K, Shinmyo A (2004) The 5′-untranslated region of the tobacco Alcohol dehydrogenase gene functions as an effective translational enhancer in plant. J Biosci Bioeng 98:1–8. doi:10.1016/S1389-1723(04)70234-0

    Article  CAS  PubMed  Google Scholar 

  • Schwitzguébel JP, Meyer J, Kidd P (2006) Pesticides removal using plants: Phytodegradation versus phytostimulation. In: Mackova M (ed) Phytoremediation rhizoremediation. Springer, New York, pp 179–198

    Chapter  Google Scholar 

  • Segura A, Ramos JL (2013) Plant-bacteria interactions in the removal of pollutants. Curr Opin Biotechnol 24:467–473. doi:10.1016/j.copbio.2012.09.011

    Article  CAS  PubMed  Google Scholar 

  • Segura A, Rodriguez-Conde S, Ramos C, Ramos JL (2009) Bacterial responses and interactions with plants during rhizoremediation. Microb Biotechnol 2:452–464. doi:10.1111/j.1751-7915.2009.00113.x

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shapir N, Mandelbaum RT (1997) Atrazine degradation in subsurface soil by indigenous and introduced microorganisms. J Agric Food Chem 45:4481–4486. doi:10.1021/Jf970423t

    Article  CAS  Google Scholar 

  • Shimabukuro RH (1968) Atrazine metabolism in resistant corn and sorghum. Plant Physiol 43:1925–1930

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Silva E, Fialho AM, Sa-Correia I, Burns RG, Shaw LJ (2004) Combined bioaugmentation and biostimulation to cleanup soil contaminated with high concentrations of atrazine. Environ Sci Technol 38:632–637. doi:10.1021/Es0300822

    Article  CAS  PubMed  Google Scholar 

  • Solomon KR et al (1996) Ecological risk assessment of atrazine in North American surface waters. Environ Toxicol Chem 15:31–74. doi:10.1897/1551-5028(1996)

    Article  CAS  Google Scholar 

  • Strong LC, McTavish H, Sadowsky MJ, Wackett LP (2000) Field-scale remediation of atrazine-contaminated soil using recombinant Escherichia coli expressing atrazine chlorohydrolase. Environ Microbiol 2:91–98

    Article  CAS  PubMed  Google Scholar 

  • Thurman DW, Goolsby DA, Meyer MT (1998) Chapter 17, Source and transport of desethylatrazine and desisopropyl atrazine to groundwater of the midwestern United States. American Chemical Society, Washington, D.C

  • Topp E, Scheunert I, Korte F (1989) Kinetics of the uptake of C-14-labeled chlorinated benzenes from soil by plants. Ecotoxicol Environ Saf 17:157–166. doi:10.1016/0147-6513(89)90034-1

    Article  CAS  PubMed  Google Scholar 

  • Tzafrir I, Torbert KA, Lockhart BEL, Somers DA, Olszewski NE (1998) The sugarcane bacilliform badnavirus promoter is active in both monocots and dicots. Plant Mol Biol 38:347–356. doi:10.1023/A:1006075415686

    Article  CAS  PubMed  Google Scholar 

  • Uchida E, Ouchi T, Suzuki Y, Yoshida T, Habe H, Yamaguchi I (2005) Secretion of bacterial xenobiotic degrading enzymes from transgenic plants by an apoplastic expressional system: an applicability for phytoremediation. Environ Sci Technol 39:7671–7677

  • Wang L et al (2005) Biodegradation of atrazine in transgenic plants expressing a modified bacterial atrazine chlorohydrolase (atzA) gene. Plant Biotechnol J 3:475–486. doi:10.1111/j.1467-7652.2005.00138.x

    Article  CAS  PubMed  Google Scholar 

  • Wang HZ, Chen XW, Xing XG, Hao XH, Chen DF (2010) Transgenic tobacco plants expressing atzA exhibit resistance and strong ability to degrade atrazine. Plant Cell Rep 29:1391–1399. doi:10.1007/s00299-010-0924-7

    Article  CAS  PubMed  Google Scholar 

  • Wang QH, Zhang W, Li C, Xiao B (2012) Phytoremediation of atrazine by three emergent hydrophytes in a hydroponic system. Water Sci Technol 66:1282–1288. doi:10.2166/Wst.2012.320

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported, in part, from Grants from The Consortium for Plant Biotechnology Research, and Syngenta Crop Protection. We would like to thank Melinda Dornbusch for watering plants in the greenhouse and William Koskinen and Brian Barber for help with HPLC and LC–MS analyses. The mention of a trade-mark, proprietary product or vendor does not constitute a guarantee or warranty of the product by the United States Department of Agriculture (USDA), and does not imply its approval to the exclusion of other products and vendors that might also be suitable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. Sadowsky.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11248_2014_9851_MOESM1_ESM.tif

Construction of vectors pSAM1b (A) and pUAM1b (B). These vectors were usedin biolistic-mediated plant transformation of tall fescue (TIFF 108 kb)

11248_2014_9851_MOESM2_ESM.tif

Construction of vectors pSAM1a (A) and pUAM1a (B). These vectors were used inAgrobacterium-mediated plant transformation of perennial ryegrass, switchgrass, and tall fescue (TIFF 117 kb)

11248_2014_9851_MOESM3_ESM.tif

Construction of vector pPW1Plus. This vector was used in Agrobacteriummediatedplant transformation of alfalfa (TIFF 83 kb)

11248_2014_9851_MOESM4_ESM.tif

In vitro activity of p-AtzA from cell-free extracts from leaf, stem, and root samplesof transgenic line AP-44 and wild-type (WT) alfalfa. Atrazine dechlorination was analyzed using14C-UL-ring-atrazine. Lanes: (1) control without cell extract; (2) cell-free extract from E. coli(pMD4); (3-5) cell-free extracts from WT alfalfa leaves, stems, and roots, respectively; (6-8) cellfree-extracts from AP-44 leaves, stems, and roots, respectively (TIFF 152 kb)

Supplementary material 5 (DOCX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vail, A.W., Wang, P., Uefuji, H. et al. Biodegradation of atrazine by three transgenic grasses and alfalfa expressing a modified bacterial atrazine chlorohydrolase gene. Transgenic Res 24, 475–488 (2015). https://doi.org/10.1007/s11248-014-9851-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11248-014-9851-7

Keywords

Navigation