Skip to main content

Essential Elements and Toxic Metals in Some Crops, Medicinal Plants, and Trees

  • Chapter
  • First Online:
Phytoremediation

Abstract

Plants play an ever-increasing role not only for providing safe and healthy food for a growing world population but also for new biotechnologies including phytoremediation of areas contaminated by toxic metals, phytofortification used in functional foods preparation and nanoagrochemicals application in agriculture. Since species of genus Brassica are not only important crops but they have use for technical purposes, we evaluated these important crops from the aspect of nutrition or toxic metal responses. Medicinal plants are presented as a source of natural substances widely used in pharmaceutical, food and cosmetics industries and potentially also in phytoremediation technology. Therefore, we analyzed the effect of bioelements and toxic metals on growth and physiological processes of this important group of the plants. Trees (both forest and fast growing trees) as one of the world’s most abundant raw materials for industrial products and renewable energy as well as their non-production functions (reducing erosion, moderating the negative climatic changes, and phytoremediation procedures) are outlined. We have emphasized that plant responses to different nutrient and toxic metal conditions are expressed through structural composition and physiological processes. Results from experiments with above-mentioned plants treated with bioelements and toxic metals are shortly presented. Here, we used ion form of elements (Cd, Cr, Cu, Hg, Ni, Pb, Zn) and elements as complexes (Cu, Cd, Fe, Se, Zn). Finally, we stressed that both scientists and politicians will have to accept fundamental bioethical principles to ensure the sustainable development of human society as well as essential protection of the environment and nature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Copernicus J (2012) Ten crops that feed the world. In: Interesting Everything (Discover). www.interestingeverything.com/2012/09/02/ten-crops-that-feed-the-world/

  2. Srilakshmi B (2006) Nutrition science. New Age International, New Delhi, pp 186–187

    Google Scholar 

  3. Anonymus (2009) Bayer CropScience first to sequence the entire genome of rapeseed/canola (Press release). Bayer CropScience. http://www.seedquest.com/news.php?type=news&id_article=3307&id_region=&id_category=&id_crop=. Accessed 9 Oct 2009

  4. Janick J (2009) Plant breeding reviews, vol 31. Wiley, Hoboken, p 56

    Book  Google Scholar 

  5. Betal S, Chowdhury PR, Kundu S, Raychaudhuri Sen S (2004) Estimation of genetic variability of Vigna radiata cultivars by RAPD analysis. Biol Plant 48:205–209. doi:10.1023/B:BIOP.0000033446.43495.0c

    Article  CAS  Google Scholar 

  6. Šimonová E, Henselová M, Masaroviová E, Kohanová J (2007) Comparison of tolerance of Brassica juncea and Vigna radiata to cadmium. Biol Plant 51:488–492. doi:10.1007/s10535-007-0103-z

    Article  Google Scholar 

  7. Tóth P, Hudec K (2007) Pests and diseases of rapeseed. Integrated protection (in Slovak). Naše pole, s.r.o., Nitra

    Google Scholar 

  8. Masarovičová E, Peško M, Kráľová, K (2009) Negative effect of abiotic factors on rapeseed growth. In: Koprda V, Čacho F (eds) 29th International symposium of industrial toxicology ‘09, 16–18 June 2009. Svit, Slovak Technical University, Bratislava, pp 107–111

    Google Scholar 

  9. Masarovičová E, Kráľová K, Kummerová M (2010) Principles of classification of medicinal plants as hyperaccumulators or excluder. Acta Physiol Plant 32:823–829. doi:10.1007/s11738-010-0474-1

    Article  Google Scholar 

  10. Masarovičová E, Kráľová K, Peško M (2009) Photosynthetic activity of rapeseed—actual status and perspective changes (in Slovak). In: Bláha L (ed) Effect of abiotic and biotic stressors to plant features. Research Institute of Crop Production, Praha, pp 27–32

    Google Scholar 

  11. Masarovičová E, Kráľová K, Peško M (2010) Actual aspects of theoretical bases and use of phytotechnology (in Slovak). In: Bláha L (ed) Effect of abiotic and biotic stressors to plant features. Czech Agricultural University, Faculty of Agrobiology, Food and Natural Resources. Praha, pp 27–32

    Google Scholar 

  12. Masarovičová E, Kráľová K, Peško M (2009) Energetic plants—cost and benefit. Ecol Chem Eng 16:263–276

    Google Scholar 

  13. Tatarková Z, Malovcová L, Bedrna Z, Masarovičová E, Kráľová K (2010) Production potential of rapeseed from the aspect of soil quality. Phytopedon 9:35–41

    Google Scholar 

  14. Masarovičová E, Kráľová K, Šeršeň F (2011) Plant responses to toxic metal stress. In: Handbook of plant and crop stress, 3rd edn. CRC Press, Boca Raton, pp 595–634

    Google Scholar 

  15. Masarovičová E, Kráľová K, Malovcová L (2011) Production of some rapeseed cultivars under different climatic conditions in Slovakia. Ekológia (Bratislava) 30:360–368. doi:10.4149/ekol_2011_03_360

    Article  CAS  Google Scholar 

  16. Tatarková Z, Malovcová Ľ, Bedrna Z, Masarovičová E (2012) Influence of nitrogen and phosphorus content in soil on yield of selected rapeseed varieties. Folia Oecol 39:88–93. http://www.readperiodicals.com/201201/2727871541.html

    Google Scholar 

  17. Nyambane OS, Mwea SK (2011) Root tensile strength of 3 typical plant species and their contribution to soil shear strength; a case study: Sasumua Backslope, Nyandarua District, Kenya. J Civil Eng Res Pract 8:57–73

    Google Scholar 

  18. Wang W (1987) Root elongation method for toxicity testing of organic and inorganic pollutants. Environ Toxicol Chem 6:409–414

    Article  CAS  Google Scholar 

  19. Pavel VL, Sobariu DL, Diaconu M, Statescu F, Gavrilescu M (2013) Effects of heavy metals on Lepidium sativum germination and growth. Environ Eng Manag J 12:727–733

    CAS  Google Scholar 

  20. Fargašová A (2001) Phytotoxic effects of Cd, Zn, Pb, Cu and Fe on Sinapis alba L. seedlings and their accumulation in roots and shoots. Biol Plant 44:471–473. doi:10.1023/A:1012456507827

    Article  Google Scholar 

  21. Peško M, Kráľová K, Masarovičová E (2011) Phytotoxic effect of some metal ions on selected rapeseed cultivars registered in Slovakia. Proc ECOpole 5(1):83–86. http://tchie.uni.opole.pl/PECO11_1/EN/PeskoKralova_PECO11_1.pdf

    Google Scholar 

  22. Ivanov VB, Bystrova EI, Seregin IV (2003) Comparative impacts of heavy metals on root growth as related to their specificity and selectivity. Russ J Plant Physiol 50:398–406. doi:10.1023/A:1023838707715

    Article  CAS  Google Scholar 

  23. Jiang W, Liu D, Liu X (2001) Effects of copper on root growth, cell division, and nucleolus of Zea mays. Biol Plant 44:105–109. doi:10.1023/A:1017982607493

    Article  CAS  Google Scholar 

  24. Doncheva S (1998) Copper-induced alterations in structure and proliferation of maize root meristem cells. J Plant Physiol 153:482–487. doi:10.1016/S0176-1617(98)80178-8

    Article  CAS  Google Scholar 

  25. Posmyk MM, Kontek R, Janas KM (2008) Red cabbage extract limits copper stress injury in meristematic cells of Vicia faba. Acta Physiol Plant 30:481–491. doi:10.1007/s11738-008-0145-7

    Article  CAS  Google Scholar 

  26. Qin R, Wang C, Chen D, Björn LO, Li S (2015) Copper-induced root growth inhibition of Allium cepa var. agrogarum L. involves disturbances in cell division and DNA damage. Environ Toxicol Chem 34:1045–1055. doi:10.1002/etc.2884

  27. Truta E, Vochita G, Zamfirache MM, Olteanu Z, Rosu CM (2013) Copper-induced genotoxic effects in root meristems of Triticun aestivum L. cv. Beti. Carpathian. J Earth Environ Sci 8:83–92. https://www.researchgate.net/publication/257571976_Copper-induced_genotoxic_effects_in_root_meristems_of_Triticum_Aestivum_L_CV_Beti

    Google Scholar 

  28. Agar G, Taspinar MS (2003) Effects of calcium, selenium and zinc on cadmium induced chromosomal aberration in roots of Secale cereale. Fresen Environ Bull 12:1471–1475

    CAS  Google Scholar 

  29. Erturk FA, Agar G, Nardemir G, Arslan E (2015) Cytogenetic and epigenetic alterations by cobalt and nickel on Zea mays L. Toxicol Environ Chem 97:1350–1362. doi:10.1080/02772248.2015.1094700

    Article  CAS  Google Scholar 

  30. Erturk FA, Agar G, Arslan E, Nardemir G (2015) Analysis of genetic and epigenetic effects of maize seeds in response to heavy metal (Zn) stress. Environ Sci Pollut Res 22:10291–10297. doi:10.1007/s11356-014-3886-4

    Article  CAS  Google Scholar 

  31. Cavusoglu K, Ergene A, Yalcin E, Tan S, Cavusoglu K, Yapar K (2009) Cytotoxic effects of lead and mercury ions on root tip cells of Cicer arietinum L. Fresen Environ Bull 18:1654–1661

    CAS  Google Scholar 

  32. Truta E, Mihai C, Gherghel D, Vochita G (2014) Assessment of the cytogenetic damage induced by chromium short-term exposure in root tip meristems of barley seedlings. Water Air Soil Pollut 225:Article Number 1933. doi:10.1007/s11270-014-1933-x

    Article  CAS  Google Scholar 

  33. Chidambaram A, Sundaramoorthy P, Murugan A, Sankar Ganesh K, Baskaran L (2009) Chromium induced cytotoxicity in blackgram (Vigna mungo L.). Iran J Environ Health Sci Eng 6:17–22. http://www.bioline.org.br/pdf?se09004

    CAS  Google Scholar 

  34. Eleftheriou EP, Adamakis I-DS, Melissa P (2012) Effects of hexavalent chromium on microtubule organization, ER distribution and callose deposition in root tip cells of Allium cepa L. Protoplasma 249:401–416. doi:10.1007/s00709-011-0292-3

    Article  CAS  PubMed  Google Scholar 

  35. Yadav P, Srivastava AK (1998) Cadmium induced mitotic anomalies in Hordeum vulgare and Setaria italica. J Environ Biol 19:25–32

    CAS  Google Scholar 

  36. Amirthalingam T, Velusamy G, Pandian R (2013) Cadmium-induced changes in mitotic index and genotoxicity on Vigna unguiculata (Linn.) Walp. J Environ Chem Ecotoxicol 5:57–62. doi:10.5897/JECE11.008

    CAS  Google Scholar 

  37. Billard V, Ourry A, Maillard A, Garnica M, Coquet L, Jouenne T, Cruz F, Garcia-Mina JM, Yvin JC, Etienne P (2014) Copper-deficiency in Brassica napus induces copper remobilization, molybdenum accumulation and modification of the expression of chloroplastic proteins. PLoS One 9(10):e109889. doi:10.1371/journal.pone.0109889

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Yurela I (2005) Copper in plants. Braz J Plant Physiol 17:145–156. http://dx.doi.org/10.1590/S1677-04202005000100012

    Article  Google Scholar 

  39. Maksymiec W (1997) Effect of copper on cellular processes in higher plants. Photosynthetica 34:321–342. doi:10.1023/A:1006818815528

    Article  CAS  Google Scholar 

  40. Kráľová K, Šeršeň F, Blahová M (1994) Effects of Cu(II) complexes on photosynthesis in spinach chloroplasts. Aqua(aryloxyacetato)copper(II) complexes. Gen Physiol Biophys 13:483–491. http://www.gpb.sav.sk/1994/1994_06_483.pdf

    Google Scholar 

  41. Šeršeň F, Kráľová K, Bumbálová A, Švajlenová O (1997) The effect of Cu(II) ions bound with tridentate Schiff base ligands upon the photosynthetic apparatus. J Plant Physiol 151:299–305. doi:10.1016/S0176-1617(97)80256-8

    Article  Google Scholar 

  42. Mohanty N, Vass I, Demeter S (1989) Copper toxicity affects photosystem II electron transport at the secondary quinone acceptor QB. Plant Physiol 90:175–179. doi:10.1104/pp.90.1.175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Yruela I, Montoya G, Alonso PJ, Picorel R (1991) Identification of the pheophytin-QA-Fe domain of the reducing side of the photosystem II as the Cu(II) inhibitory binding site. J Biol Chem 266:22847–22285. http://www.jbc.org/content/266/34/22847.long

    CAS  PubMed  Google Scholar 

  44. Yruela I, Montoya G, Picorel R (1992) The inhibitory mechanism of Cu(II) on the photosystem II electron transport from higher plants. Photosynth Res 33:227–233. doi:10.1007/BF00030033

    Article  CAS  PubMed  Google Scholar 

  45. Pätsikkaä E, Kairavuo M, Šeršeň F, Aro EM, Tyystiärvi E (2002) Excess copper predisposes photosystem II to photoinhibition in vivo by outcompeting iron and causing decrease in leaf chlorophyll. Plant Physiol 129:1359–1367. doi:10.1104/pp.004788

    Article  CAS  Google Scholar 

  46. Küpper H, Küpper FC, Spiller M (1996) Environmental relevance of heavy metal substituted chlorophylls using the example of water plants. J Exp Bot 47:259–266. doi:10.1093/jxb/47.2.259

    Article  Google Scholar 

  47. Küpper H, Setlik I, Setlikova E, Ferimazova N, Spiller M, Küpper FC (2003) Copper-induced inhibition of photosynthesis: limiting steps of in vivo copper chlorophyll formation in Scenedesmus quadricauda. Funct Plant Biol 30:1187–1196. doi:10.1071/FP03129

    Article  CAS  Google Scholar 

  48. Habiba U, Ali S, Farid M, Shakoor MB, Rizwan M, Ibrahim M, Abbasi GH, Hayat T, Ali B (2015) EDTA enhanced plant growth, antioxidant defense system, and phytoextraction of copper by Brassica napus L. Environ Sci Pollut Res 22:1534–1544. doi:10.1007/s11356-014-3431-5

    Article  CAS  Google Scholar 

  49. Hasanuzzaman M, Hossain MA, Fujita M (2012) Exogenous selenium pretreatment protects rapeseed seedlings from cadmium-induced oxidative stress by upregulating antioxidant defense and methylglyoxal detoxification systems. Biol Trace Elem Res 149:248–261. doi:10.1007/s12011-012-9419-4

    Article  CAS  PubMed  Google Scholar 

  50. Chao CY, Ma D (2013) The effects of selenium on toxicity of copper on rape. In: Xu QJ, Ju YH, Ge HH (eds) Progress in environmental science and engineering, Part 1–4, Book series: Advanced materials research, vol 610–613, pp 288–291. doi:10.4028/www.scientific.net/AMR.610-613.288

  51. Yurela I (2009) Copper in plants: acquisition, transport and interactions. Funct Plant Biol 36:409–430. http://dx.doi.org/10.1071/FP08288

    Article  Google Scholar 

  52. Adrees M, Ali S, Rizwan M, Ibrahim M, Abbas F, Farid M, Zia-ur-Rehman M, Irshad MK, Bharwana SA (2015) The effect of excess copper on growth and physiology of important food crops: a review. Environ Sci Pollut Res 22:8148–8162. doi:10.1007/s11356-015-4496-5

    Article  CAS  Google Scholar 

  53. Grispen VMJ, Nelissen HJM, Verkleij JAC (2006) Phytoextraction with Brassica napus L.: a tool for sustainable management of heavy metal contaminated soils. Environ Pollut 144:77–83. doi:10.1016/j.envpol.2006.01.007

    Article  CAS  PubMed  Google Scholar 

  54. Szczygłowska M, Piekarska A, Konieczka P, Namiesnik J (2011) Use of Brassica plants in the phytoremediation and biofumigation processes. Int J Mol Sci 12:7760–7771. doi:10.3390/ijms12117760

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Singh A, Fulekar MH (2012) Phytoremediation of heavy metals by Brassica juncea in aquatic and terrestrial environment. In: Anjum NA, Ahmad I, Pereira ME, Durante AC, Umar S, Khan NA (eds) The plant family Brassicacae, Ser Environmental Pollution, vol 21, pp 153–169. doi:10.1007/978-94-007-3913-0_6

    Chapter  Google Scholar 

  56. Feigl G, Kumar D, Lehotai N, Tugyi N, Molnar A, Oerdoeg A, Szepesi A, Gemes K, Laskay G, Erdei L, Kolbert Z (2013) Physiological and morphological responses of the root system of Indian mustard (Brassica juncea L. Czern.) and rapeseed (Brassica napus L.) to copper stress. Ecotoxicol Environ Saf 94:179–189. doi:10.1016/j.ecoenv.2013.04.029

    Article  CAS  PubMed  Google Scholar 

  57. Feigl G, Kumar D, Lehotai N, Peto A, Molnar A, Racz E, Oerdoeg A, Erdei L, Kolbert Z, Laskay G (2015) Comparing the effects of excess copper in the leaves of Brassica juncea (L. Czern) and Brassica napus (L.) seedlings: growth inhibition, oxidative stress and photosynthetic damage. Acta Biol Hung 66:205–221. doi:10.1556/018.66.2015.2.7

    Article  CAS  PubMed  Google Scholar 

  58. Ivanova EM, Kholodova VP, Kuznetsov VV (2010) Biological effects of high copper and zinc concentrations and their interaction in rapeseed plants. Russ J Plant Physiol 57:806–814. doi:10.1134/S1021443710060099

    Article  CAS  Google Scholar 

  59. Wang C, Zhang SH, Wang PF, Hou J, Zhang WJ, Li W, Lin ZP (2009) The effect of excess Zn on mineral nutrition and antioxidative response in rapeseed seedlings. Chemosphere 75:1468–1476. doi:10.1016/j.chemosphere.2009.02.033

    Article  CAS  PubMed  Google Scholar 

  60. Khurana N, Singh MV, Chatterjee C (2006) Copper stress alters physiology and deteriorates seed quality of rapeseed. J Plant Nutr 29:93–101. doi:10.1080/01904160500416489

    Article  CAS  Google Scholar 

  61. Peško M, Kráľová K (2013) Physiological response of Brassica napus L. plants to Cu(II) treatment. Proceedings ECOpole 7(1):155–161. doi:10.2429/proc.2013.7(1)020

  62. Lin J, Jiang W, Liu D (2003) Accumulation of copper by roots, hypocotyls, cotyledons and leaves of sunflower (Helianthus annuus L). Bioresour Technol 86:151–155. doi:10.1016/S0960-8524(02)00152-9

    Google Scholar 

  63. Yang HF, Wang YB, Huang YJ (2015) Chemical fractions and phytoavailability of copper to rape grown in the polluted paddy soil. Int J Environ Sci Technol 12:2929–2938. doi:10.1007/s13762-014-0696-7

    Article  CAS  Google Scholar 

  64. Zaheer IE, Ali S, Rizwan M, Farid M, Shakoor MB, Gill RA, Najeeb U, Iqbal N, Ahmad R (2015) Citric acid assisted phytoremediation of copper by Brassica napus L. Ecotoxicol Environ Saf 120:310–317. doi:10.1016/j.ecoenv.2015.06.020

    Article  CAS  PubMed  Google Scholar 

  65. Ali S, Shahbaz M, Shahzad AN, Khan HAA, Anees M, Haider MS, Fatima A (2015) Impact of copper toxicity on stone-head cabbage (Brassica oleracea var. capitata) in hydroponics. Peer J 3:e1119. doi:10.7717/peerj.1119

    Article  PubMed  PubMed Central  Google Scholar 

  66. Maksymiec W, Russa R, Urbanik-Sypniewska T, Baszynski T (1994) Effect of excess Cu on the photosynthetic apparatus of runner bean leaves treated at two different growth stages. Physiol Plant 91:715–721. doi:10.1111/j.1399-3054.1994.tb03010.x

    Article  CAS  Google Scholar 

  67. Purakayastha TJ, Viswanath T, Bhadraray S, Chhonkar PK, Adhikari PP, Suribabu K (2008) Phytoextraction of zinc, copper, nickel and lead from a contaminated soil by different species of Brassica. Int J Phytoremediation 10:61–72. doi:10.1080/15226510701827077

    Article  CAS  PubMed  Google Scholar 

  68. Alobaidi KH, Bashmakova EB, Kholodova VP (2015) Response of two Brassica species to the toxic effect of different copper concentration. J Environ Protect 6:719–725. http://dx.doi.org/10.4236/jep.2015.67065

    Article  CAS  Google Scholar 

  69. Rossi G, Figliolia A, Socciarelli S (2004) Zinc and cooper bioaccumulation in Brassica napus at flowering and maturation. Eng Life Sci 4:271–275. http://dx.doi.org/10.1002/elsc.200420028

    Article  CAS  Google Scholar 

  70. Wang SH, Yang ZM, Yang H, Lu B, Li SQ, Lu YP (2004) Copper-induced stress and antioxidative responses in roots of Brassica juncea L. Bot Bull Acad Sin 45:203–212. http://ejournal.sinica.edu.tw/bbas/content/2004/3/Bot453-04.pdf

    CAS  Google Scholar 

  71. Thounaojam TC, Panda P, Mazumdar P, Kumar D, Sharma GD, Sahoo L, Panda SK (2012) Excess copper induced oxidative stress and response of antioxidants in rice. Plant Physiol Biochem 53:33–39. doi:10.1016/j.plaphy.2012.01.006

    Article  CAS  PubMed  Google Scholar 

  72. Carter DE (1995) Oxidation reduction of metal ions. Environ Health Perspect 103:17–19. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1519346/pdf/envhper00361-0024.pdf

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Panda SK, Choudhury S (2005) Chromium stress in plants. Braz J Plant Physiol 17:95–102. http://dx.doi.org/10.1590/S1677-04202005000100008

    CAS  Google Scholar 

  74. Han FXX, Sridhar BBM, Monts DL, Su Y (2004) Phytoavailability and toxicity of trivalent and hexavalent chromium to Brassica juncea. New Phytol 162:489–499. doi:10.1111/j.1469-8137.2004.01027.x

  75. Fargašová A, Markert B, Mičieta K (2014) Chromium and nickel phytotoxicity and genotoxicity. In: Őztürk M, Ashraf M, Aksoy A, Ahmad MSA (eds) Phytoremediation for green energy. Springer, Netherlands, pp 69–78. doi:10.1007/978-94-007-7887-0_4

    Google Scholar 

  76. Vajpayee P, Tripathi RD, Rai UN, Ali MB, Singh SN (2000) Chromium (VI) accumulation reduces chlorophyll biosynthesis, nitrate reductase activity and protein content in Nympaea alba L. Chemosphere 41:1075–1082. doi:10.1016/S0045-6535(99)00426-9

    Article  CAS  PubMed  Google Scholar 

  77. Strile M, Kolar J, Selih VS, Kocar D, Pihlar B (2003) A comparative study of several transition metals in Fenton like reaction system at circum—neutral pH. Acta Chim Sloven 50:619–632

    Google Scholar 

  78. Kanwar MK, Poonam PS, Bhardwaj R (2015) Involvement of Asada-Halliwell pathway during phytoremediation of chromium (VI) in Brassica juncea L. plants. Int J Phytoremediation 17:1237–1243. doi:10.1080/15226514.2015.1058326

    Article  CAS  PubMed  Google Scholar 

  79. Pandey V, Dixit V, Shyam R (2005) Antioxidative responses in relation to growth of mustard (Brassica juncea cv. Pusa Jaikisan) plants exposed to hexavalent chromium. Chemosphere 61:40–47. doi:10.1016/j.chemosphere.2005.03.026

  80. Afshan S, Ali S, Bharwana SA, Rizwan M, Farid M, Abbas F, Ibrahim M, Mehmood MA, Abbasi GH (2015) Citric acid enhances the phytoextraction of chromium, plant growth, and photosynthesis by alleviating the oxidative damages in Brassica napus L. Environ Sci Pollut Res 22:11679–11689. doi:10.1007/s11356-015-4396-8

    Article  CAS  Google Scholar 

  81. Gill RA, Hu XQ, Ali B, Yang C, Shou JY, Wu YY, Zhou WJ (2014) Genotypic variation of the responses to chromium toxicity in four oilseed rape cultivars. Biol Plant 58:539–550. doi:10.1007/s10535-014-0430-9

    Article  CAS  Google Scholar 

  82. Yildiz M, Terzi H, Bingul N (2013) Protective role of hydrogen peroxide pretreatment on defense systems and BnMP1 gene expression in Cr(VI)-stressed canola seedlings. Ecotoxicology 22:1303–1312. doi:10.1007/s10646-013-1117-2

    Article  CAS  PubMed  Google Scholar 

  83. Zaimoglu Z, Koksal N, Basci N, Kesici M, Gulen H, Budak F (2011) Antioxidative enzyme activities in Brassica juncea L. and Brassica oleracea L. plants under chromium stress. J Food Agric Environ 9:676–679

    Google Scholar 

  84. Diwan H, Khan I, Ahmad A, Iqbal M (2010) Induction of phytochelatins and antioxidant defence system in Brassica juncea and Vigna radiata in response to chromium treatments. Plant Growth Regul 61:97–107. doi:10.1007/s10725-010-9454-0

  85. Gill RA, Zang LL, Ali B, Farooq MA, Cui P, Yang S, Ali S, Zhou WJ (2015) Chromium induced physio-chemical and ultrastructural changes in four cultivars of Brassica napus L. Chemospere 120:154–164. doi:10.1016/j.chemosphere.2014.06.029

  86. Terzi H, Yildiz M (2014) Variations in chromium tolerance and accumulation among canola (Brassica napus L.) cultivars. Bull Environ Contam Toxicol 93:113–119. doi:10.1007/s00128-014-1255-0

    Article  CAS  PubMed  Google Scholar 

  87. Wang AY, Zhong GF, Xu GB, Liu ZX, Shen XB (2011) Effects of Cr(VI) stress on physiological characteristics of Brassica juncea and its Cr uptake. Huanjing Kexue 32:1717–1725

    Google Scholar 

  88. Mei BJ, Puryear JD, Newton RJ (2002) Assessment of Cr tolerance and accumulation in selected plant species. Plant and Soil 247:223–231. doi:10.1023/A:1021509115343

    Article  CAS  Google Scholar 

  89. Diwan H, Ahmad A, Iqbal M (2010) Chromium-induced modulation in the antioxidant defense system during phenological growth stages of Indian mustard. Int J Phytoremediation 12:142–158. doi:10.1080/15226510903213951

    Article  CAS  PubMed  Google Scholar 

  90. Karuppanapandian T, Manoharan K (2008) Uptake and translocation of tri- and hexa-valent chromium and their effects on black gram (Vigna mungo L. Hepper cv. Co4) roots. J Plant Biol 51:192–201. doi:10.1007/BF03030698

    Article  CAS  Google Scholar 

  91. Bluskov S, Arocena JM, Omotoso OO, Young JP (2005) Uptake, distribution, and speciation of chromium in Brassica juncea. Int J Phytoremediation 7:153–165. doi:10.1080/16226510590950441

  92. Aldrich MV, Gardea-Torresdey JL, Peralta-Videa JR, Parsons JG (2003) Uptake and reduction of Cr(VI) to Cr(III) by mesquite (Prosopis spp.): chromate-plant interaction in hydroponics and solid media studied using XAS. Environ Sci Technol 37:1859–1864. doi:10.1021/es0208916

    Article  CAS  PubMed  Google Scholar 

  93. Lytle CM, Lytle FW, Yang N, Qian JH, Hansen D, Zayed A, Terry N (1998) Reduction of Cr(VI) to Cr(III) by wetland plants: potential for in situ heavy metal detoxification. Environ Sci Technol 32:3087–3093. doi:10.1021/es980089x

    Article  CAS  Google Scholar 

  94. Zayed A, Lytle CM, Qian JH, Terry N (1998) Chromium accumulation, translocation and chemical speciation in vegetable crops. Planta 206:293–299. doi:10.1007/s004250050403

    Article  CAS  Google Scholar 

  95. Shahandeh H, Hossner LR (2000) Plant screening for chromium phytoremediation. Int J Phytoremediation 2:31–51. doi:10.1080/15226510008500029

    Article  CAS  Google Scholar 

  96. Verma SJ, Prakash S (2012) Studies on Cr (III) and Cr (VI) speciation in the xylem sap of maize plants. In: Khemani LD, Srivastava MM, Srivastava S (eds) Chemistry of phytopotentials: health, energy and environmental perspectives, pp 269–274. doi:10.1007/978-3-642-23394-4_57

  97. Gong LL, Guo JJ, Xu XM (2010) Photosynthesis of Chlamydomonas reinhardtii under Cr6+ stress. Xibei Zhiwu Xuebao 30:1166–1172

    Google Scholar 

  98. Gupta S, Srivastava S, Saradhi PP (2009) Chromium increases photosystem 2 activity in Brassica juncea. Biol Plant 53:100–104. doi:10.1007/s10535-009-0013-3

  99. Gupta K, Jain V, Bhardwaj S (2005) Effect of chromium(VI) on growth and lipid components in developing seeds of Brassica juncea. Indian J Plant Physiol 10:241–247

    Google Scholar 

  100. Hayat S, Khalique G, Irfan M, Wani AS, Tripathi BN, Ahmad A (2012) Physiological changes induced by chromium stress in plants: an overview. Protoplasma 249:599–611. doi:10.1007/s00709-011-0331-0

    Article  CAS  PubMed  Google Scholar 

  101. Shanker AK, Djanaguiraman M, Venkateswarlu B (2009) Chromium interactions in plants: current status and future strategies. Metallomics 1:375–383. doi:10.1039/b904571f

    Article  CAS  PubMed  Google Scholar 

  102. Peško M, Kráľová K, Blaško J (2012) Phytotoxic effects of trivalent chromium on rapeseed plants. Fresen Environ Bull 21:761–768

    Google Scholar 

  103. Shanker AK, Cervantes C, Loza-Tavera H, Avudainayagam S (2005) Chromium toxicity in plants. Environ Int 31:739–753. doi:10.1016/j.envint.2005.02.003

    Article  CAS  PubMed  Google Scholar 

  104. Scoccianti V, Crinelli R, Tirillini B, Mancinelli V, Speranza A (2006) Uptake and toxicity of Cr(III) in celery seedlings. Chemosphere 64:1695–1703. doi:10.1016/j.chemosphere.2006.01.005

    Article  CAS  PubMed  Google Scholar 

  105. Barceló J, Poschenrieder C, Gunse B (1986) Water relations of chromium VI treated bush bean plants (Phaseolus vulgaris L. cv. Contender) under both normal and water stress conditions. J Exp Bot 37:178–187. doi:10.1093/jxb/37.2.178

  106. Pandey N, Sharma CP (2003) Chromium interference in iron nutrition and water relations of cabbage. Environ Exp Bot 49:195–200. doi:10.1016/S0098-8472(02)00088-6

    Article  CAS  Google Scholar 

  107. Schmidt W (1996) Influence of chromium (III) on root associated Fe (III) reductase in Plantago lanceolata L. J Exp Bot 47:805–810. doi:10.1093/jxb/47.6.805

    Article  CAS  Google Scholar 

  108. Davies CS, Nielsen SS, Nielsen NC (1987) Flavor improvement of soybean preparations by genetic removal of lipoxygenase. J Am Oil Chem Soc 64:1428–1433. doi:10.1007/BF02636994

    Article  CAS  Google Scholar 

  109. Shanker AK, Pathmanabhan G (2004) Speciation dependant antioxidative response in roots and leaves of sorghum (Sorghum bicolor (L) Moench cv. CO 27) under Cr(III) and Cr(VI) stress. Plant and Soil 265:141–151. doi:10.1007/s11104-005-0332-x

    Article  CAS  Google Scholar 

  110. Šeršeň F, Kráľová K (2001) New facts about CdCl2 action on the photosynthetic apparatus of spinach chloroplasts and its comparison with HgCl2 action. Photosynthetica 39:575–580. doi:10.1023/A:1015612330650

    Article  Google Scholar 

  111. Singh DP, Singh SP (1987) Action of heavy metals on Hill activity and O2 evolution in Anacystis nidulants. Plant Physiol 83:12–14. doi:10.1104/pp.83.1.12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Fodor F, Sárvári E, Láng F, Szigeti Z, Cseh E (1996) Effects of Pb and Cd on cucumber depending on the Fe-complex in culture solution. J Plant Physiol 148:434–439. doi:10.1016/S0176-1617(96)80276-8

    Article  CAS  Google Scholar 

  113. Šeršeň F, Kráľová K, Jóna E, Sirota A (1997) Effects of some Ni(II) complexes with N-donor ligands on photosynthetic electron transport in spinach chloroplasts. Chem Listy 91:685

    Google Scholar 

  114. El-Naggar AH (1998) Toxic effects of nickel on photosystem II of Chlamydomonas reinhardtii. Cytobios 93:93–101

    CAS  Google Scholar 

  115. Boisvert S, Joly D, Leclerc S, Govindachary S, Harnois J, Carpentier R (2007) Inhibition of the oxygen-evolving complex of photosystem II and depletion of extrinsic polypeptides by nickel. Biometals 20:879–889. doi:10.1007/s10534-007-9081-z

    Article  CAS  PubMed  Google Scholar 

  116. Cigáň M, Šeršeň F, Kráľová K (2003) Relationship between the ability of heavy metals to form complexes with tryptophan and their photosynthesis-inhibiting activity. In: Waclawek M, Waclawek W (eds) Proceedings ECOpole’03. Towarzystwo Chemii a Inzynierii Ekologicznej, Opole, pp 35–38

    Google Scholar 

  117. Seregin V, Kozhevnikova AD (2006) Physiological role of nickel and its toxic effects on higher plants. Russ J Plant Physiol 2:257–277. doi:10.1134/S1021443706020178

    Article  CAS  Google Scholar 

  118. Domanska J, Badora A, Filipek T (2015) The sensitivity of Brassica napus ssp oleifera to cadmium (Cd) and lead (Pb) contamination at diferent pH of mineral and organic soils. J Elem 20:59–71. doi:10.5601/jelem.2014.19.1.627

  119. Armas T, Pinto AP, de Varennes A, Mourato MP, Martins LL, Simoes Goncalves ML, Mota AM (2015) Comparison of cadmium-induced oxidative stress in Brassica juncea in soil and hydroponic cultures. Plant and Soil 388:297–305. doi:10.1007/s11104-014-2330-3

  120. Sikka R, Nayyar V (2012) Cadmium accumulation and its effects on uptake of micronutrients in Indian mustard [Brassica juncea (L.) Czern.] grown in a loamy sand soil artificially contaminated with cadmium. Commun Soil Sci Plant Anal 43:672–688. doi:10.1080/00103624.2012.644007

  121. Shekhawat GS, Verma K, Jana S, Singh K, Teotia P, Prasad A (2010) In vitro biochemical evaluation of cadmium tolerance mechanism in callus and seedlings of Brassica juncea. Protoplasma 239:31–38. doi:10.1007/s00709-009-0079-y

  122. Verma K, Shekhawat GS, Sharma A, Mehta SK, Sharma V (2008) Cadmium induced oxidative stress and changes in soluble and ionically bound cell wall peroxidase activities in roots of seedling and 3-4 leaf stage plants of Brassica juncea (L.) czern. Plant Cell Rep 27:1261–1269. doi:10.1007/s00299-008-0552-7

  123. Nouairi I, Ben Ammar W, Ben Youssef N, Daoud DB, Ghorbal MH, Zarrouk M (2006) Comparative study of cadmium effects on membrane lipid composition of Brassica juncea and Brassica napus leaves. Plant Sci 170:511–519. doi:10.1016/j.plantsci.2005.10.003

  124. Nowack B (2002) Environmental chemistry of aminopolycarboxylate chelating agents. Environ Sci Technol 36:4009–4016. doi:10.1021/es025683s

    Article  CAS  PubMed  Google Scholar 

  125. Singh PK, Tewari RK (2003) Cadmium toxicity induced changes in plant water relations and oxidative metabolism of Brassica juncea L. plants. J Environ Biol 24:107–112

    Google Scholar 

  126. Beniwal V, Chhokar V, Nehra KS (2015) Cadmium induced alteration in lipid profile of developing mustard (Brassica juncea L.) seed. Biocatal Agric Biotechnol 4:416–422. doi:10.1016/j.bcab.2015.06.003

    Google Scholar 

  127. Goswami S, Das S (2015) A study on cadmium phytoremediation potential of Indian mustard, Brassica juncea. Int J Phytoremediation 17:583–588. doi:10.1080/15226514.2014.935289

  128. Ahmad P, Nabi G, Ashraf M (2011) Cadmium-induced oxidative damage in mustard [Brassica juncea (L.) Czern. & Coss.] plants can be alleviated by salicylic acid. S Afr J Bot 77:36–44. doi:10.1016/j.sajb.2010.05.003

  129. Hayat S, Ahmad A, Wani AS, Alyemeni MN, Ahmad A (2014) Regulation of growth and photosynthetic parameters by salicylic acid and calcium in Brassica juncea under cadmium stress. Z Naturforsch C 69:452–458. doi:10.5560/ZNC.2014-0036

  130. Salt DE, Prince RC, Pickering IJ, Raskin I (1995) Mechanisms of cadmium mobility and accumulation in Indian mustard. Plant Physiol 109:1427–1433. doi:10.1104/pp.109.4.1427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Chen C, Huang D, Liu J (2009) Functions and toxicity of nickel in plants: recent advances and future prospects. Clean Soil Air Water 37:304–313. doi:10.1002/clen.200800199

    Article  CAS  Google Scholar 

  132. Parida BK, Chhibba IM, Nayyar VK (2003) Influence of nickel-contaminated soils on fenugreek (Trigonella corniculata L.) growth and mineral composition. Sci Hortic 98:113–119. doi:10.1016/S0304-4238(02)00208-X

    Article  CAS  Google Scholar 

  133. Prasad SM, Dwivedi R, Zeeshan M (2005) Growth, photosynthetic electron transport, and antioxidant responses of young soybean seedlings to simultaneous exposure of nickel and UV-B stress. Photosynthetica 43:177–185. doi:10.1007/s11099-005-0031-0

    Article  CAS  Google Scholar 

  134. Gajewska E, Skłodowska M (2009) Nickel-induced changes in nitrogen metabolism in wheat shoots. J Plant Physiol 166:1034–1044. doi:10.1016/j.jplph.2008.12.004

    Article  CAS  PubMed  Google Scholar 

  135. Wong-ekkabut J, Xu Z, Triampo W, Tang IM, Tieleman DP, Monticelli L (2007) Effect of lipid peroxidation on the properties of lipid bilayers: a molecular dynamics study. Biophys J 93:4225–4236. doi:10.1529/biophysj.107.112565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Leekumjorn S, Cho HJ, Wu Y, Wright NT, Sum AK, Chan C (2009) The role of fatty acid unsaturation in minimizing biophysical changes on the structure and local effects of bilayer membranes. Biochim Biophys Acta 1788:1508–1516. doi:10.1016/j.bbamem.2009.04.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Krupa Z, Siedlecka A, Maksymiec W, Baszynski T (1993) In vivo response of photosynthetic apparatus of Phaseolus vulgaris to nickel toxicity. J Plant Physiol 142:664–668

    Article  CAS  Google Scholar 

  138. Amari T, Ghnaya T, Debez A, Taamali M, Ben Youssef N, Lucchini G, Sacchi GA, Abdelly C (2014) Comparative Ni tolerance and accumulation potentials between Mesembryanthemum crystallinum (halophyte) and Brassica juncea: metal accumulation, nutrient status and photosynthetic activity. J Plant Physiol 171:1634–1644. doi:10.1016/j.jplph.2014.06.020

  139. Khan MIR, Khan NA, Masood A, Per TS, Asgher M (2016) Hydrogen peroxide alleviates nickel-inhibited photosynthetic responses through increase in use-efficiency of nitrogen and sulfur, and glutathione production in mustard. Front Plant Sci 7:44. doi:10.3389/fpls.2016.00044

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Bauddh K, Singh RP (2015) Assessment of metal uptake capacity of castor bean and mustard for phytoremediation of nickel from contaminated soil. Bioremediat J 19:124–138. doi:10.1080/10889868.2014.979277

    Article  CAS  Google Scholar 

  141. Ansari MKA, Ahmad A, Umar S, Zia MH, Iqbal M, Owens G (2015) Genotypic variation in phytoremediation potential of Indian mustard exposed to nickel stress: a hydroponic study. Int J Phytoremediation 17:135–144. doi:10.1080/15226514.2013.862206

    Article  CAS  PubMed  Google Scholar 

  142. Sainger M, Sharma A, Bauddh K, Sainger PA, Singh RP (2014) Remediation of nickel-contaminated soil by Brassica juncea L. cv. T-59 and effect of the metal on some metabolic aspects of the plant. Bioremediat J 18:100–110. doi:10.1080/10889868.2014.888393

  143. Wang YP, Huang J, Gao YZ (2013) Subcellular accumulation of different concentrations of cadmium, nickel, and copper in Indian mustard and application of a sigmoidal model. J Environ Qual 42:1142–1150. doi:10.2134/jeq2012.0362

    Article  CAS  PubMed  Google Scholar 

  144. Yusuf M, Fariduddin Q, Hayat S, Ahmad A (2011) Nickel: An overview of uptake, essentiality and toxicity in plants. Bull Environ Contam Toxicol 86:1–17. doi:10.1007/s00128-010-0171-1

    Article  CAS  PubMed  Google Scholar 

  145. Purakayastha TJ, Bhadraray S, Chhonkar PK (2009) Screening of Brassica species for hyper-accumulation of zinc, lead, nickel and cadmium. Indian J Plant Physiol 14:344–352

    CAS  Google Scholar 

  146. Marchiol L, Assolari S, Sacco P, Zerbi G (2004) Phytoextraction of heavy metals by canola (Brassica napus) and radish (Raphanus sativus) grown on multicontaminated soil. Environ Pollut 132:21–27. doi:10.1016/j.envpol.2004.04.001

    Article  CAS  PubMed  Google Scholar 

  147. Krupp EM, Milne BF, Mestrot A, Meharg AA, Feldmann J (2008) Investigation into mercury bound to biothiols: structural identification using ESI-ion-trap MS and introduction of a method for their HPLC separation with simultaneous detection by ICP-MS and ESI-MS. Anal Bioanal Chem 390:1753–1764. doi:10.1007/s00216-008-1927-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Chen L, Yang L, Wang Q (2009) In vivo phytochelatins and Hg-phytochelatin complexes in Hg-stressed Brassica chinesis L. Metallomics 1:101–106. doi:10.1039/B815477E

    Article  CAS  Google Scholar 

  149. Patra M, Sharma A (2000) Mercury toxicity in plants. Bot Rev 66:379–422

    Article  Google Scholar 

  150. Du X, Zhu YG, Liu WJ, Zhao XS (2005) Uptake of mercury (Hg) by seedlings of rice (Oryza sativa L.) grown in solution culture and interactions with arsenate uptake. Environ Exp Bot 54:1–7. doi:10.1016/j.envexpbot.2004.05.001

    Article  CAS  Google Scholar 

  151. Zhou ZS, Huang SQ, Guo K, Mehta SK, Zhang PC, Yang ZM (2007) Metabolic adaptations to mercury-induced oxidative stress in roots of Medicago sativa L. J Inorg Biochem 101:1–9. doi:10.1016/j.jinorgbio.2006.05.011

    Article  CAS  PubMed  Google Scholar 

  152. Murthy SDS, Mohanty P (1993) Mercury ions inhibit photosynthetic electron transport at multiple sites in the cyanobacterium Synechococcus 6301. J Biosci 18:355–360. doi:10.1007/BF02702993

    Article  CAS  Google Scholar 

  153. Šeršeň F, Kráľová K, Bumbálová A (1998) Action of mercury on the photosynthetic apparatus of spinach chloroplasts. Photosynthetica 35:551–559. doi:10.1023/A:1006931024202

    Article  Google Scholar 

  154. Zhang WH, Tyerman SD (1999) Inhibition of water channels by HgCl2 in intact wheat root cells. Plant Physiol 120:849–857. http://dx.doi.org/10.1104/pp.120.3.849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Maggio A, Joly RJ (1995) Effects of mercuric chloride on the hydraulic conductivity of tomato root systems: evidence for a channel-mediated pathway. Plant Physiol 109:331–335. http://www.plantphysiol.org/content/109/1/331.full.pdf

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Gupta M, Chandra P (1996) Bioaccumulation and physiological changes in Hydrilla verticillata (l.f.) royle in response to mercury. Bull Environ Contam Toxicol 56:319–326. doi:10.1007/s001289900047

    Article  CAS  PubMed  Google Scholar 

  157. Shiyab S, Chen J, Han FX, Monts David L, Matta FB, Gu MM, Su Y, Masad MA (2009) Mercury-induced oxidative stress in Indian mustard (Brassica juncea L.). Environ Toxicol 24:462–471. doi:10.1002/tox.20450

  158. Chen J, Shyiyab S, Han FXX, Monts DL, Waggoner CA, Yang Z, Su Y (2009) Bioaccumulation and physiological effects of mercury in Pteris vittata and Nephrolepis exaltata. Ecotoxicology 18:110–121. doi:10.1007/s10646-008-0264-3

    Article  CAS  PubMed  Google Scholar 

  159. Kopittke PM, Blamey FPC, Asher CJ, Menzies NW (2010) Trace metal phytotoxicity in solution culture: a review. J Exp Bot 61:945–954. doi:10.1093/jxb/erp385

    Article  CAS  PubMed  Google Scholar 

  160. Beauford W, Barber J, Barringer AR (1977) Uptake and distribution of mercury within higher plants. Physiol Plant 39:261–265. doi:10.1111/j.1399-3054.1977.tb01880.x

    Article  CAS  Google Scholar 

  161. Cavallini A, Natali L, Durante M, Maserti B (1999) Mercury uptake, distribution and DNA affinity in durum wheat (Triticum durum Desf.) plants. Sci Total Environ 243-244:119–127. doi:10.1016/S0048-9697(99)00367-8

    Article  Google Scholar 

  162. Valega M, Lima AIG, Figueira EMAP, Pereira E, Pardal MA, Duarte AC (2009) Mercury intracellular partitioning and chelation in a salt marsh plant, Halimione portulacoides (L) Aellen: strategies underlying tolerance in environmental exposure. Chemosphere 74:530–536. doi:10.1016/j.chemosphere.2008.09.076

    Article  CAS  PubMed  Google Scholar 

  163. Cocking D, Rohrer M, Thomas R, Walker J, Ward D (1995) Effects of root morphology and Hg concentration in the soil on uptake by terrestrial vascular plants. Water Air Soil Pollut 80:1113–1116. doi:10.1007/BF01189773

    Article  CAS  Google Scholar 

  164. Shiyab S, Chen J, Han FX, Monts DL, Matta FB, Gu MM, Su Y (2009) Phytotoxicity of mercury in Indian mustard (Brassica juncea L.). Ecotoxicol Environ Saf 72:619–625. doi:10.1016/j.ecoenv.2008.06.002

    Article  CAS  PubMed  Google Scholar 

  165. Su Y, Han FX, Shiyab S, Chen J, Monts DL (2009) Accumulation of mercury in selected plant species grown in sols contaminated with different mercury compounds. In: ICEM 2007: Proceedings of the 11th international conference on environmental remediation and radioactive waste managements, PTS A and B, pp 1001–1007. doi:10.1115/ICEM2007-7123

  166. Ansari MKA, Ahmad A, Umar S, Iqbal M (2009) Mercury-induced changes in growth variables and antioxidative enzymes in Indian mustard (Brassica juncea L). J Plant Interact 4:131–136. doi:10.1080/17429140802716713

    Article  CAS  Google Scholar 

  167. Mounicou S, Shah M, Meija J, Caruso JA, Vonderheide AP, Shann J (2006) Localization and speciation of selenium and mercury in Brassica juncea—implications for Se-Hg antagonism. J Anal Atom Spectrosc 21:404–412. doi:10.1039/b514954a

  168. Meng DK, Chen JA, Yang ZM (2011) Enhancement of tolerance of Indian mustard (Brassica juncea) to mercury by carbon monoxide. J Hazard Mater 186:1823–1829. doi:10.1016/j.jhazmat.2010.12.062

  169. Peško M, Kráľová K (2012) Cadmium, nickel and mercury accumulation and some physiological and biochemical responses of hydroponically cultivated rapeseed (Brassica napus L.) plants. Fresen Environ Bull 21:3675–3684

    Google Scholar 

  170. Kozhevnikova AD, Seregin IV, Bystrova EI, Ivanov VB (2007) Effects of heavy metals and strontium on division of root cap cells and meristem structural organization. Russ J Plant Physiol 54:257–266. doi:10.1134/S1021443707020148

    Article  CAS  Google Scholar 

  171. Prasad DDK, Prasad ARK (1987) Effect of lead and mercury on chlorophyll synthesis in mung bean seedlings. Phytochemistry 26:881–883. doi:10.1016/S0031-9422(00)82310-9

    Article  CAS  Google Scholar 

  172. Baryla A, Carrier P, Franck F, Coulomb C, Sahut C, Havaux M (2001) Leaf chlorosis in oilseed rape plants (Brassica napus) grown on cadmium-polluted soil: causes and consequences for photosynthesis and growth. Planta 212:696–709. doi:10.1007/s004250000439

    Article  CAS  PubMed  Google Scholar 

  173. Yang X, Baligar VC, Martens DC, Clark RB (1996) Plant tolerance to nickel toxicity: II Nickel effects on influx and transport of mineral nutrients in four plant species. J Plant Nutr 19:265–279. doi:10.1080/01904169609365121

    Article  CAS  Google Scholar 

  174. Yang X, Baligar VC, Martens DC, Clark RB (1996) Cadmium effects on influx and transport of mineral nutrients in plant species. J Plant Nutr 19:643–656. doi:10.1080/01904169609365148

    Article  CAS  Google Scholar 

  175. Krupa Z, Őquist G, Huner NPA (1992) The influence of cadmium on primary photosystem II photochemistry in bean as revealed by chloroplhyll fluorescence—a preliminary study. Acta Physiol Plant 14:71–71

    CAS  Google Scholar 

  176. Siedlecka A, Krupa Z, Samuelsson G, Oquist G, Gardestrom P (1997) Primary carbon metabolism in Phaseolus vulgaris plants under Cd/Fe interaction. Plant Physiol Biochem 35:951–957

    Google Scholar 

  177. Poschenrieder C, Gunse B, Barceló J (1989) Influence of cadmium on water relations, stomatal resistance, and abscisic acid content in expanding bean leaves. Plant Physiol 90:1365–1371. http://dx.doi.org/10.1104/pp.90.4.1365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Peško M, Kráľová K, Masarovičová E (2010) Response of Hypericum perforatum plants to supply of cadmium compounds containing different forms of selenium. Ecol Chem Eng S 17:279–287. http://tchie.uni.opole.pl/freeECE/S_17_3/PeskoKralovaMaserovicova_17%28S3%29.pdf

  179. Gajewska E, Sklodowska M, Slaba M, Mazur J (2006) Effect of nickel on antioxidative enzyme activities, proline and chlorophyll contents in wheat shoots. Biol Plant 50:653–659. doi:10.1007/s10535-006-0102-5

    Article  CAS  Google Scholar 

  180. Ben Ghnaya A, Charles G, Hourmant A, Ben Hamida J, Bran Chard M (2009) Physiological behaviour of four rapeseed cultivar (Brassica napus L.) submitted to metal stress. C R Biol 332:363–370. doi:10.1016/j.crvi.2008.12.001

    Article  CAS  PubMed  Google Scholar 

  181. Wang XM, Tu JF, Li J, Wang LL, Liu DG (2006) Effects of Cd on rape growth and antioxidant enzyme system. J Appl Ecol 17:102–106

    CAS  Google Scholar 

  182. Cho UH, Park JO (2000) Mercury-induced oxidative stress in tomato seedlings. Plant Sci 156:1–9. doi:10.1016/S0168-9452(00)00227-2

    Article  CAS  PubMed  Google Scholar 

  183. Sinha S, Gupta M, Chandra P (1996) Bioaccumulation and biochemical effects of mercury in the plant Bacopa monnieri (L). Environ Toxicol Water Qual 11:105–112. doi:10.1002/(SICI)1098-2256(1996)11:23.3.CO;2-L

  184. Zengin FK (2009) The effect of Ni2+ and Cr3+ on the contents of chlorophyll, protein, abscisic acid and proline in bean (Phaseolus vulgaris cv. Strike) seedlings. Fresen Environ Bull 18:2301–2305

    CAS  Google Scholar 

  185. Pandey N, Sharma CP (2002) Effect of heavy metals Co2+, Ni2+ and Cd2+ on growth and metabolism of cabbage. Plant Sci 163:753–758. doi:10.1016/S0168-9452(02)00210-8

    Article  CAS  Google Scholar 

  186. Molas J (2002) Changes of chloroplast ultrastructure and total chlorophyll concentration in cabbage leaves caused by excess of organic Ni(II) complexes. Environ Exp Bot 47:115–126. doi:10.1016/S0098-8472(01)00116-2

    Article  CAS  Google Scholar 

  187. Bazzaz FA, Rolfe GL, Carison RW (1974) Effect of cadmium on photosynthesis and transpiration of excised leaves of corn and sunflower. Physiol Plant 32:373–377. doi:10.1111/j.1399-3054.1974.tb03154.x

    Article  CAS  Google Scholar 

  188. Somashekaraiah B, Padmaja K, Prasad A (1992) Phytotoxicity of cadmium ions on germinating seedlings of mung bean (Phaseolus mungo): involvement of lipid peroxides in chlorophyll degradation. Physiol Plant 85:85–89. doi:10.1111/j.1399-3054.1992.tb05267.x

    Article  CAS  Google Scholar 

  189. Asada K (1999) The water-water cycle in chloroplasts: scavenging of active oxygen and dissipation of excess photons. Annu Rev Plant Physiol Plant Mol Biol 50:601–639. doi:10.1146/annurev.arplant.50.1.601

    Article  CAS  PubMed  Google Scholar 

  190. Palma JM, Sandalio LM, Javier CF, Romero-Puertas MC, McCarthy I, Del RLA (2002) Plant proteases protein degradation and oxidative stress: role of peroxisomes. Plant Physiol Biochem 40:521–530. doi:10.1016/S0981-9428(02)01404-3

    Article  CAS  Google Scholar 

  191. Malec P, Maleva MG, Prasad MNV, Strzalka K (2010) Responses of Lemna trisulca L. (duckweed) exposed to low doses of cadmium: thiols, metal binding complexes, and photosynthetic pigments as sensitive biomarkers of ecotoxicity. Protoplasma 240:69–74. doi:10.1007/s00709-009-0091-2

    Article  CAS  PubMed  Google Scholar 

  192. Costa G, Spitz E (1997) Influence of cadmium on soluble carbohydrates, free amino acids, protein content of in vitro cultured Lupinus albus. Plant Sci 128:131–140. doi:10.1016/S0168-9452(97)00148-9

    Article  CAS  Google Scholar 

  193. Mohan BS, Hosetti BB (1997) Potential phytotoxicity of lead and cadmium to Lemna minor L. growth in sewage stabilization ponds. Environ Pollut 98:233–236

    Article  CAS  Google Scholar 

  194. Maleva MG, Nekrasova GF, Malec P, Prasad MNV, Strzałka K (2009) Ecophysiological tolerance of Elodea canadensis to nickel exposure. Chemosphere 77:392–398. doi:10.1016/j.chemosphere.2009.07.024

  195. Duman F, Ozturk F (2010) Nickel accumulation and its effect on biomass, protein content and antioxidative enzymes in roots and leaves of watercress (Nasturtium offcinale R. Br.). J Environ Sci 22:526–532. doi:10.1016/S1001-0742(09)60137-6

    Article  CAS  Google Scholar 

  196. Ali MA, Ashrafa M, Atharb HR (2009) Influence of nickel stress on growth and some important physiological/biochemical attributes in some diverse canola (Brassica napus L.) cultivars. J Hazard Mater 172:964–969. doi:10.1016/j.jhazmat.2009.07.077

  197. Panda S, Panda S (2009) Effect of mercury ion on the stability of the lipid-protein complex of isolated chloroplasts. Indian J Biochem Biophys 46:405–408

    CAS  PubMed  Google Scholar 

  198. Maheswari R, Dubey RS (2009) Nickel-induced oxidative stress and the role of antioxidant defence in rice seedlings. Plant Growth Regul 59:37–49. doi:10.1007/s10725-009-9386-8

    Article  CAS  Google Scholar 

  199. Mobin M, Khan NA (2007) Photosynthetic activity, pigment composition and antioxidative response of two mustard (Brassica juncea) cultivars differing in photosynthetic capacity subjected to cadmium stress. Plant Physiol 164:601–610. doi:10.1016/j.jplph.2006.03.003

    Article  CAS  Google Scholar 

  200. Anjum NA, Umar S, Ahmad A, Iqbal M (2008) Sulphur protects mustard (Brassica campestris L.) from cadmium toxicity by improving leaf ascorbate and glutathion. Plant Growth Regul 54:271–279. doi:10.1007/s10725-007-9251-6

    Article  CAS  Google Scholar 

  201. Metwally A, Safronova VI, Belimov AA, Dietz KJ (2005) Genotypic variation of their response to cadmium toxicity in Pisum sativum. J Exp Bot 56:167–178. doi:10.1093/jxb/eri017

    CAS  PubMed  Google Scholar 

  202. Taylor GJ, Foy CD (2011) Differential uptake and toxicity of ionic and chelated copper in Triticum aestivum. Can J Bot 63:1271–1275. doi:10.1139/b85-176

    Article  Google Scholar 

  203. Yeh TY, Pan CT (2012) Effect of chelating agents on copper, zinc, and lead uptake by sunflower, chinese cabbage, cattail, and reed for different organic contents of soils. J Environ Anal Toxicol 2:145. doi:10.4172/2161-0525.10001

    Google Scholar 

  204. Vallee BL, Auld DS (1990) Zinc coordination, function, and structure of zinc enzymes and other proteins. Biochemistry 29:5647–5659. doi:10.1021/bi00476a001

    Article  CAS  PubMed  Google Scholar 

  205. Bray TM, Bettger WJ (1990) The physiological role of zinc as an antioxidant. Free Radic Biol Med 8:281–291. doi:10.1016/0891-5849(90)90076-U

    Article  CAS  PubMed  Google Scholar 

  206. Wang J, Evangelou BP, Nielsen MT, Wagner GJ (1992) Computer simulated evaluation of possible mechanisms for sequestering metal-ion activity in plant vacuoles. 2. Zinc. Plant Physiol 99:621–626. http://dx.doi.org/10.1104/pp.99.2.621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Doncheva S, Stoyanova Z, Velikova V (2001) Influence of succinate on zinc toxicity of pea plants. J Plant Nutr 24:789–804. doi:10.1081/PLN-100103774

    Article  CAS  Google Scholar 

  208. Lopez-Valdivia LM, Fernandez MD, Obrador A, Alvarez JM (2002) Zinc transformation in acidic soil and zinc efficiency on maize by adding six organic zinc complexes. J Agric Food Chem 50:1455–1460. doi:10.1021/jf010978v

    Article  CAS  PubMed  Google Scholar 

  209. Rauser WE (1999) Structure and function of metal chelators produced by plants—the case for organic acids, amino acids, phytin, and metallothioneins. Cell Biochem Biophys 31:19–48. doi:10.1007/BF02738153

    Article  CAS  PubMed  Google Scholar 

  210. Hell R, Stephan UW (2003) Iron uptake, trafficking and homeostasis in plants. Planta 216:541–551. doi:10.1007/s00425-002-0920-4

    CAS  PubMed  Google Scholar 

  211. Lešíková J, Kráľová K, Masarovičová E, Rúriková D, Švajlenová O (2005) Photosynthesis inhibiting pyruvideneglycinatocopper(II) chelates with additional molecular S-donor ligands. In: Melník M, Šima J, Tatarko M (eds) Advances in coordination, bioinorganic and inorganic chemistry, monograph series, vol 7. Slovak University of Technology Press, Bratislava, pp 163–169

    Google Scholar 

  212. Kráľová K, Masarovičová E, Ondrejkovičová I, Švajlenová O (2003) Effects of copper(II) complexes on vascular plants. In: Melník M, Sirota A (eds) Progress in coordination and bioorganic chemistry, monograph series, vol 6. Slovak University of Technology Press, Bratislava, pp 413–418

    Google Scholar 

  213. Kráľová K, Kissová K, Švajlenová O (2000) Effects of carboxylatocopper(II) complexes on photosynthesizing organisms. Chem Inz Ekol 7:1077–1083

    Google Scholar 

  214. Kráľová K, Šeršeň F, Melník M (1998) Inhibition of photosynthesis in Chlorella vulgaris by Cu(II)complexes with biologically active ligands. J Trace Microprobe Tech 16:491–500

    Google Scholar 

  215. Kráľová K, Šeršeň F, Melník M, Fargašová A (1997) Inhibition of photosynthetic electron transport in spinach chloroplasts by anti-inflammatory Cu(II) compounds. In: Ondrejovič G, Sirota A (eds) Progress in coordination and organometallic chemistry, Monograph series, vol 3. Slovak Technical University Press, Bratislava, pp 233–238

    Google Scholar 

  216. Kráľová K, Kissová K, Švajlenová O, Vančo J (2004) Biological activity of copper(II) N-salicylideneaminoacidato complexes. Reduction of chlorophyll content in freshwater alga Chlorella vulgaris and inhibition of photosynthetic electron transport in spinach chloroplasts. Chem Pap 58:357–361. http://www.chempap.org/file_access.php?file=585a357.pdf

    Google Scholar 

  217. Kráľová K, Masarovičová E, Lešíková J, Ondrejkovičová I (2006) Effects of Cd(II) and Zn(II) complexes with bioactive ligands on some photosynthesizing organisms. Chem Pap 60:149–153. doi:10.2478/s11696-006-0027-7

    Google Scholar 

  218. Kráľová K, Masarovičová E, Györyová K (2003) Inhibition of photosynthetic electron transport in spinach chloroplasts and Chlorella vulgaris and reduction of Sinapis alba L growth by some Zn(II) compounds. Fresen Environ Bull 12:857–860

    Google Scholar 

  219. Rajnohová M, Lešíková J, Kráľová K, Jóna E (2004) Inhibition of mustard (Sinapis alba L.) growth by Ni(II) compounds. In: Waclawek M, Waclawek W (eds) Proceedings ECOpole ‘04. Towarzystwo Chemii a Inzynierii Ekologicznej, Opole, pp 63–64

    Google Scholar 

  220. Lešíková J, Rajnohová M, Kráľová K (2005) Effect of Ni(II) complexes with bioactive ligands on growth of maize. In: Waclawek M, Waclawek W (eds) Proceedings ECOpole ‘05. Towarzystwo Chemii a Inzynierii Ekologicznej, Opole, pp 147–150

    Google Scholar 

  221. Kráľová K, Masarovičová E, Šeršeň F, Ondrejkovičová I (2008) Effect of different Fe(III) compounds on photosynthetic electron transport in spinach chloroplasts and on iron accumulation in maize plants. Chem Pap 62:358–363. doi:10.2478/s11696-008-0036-9

    Article  CAS  Google Scholar 

  222. Mallick N, Rai LC (1992) Metal induced inhibition of photosynthesis, photosynthetic electron transport chain and ATP content of Anabaena doliolum and Chlorella vulgaris: interaction with exogenous ATP. Biomed Environ Sci 5:241–250

    CAS  PubMed  Google Scholar 

  223. Kampfenkel K, Van Montagu M, Inze D (1995) Effects of iron excess on Nicotiana plumbaginifolia plants. Implications to oxidative stress. Plant Physiol 107:725–735. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC157188/pdf/1070725.pdf

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Fargašová A, Derco J, Ondrejkovičová I, Havránek E (2000) Effect of Fe(III) complexes with heterocyclic N-donor ligand on iron accumulation and oxygen production by the alga Scenedesmus quadricauda. J Trace Microprobe Tech 18:245–249

    Google Scholar 

  225. Chizzola R, Michitsch H, Franz C (2003) Monitoring of metallic micronutrients and heavy metals in herb species and medicinal plants from Austria. Eur Food Res Technol 216:407–411. doi:10.1007/s00217-003-0675-6

    Article  CAS  Google Scholar 

  226. Antal DS, Coricovac D, Soica CM, Ardelean F, Panzaru I, Danciu C, Vlaia V, Toma C (2014) High cadmium content in wild-growing medicinal plants from South-Western Romania unexpected results of a survey on 29 species. Rev Chim 65:1122–1125

    CAS  Google Scholar 

  227. Pavlova D, Karadjova I (2013) Toxic element profiles in selected medicinal plants growing on serpentines in Bulgaria. Biol Trace Elem Res 156:288–297. doi:10.1007/s12011-013-9848-8

    Article  CAS  PubMed  Google Scholar 

  228. Pavlova D, Karadjova I, Krasteva I (2015) Essential and toxic element concentrations in Hypericum perforatum. Aust J Bot 63:152–158. doi:10.1071/BT14260

    CAS  Google Scholar 

  229. Šalamon I, Král’ová K, Masarovičová E (2007) Accumulation of cadmium in chamomile plants cultivated in Eastern Slovakia regions. Acta Hort (ISHS) 749:217–222. doi:10.17660/ActaHortic.2007.749.26

    Article  Google Scholar 

  230. Gringov NG (1986) The agronomist’s manual for agricultural meteorology (non-chernozemic zone of European Russia) (In Russian). Gidrometizdat, Leningrad

    Google Scholar 

  231. Pavlovič A, Masarovičová E, Kráľová K (2006) Response of chamomile plants (Matricaria recutita L.) to cadmium treatment. Bull Environ Contam Toxicol 77:763–771. doi:10.1007/s00128-006-1129-1

    Article  PubMed  CAS  Google Scholar 

  232. Grejtovský A, Plavecký V, Gianits I (1996) Cd accumulation in chamomile (In Slovak). Poľnohospodárstvo 42:603–610

    Google Scholar 

  233. Marschner H (1995) Mineral nutrition of higher plants. Academic, London, p 889

    Google Scholar 

  234. Grejtovský A, Pirč R (2000) Effect of high cadmium concentrations in soil on growth, uptake of nutrients and some heavy metals of Chamomilla recutita (L.) Rauschert. J Appl Bot Angew Bot 74:169–174

    Google Scholar 

  235. Linkeš V, Kobza J, Švec M, Ilka P, Pavlenda P, Barančíková G, Matúšková L (1997) Soil monitoring in Slovakia, Actual state of monitored soils 1992–1996 [in Slovak]. Research Institute of Soil Fertility, Bratislava

    Google Scholar 

  236. Küpper H, Lombi E, Zhao F, McGrath SP (2000) Cellular compartmentation of cadmium and zinc in relation to other elements in the hyperaccumulator Arabidopsis halleri. Planta 212:75–84. doi:10.1007/s004250000366

    Article  PubMed  Google Scholar 

  237. Baker AJM (1995) Metal hyperaccumulation by plants: our present knowledge of the ecophysiological phenomenon. In: Randall D, Raskin I, Baker A, Blevins D, Smith R (eds) Current topics in plant biochemistry, physiology and molecular biology. University of Missouri, Columbia, pp 7–8

    Google Scholar 

  238. De Pasquale R, Raqusa S, Iauk L, Barbera R, Galati EM (1988) Effect of cadmium on germination, growth and active principle contents of Matricaria recutita L. Pharmacol Res Commun 20:151–154. doi:10.1016/S0031-6989(88)80860-9

    Article  CAS  PubMed  Google Scholar 

  239. Grejtovský A, Repčák M, Eliášová A, Markušová K (2001) Effect of cadmium on active principle contents of Matricaria recutita L. Herba Pol 48:203–208

    Google Scholar 

  240. Eliašová A, Repčák M, Pastírová A (2004) Quantitative changes of secondary metabolites of Matricaria chamomilla by abiotic stress. Z Naturforsch 59:543–548. doi:10.1515/znc-2004-7-817

    Google Scholar 

  241. Kráľová K, Masarovičová E (2004) Could complexes of heavy metals with secondary metabolites induce enhanced metal tolerance of Hypericum perforatum ? In: Anke M (ed) Macro and trace elements. Mengen- und Spurenelemente, Friedrich Schiller Universität, Jena, pp 411–416

    Google Scholar 

  242. Palivan CG, Gescheidt G, Weiner L, Stanoeva T (2001) Complexes of hypericin with Cu(II) in different solvents: complex formation, stochiometry, and geometry. J Inorg Biochem 86:369–369

    Google Scholar 

  243. Peško M, Kráľová K, Masarovičová E (2011) Growth of Matricaria recutita L. and accumulation of Cd and Cu within plant organs in different stage of ontogenetical development (In Slovak). In: Bláha V, Hnilička F (eds) Effect of abiotic and biotic stressors on plant features. Research Institute of Plant Production, Praha, pp 208–211. ISBN:978-80-7427-068-0

    Google Scholar 

  244. Kráľová K, Masarovičová E (2008) EDTA-assisted phytoextraction of copper, cadmium and zinc using chamomile plants. Ecol Chem Eng 15:213–220. http://tchie.uni.opole.pl/ece15/Kralova_EDTA_ece15_3.pdf

    Google Scholar 

  245. Masarovičová E, Repčák M, Blehová A, Erdelský K, Gašparíková O, Ješko T, Mistrík I (2015) Plant physiology (in Slovak), 3rd edn. Comenius University in Bratislava, Bratislava. ISBN: 978-80-223-3687-1

    Google Scholar 

  246. Masarovičová E, Kráľová K, Kummerová M, Kmentová E (2004) The effect of cadmium on root growth and respiration rate of two medicinal plant species. Biologia (Bratislava) 59(Suppl 13):211–214

    Google Scholar 

  247. Kráľová K, Masarovičová E, Bumbálova A (2000) Toxic effects of cadmium on Hypericum perforatum plants and green alga Chlorella vulgaris. Chem Inz Ekol 7:2000–2005

    Google Scholar 

  248. Kummerová M, Zezulka Š, Kráľová K, Masarovičová E (2010) Effect of zinc and cadmium on physiological and production characteristics in Matricaria recutita. Biol Plant 54:308–314. doi:10.1007/s10535-010-0053-8

    Article  CAS  Google Scholar 

  249. Owen JD, Kirtona SB, Evans SJ, Stair JL (2016) Elemental fingerprinting of Hypericum perforatum (St John’s Wort) herb and preparations using ICP-OES and chemometrics. J Pharm Biomed Anal 125:15–21. doi:10.1016/j.jpba.2016.02.054

    Article  CAS  PubMed  Google Scholar 

  250. Bolan N, Kunhikrishnan A, Thangarajan R, Kumpiene J, Park J, Makino T, Kirkham MB, Scheckel K (2014) Remediation of heavy metal(loid)s contaminated soils—to mobilize or to immobilize? J Hazard Mater 266:141–166. doi:10.1016/j.jhazmat.2013.12.018

    Article  CAS  PubMed  Google Scholar 

  251. Saifullah, Meers E, Qadir M, de Caritat P, Tack FMG, Du Laing G, Zia MH (2009) EDTA-assisted Pb phytoextraction. Chemosphere 74:1279–1291. doi:10.1016/j.chemosphere.2008.11.007

  252. Nowack B, Schulin R, Robinson BH (2006) Critical assessment of chelant-enhanced metal phytoextraction. Environ Sci Technol 40:5225–5232. doi:10.1021/es0604919

    Article  CAS  PubMed  Google Scholar 

  253. Furia TE (1973) Sequestrants in foods. In: Furia TE (ed) Handbook of food additives, 2nd edn. CRC Press, Boca Raton, pp 271–294. http://www.george-eby-research.com/html/stability_constants.html

  254. Peško M, Kráľová K, Masarovičová E (2008) Effect of chelating agent on the effectiveness of Zn phytoextraction in chamomile plants (In Slovak). In 14th specialized workshop with international participation “Current issues ofcultivation of medicinal, aromatic and culinary plants” 2.12.2008 Lednice, Mendel University of Agriculture and Forestry in Brno, pp 134–138

    Google Scholar 

  255. Kráľová K, Masarovičová E, Kubová J, Švajlenová O (2007) Response of Matricaria recutita plants to some copper(II) chelates. Acta Hort (ISHS) 749:237–243. http://www.actahort.org/books/749/749_29.htm

    Article  Google Scholar 

  256. Almaroai YA, Usman ARA, Ahmad M, Kim KR, Moon DH, Lee SS, Ok YS (2012) Effects of synthetic chelators and low-molecular-weight organic acids on chromium, copper, and arsenic uptake and translocation in maize (Zea mays L.). Soil Sci 177:655–663. doi:10.1097/SS.0b013e31827ba23f

    Article  CAS  Google Scholar 

  257. Liu J, Zhou QX, Wang S (2010) Evaluation of chemical enhancement on phytoremediation effect of Cd-contaminated soils with Calendula officinalis L. Int J Phytoremediation 12:503–515. doi:10.1080/15226510903353112

    Article  CAS  PubMed  Google Scholar 

  258. Mani D, Patel NK (2014) Humic acid, EDDS and EDTA induced phytoremediation of cadmium contaminated alluvial soil by Calendula officinalis L. J Indian Chem Soc 91:2073–2082

    CAS  Google Scholar 

  259. Ellis DR, Salt DE (2003) Plants, selenium and human health. Curr Opin Plant Biol 6:273–279. doi:10.1016/S1369-5266(03)00030-X

    Article  CAS  PubMed  Google Scholar 

  260. Škopíková A, Kissová K, Kráľová K (2006) Phytotoxic effects of selenium oxoacids and some of their salts on cress seedlings. In: Waclawek M, Waclawek W (eds) Proceedings. ECOpole’06, Society of Ecological Chemistry and Engineering, Opole, pp 149–152

    Google Scholar 

  261. Škopíková A, Kráľová K, Masarovičová E (2008) Phytotoxic effects of selenium oxoacid and some of their salts on growth of Brassica napus L. seedlings. Ecol Chem Eng A 15:221–226. http://tchie.uni.opole.pl/ece_a/A_15_3/Skopikova_Phytotxic_ECE15%28A3%29.pdf

    Google Scholar 

  262. Madaan N, Mudgal V (2011) Phytotoxic effect of selenium on the accessions of wheat and safflower. Res J Environ Sci 5:82–87. doi:10.3923/rjes.2011.82.87

    Article  CAS  Google Scholar 

  263. Whanger PD (2002) Selenocompounds in plants and animals and their biological significance. J Am College Nutr 21:223–232. doi:10.1080/07315724.2002.10719214

    Article  CAS  Google Scholar 

  264. Kaur N, Sharma S, Kaur S, Nayyar H (2014) Selenium in agriculture: a nutrient or contaminant for crops? Arch Agric Soil Sci 60:1593–1624. doi:10.1080/03650340.2014.918258

    CAS  Google Scholar 

  265. Sieprawska A, Kornas A, Filek M (2015) Involvement of selenium in protective mechanisms of plants under environmental stress conditions—review. Acta Biol Cracov Bot 57:9–20. doi:10.1515/abcsb-2015-0014

    Google Scholar 

  266. Feng RW, Wei CY, Tu SX (2013) The roles of selenium in protecting plants against abiotic stresses. Environ Exp Bot 87:58–68. doi:10.1016/j.envexpbot.2012.09.002

    Article  CAS  Google Scholar 

  267. Lyons GH, Genc Y, Soole K, Stangoulis JCR, Liu F, Graham RD (2009) Selenium increases seed production in Brassica. Plant and Soil 318:73–80. doi:10.1007/s11104-008-9818-7

    Article  CAS  Google Scholar 

  268. Malik JA, Kumar S, Thakur P, Sharma S, Kaur N, Kaur R, Pathania D, Bhandhari K, Kaushal N, Singh K, Srivastava A, Nayyar H (2011) Promotion of growth in mungbean (Phaseolus aureus Roxb.) by selenium is associated with stimulation of carbohydrate metabolism. Biol Trace Elem Res 143:530–539. doi:10.1007/s12011-010-8872-1

    Article  CAS  PubMed  Google Scholar 

  269. Owusu-Sekyere A, Kontturi J, Hajiboland R, Rahmat S, Aliasgharzad N, Hartikainen H, Seppanen MM (2013) Influence of selenium (Se) on carbohydrate metabolism, nodulation and growth in alfalfa (Medicago sativa L.). Plant and Soil 373:541–552. doi:10.1007/s11104-013-1815-9

    Article  CAS  Google Scholar 

  270. Sors TG, Ellis DR, Salt DE (2005) Selenium uptake, translocation, assimilation and metabolic fate in plants. Photosynth Res 86:373–389. doi:10.1007/s11120-005-5222-9

    Article  CAS  PubMed  Google Scholar 

  271. Stiehl B, Bible BB (1989) Reaction of crop species to thiocyanate ion toxicity. Hortic Sci 24:99–101

    Google Scholar 

  272. Lyi SM, Heller LI, Rutzke M, Welch RM, Kochian LV, Li L (2005) Molecular and biochemical characterization of the selenocysteine Se-methyltransferase gene and Se-methylselenocysteine synthesis in broccoli. Plant Physiol 138:409–420. doi:10.1104/pp.104.056549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  273. Läuchli A (1993) Selenium in plants: uptake, functions, and environmental toxicity. Bot Acta 106:455–468. doi:10.1111/j.1438-8677.1993.tb00774.x

    Article  Google Scholar 

  274. Arvy MP (1993) Selenate and selenite uptake and translocation in bean plants (Phasoleus vulgaris). J Exp Bot 44:1083–1087. doi:10.1093/jxb/44.6.1083

    Article  CAS  Google Scholar 

  275. Honda C, Fujiwara T, Chino M (1998) Sulfate uptake in Arabidopsis thaliana. J Plant Nutr 21:601–614. doi:10.1080/01904169809365428

    Article  CAS  Google Scholar 

  276. Hopper JL, Parker DR (1999) Plant availability of selenite and selenate as influenced by the competing ions phosphate and sulphate. Plant and Soil 210:199–207. doi:10.1023/A:1004639906245

    Article  CAS  Google Scholar 

  277. Li HF, McGrath SP, Zhao FJ (2008) Selenium uptake, translocation and speciation in wheat supplied with selenate or selenite. New Phytol 178:92–102. doi:10.1111/j.1469-8137.2007.02343.x

    Article  CAS  PubMed  Google Scholar 

  278. Liu XW, Zhao ZQ, Hu CX, Zhao XH, Guo ZH (2016) Effect of sulphate on selenium uptake and translocation in rape (Brassica napus L.) supplied with selenate or selenite. Plant and Soil 399:295–304. doi:10.1007/s11104-015-2699-7

    Article  CAS  Google Scholar 

  279. de Souza MP, Pilon-Smits EAH, Lytle CM, Hwang S, Tai JC, Honma TSU, Yeh L, Terry N (1998) Rate-limiting steps in selenium volatilization by Brassica juncea. Plant Physiol 117:1487–1494. http://dx.doi.org/10.1104/pp.117.4.1487

    Article  PubMed  PubMed Central  Google Scholar 

  280. Pilon-Smits EAH, Quinn CF (2010) Selenium metabolism in plants. In: Hell R, Mendel R-R (eds) Cell biology of metals and nutrients, Plant cell monographs 17. Springer, Berlin pp 225–241. doi: 10.1007/978-3-642-10613-2_10

  281. Klusonova I, Horky P, Skladanka J, Kominkova M, Hynek D, Zitka O, Skarpa P, Kizek R, Adam V (2015) An effect of various selenium forms and doses on antioxidant pathways at clover (Trifolium pratense L.). Int J Electrochem Sci 10:9975–9987. http://www.electrochemsci.org/papers/vol10/101209975.pdf

  282. Eiche E, Bardelli F, Nothstein AK, Charlet L, Goettlicher J, Steininger R, Dhillon KS, Sadana US (2015) Selenium distribution and speciation in plant parts of wheat (Triticum aestivum) and Indian mustard (Brassica juncea) from a seleniferous area of Punjab, India. Sci Total Environ 505:952–961. doi:10.1016/j.scitotenv2014.10.080

    Article  CAS  PubMed  Google Scholar 

  283. Ebrahimi N, Hartikainen H, Simojoki A, Hajiboland R, Seppanen M (2015) Dynamics of dry matter and selenium accumulation in oilseed rape (Brassica napus L.) in response to organic and inorganic selenium treatments. Agric Food Sci 24:104–117. doi:10.1007/s10725-015-0042-1

    Google Scholar 

  284. Morlon H, Fortin C, Floriani M, Adam C, Garnier-Laplace J, Boudou A (2005) Toxicity of selenite in the unicellular green alga Chlamydomonas reinhardtii: comparison between effects at the population and sub-cellular level. Aquat Toxicol 73:65–78. doi:10.1016/j.aquatox.2005.02.007

  285. Geoffroy L, Gilbin R, Simon O, Floriani M, Adam C, Pradines C, Cournac L, Garnier-Laplace J (2007) Effect of selenate on growth and photosynthesis of Chlamydomonas reinhardtii. Aquat Toxicol 83:149–158. doi:10.1016/j.aquatox.2007.04.001

    Article  CAS  PubMed  Google Scholar 

  286. Barrientos EY, Flores CR, Wrobel K, Wrobel K (2012) Impact of cadmium and selenium exposure on trace elements, fatty acids and oxidative stress in Lepidium sativum. J Mex Chem Soc 56:3–9. http://www.scielo.org.mx/pdf/jmcs/v56n1/v56n1a2.pdf

    CAS  Google Scholar 

  287. Haghighi M, da Silva JAT (2016) Influence of selenium on cadmium toxicity in cucumber (Cucumis sativus cv. 4200) at an early growth stage in a hydroponic system. Commun Soil Sci Plant Anal 47:142–155. doi:10.1080/00103624.2015.1109650

    Article  CAS  Google Scholar 

  288. Khan MIR, Nazir F, Asgher M, Per TS, Khan NA (2015) Selenium and sulfur influence ethylene formation and alleviate cadmium-induced oxidative stress by improving proline and glutathione production in wheat. J Plant Physiol 173:9–18. doi:10.1016/j.jplph.2014.09.011

    Article  CAS  PubMed  Google Scholar 

  289. Mozafariyan M, Shekari L, Hawrylak-Nowak B, Kamelmanesh MM (2014) Protective role of selenium on pepper exposed to cadmium stress during reproductive stage. Biol Trace Elem Res 160:97–107. doi:10.1007/s12011-014-0028-2

    Article  CAS  PubMed  Google Scholar 

  290. Feng RW, Wei CY, Tu SX, Ding YZ, Song ZG (2013) A dual role of Se on Cd toxicity: evidences from the uptake of Cd and some essential elements and the growth responses in paddy rice. Biol Trace Elem Res 151:113–121. doi:10.1007/s12011-012-9532-4

    Article  CAS  PubMed  Google Scholar 

  291. Lin L, Zhou WH, Dai HX, Cao FB, Zhang GP, Wu FB (2012) Selenium reduces cadmium uptake and mitigates cadmium toxicity in rice. J Hazard Mater 235:343–351. doi:10.1016/j.jhazmat.2012.08.012

    Article  PubMed  CAS  Google Scholar 

  292. Saidi I, Chtourou Y, Djebali W (2014) Selenium alleviates cadmium toxicity by preventing oxidative stress in sunflower (Helianthus annuus) seedlings. J Plant Physiol 171:85–91. doi:10.1016/j.jplph.2013.09.024

    Article  CAS  PubMed  Google Scholar 

  293. Kumar A, Singh RP, Singh PK, Awasthi S, Chakrabarty D, Trivedi PK, Tripathi RD (2014) Selenium ameliorates arsenic induced oxidative stress through modulation of antioxidant enzymes and thiols in rice (Oryza sativa L.). Ecotoxicology 23:1153–1163. doi:10.1007/s10646-014-1257-z

    Article  CAS  PubMed  Google Scholar 

  294. Qing XJ, Zhao XH, Hu CX, Wang P, Zhang Y, Zhang X, Wang PC, Shi HZ, Jia F, Qu CJ (2015) Selenium alleviates chromium toxicity by preventing oxidative stress in cabbage (Brassica campestris L. ssp Pekinensis) leaves. Ecotoxicol Environ Saf 114:179–189. doi:10.1016/j.ecoenv.2015.01.026

    Article  CAS  PubMed  Google Scholar 

  295. Di Salvatore M, Carafa AM, Carratu G (2008) Assessment of heavy metals phytotoxicity using seed germination and root elongation tests: a comparison of two growth substrates. Chemosphere 73:1461–1464. doi:10.1016/j.chemosphere.2008.07.061

    Article  CAS  PubMed  Google Scholar 

  296. Munzuroglu O, Geckil H (2002) Effects of metals on seed germination, root elongation, and coleoptile and hypocotyls growth in Triticum aestivum and Cucumis sativus. Arch Environ Contam Toxicol 43:203–213. doi:10.1007/s00244-002-1116-4

    Article  CAS  PubMed  Google Scholar 

  297. Tao L, Meiying Guo MY, Ren J (2015) Effects of cadmium on seed germination, coleoptile growth, and root elongation of six pulses. Pol J Environ Stud 24:295–299. doi:10.15244/pjoes/29942

    Article  CAS  Google Scholar 

  298. Wu SG, Huang L, Head J, Chen DR, Kong IC, Tang YJ (2012) Phytotoxicity of metal oxide nanoparticles is related to both dissolved metals ions and adsorption of particles on seed surfaces. J Pet Environ Biotechnol 3:126. doi:10.4172/2157-7463.1000126

    CAS  Google Scholar 

  299. Mousavi Kouhi SM, Lahouti M, Ganjeali A, Entezari MH (2014) Comparative phytotoxicity of ZnO nanoparticles, ZnO microparticles, and Zn2+ on rapeseed (Brassica napus L.): investigating a wide range of concentrations. Toxicol Environ Chem 96:861–868. doi:10.1080/02772248.2014.994517

    Article  CAS  Google Scholar 

  300. Chen Y, Mo HZ, Zheng MY, Xian M, Qi ZQ, Li YQ, Hu LB, Chen J, Yang LF (2014) Selenium inhibits root elongation by repressing the generation of endogenous hydrogen sulfide in Brassica rapa. PLoS One 9:e110904. doi:10.1371/journal.pone.0110904

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  301. Gómez-Ojeda A, Corrales Escocosa AR, Wrobel K, Barrientos RY, Wrobel K (2013) Effect of Cd(II) and Se(IV) exposure on cellular distribution of both elements and concentration levels of glyoxal and methylglyoxal in Lepidium sativum. Metallomics 5:1254–1261. doi:10.1039/C3MT00058C

    Article  PubMed  CAS  Google Scholar 

  302. Kráľová K, Masarovičová E, Ondrejkovičová I, Bujdoš M (2007) Effect of selenium oxidation state on cadmium translocation in chamomile plants. Chem Pap 61:171–175. doi:10.2478/s11696-007-0015-6

    Google Scholar 

  303. Sathianandan K, McCory LD, Margrave JL (1964) Infrared absorption spectra of inorganic solids—III selenates and selenites. Spectrochim Acta 20:957–963. doi:10.1016/0371-1951(64)80096-5

    Article  CAS  Google Scholar 

  304. Witczak ZJ (1986) Monosaccharide isothiocyanates and thiocyanates: synthesis, chemistry, and preparative applications. Adv Carbohydr Chem Biochem 44:91–145. doi:10.1016/S0065-2318(08)60078-5

    Article  CAS  PubMed  Google Scholar 

  305. Beekhuis HA (1975) Technology and industrial applications. In: Newman AA (ed) Chemistry and biochemistry of thiocyanic acid and its derivatives. Academic, London, pp 222–255

    Google Scholar 

  306. Fenwick GR, Heaney RK, Mullin WJ (1983) Glucosinolates and their breakdown products in food and food plants. Crit Rev Food Sci Nutr 18:123–201. doi:10.1080/10408398209527361

    Article  CAS  PubMed  Google Scholar 

  307. Park KW, Hwang SK, Choi SJ, Kim YS (1983) Effect of thiocyante ion and boron on the germination of several vegetable crops. J Korean Soc Hortic Sci 24:14–20

    CAS  Google Scholar 

  308. Ju HY, Bible BB, Chong C (1983) Influence of ionic thiocyanate on growth of cabbage, bean, and tobacco. J Chem Ecol 8:1255–1262. doi:10.1007/BF00982227

    Article  Google Scholar 

  309. Wu YF, Basler E (1969) Effects of ammonium thiocyanate on carbohydrate metabolism in the cotton plant. Weed Sci 17:362–365

    CAS  Google Scholar 

  310. Burra R, Fox JD, Pradenas GA, Vásquez CC, Chasteen TG (2009) Biological interactions of selenocyanate: bioprocessing, detection and toxicity. Environ Technol 30:1327–1335. doi:10.1080/09593330902998082

    Article  CAS  PubMed  Google Scholar 

  311. Montes RA, Pradenas GA, Pérez-Donoso JM, Vásquez C, Chasteen TG (2012) The acute bacterial toxicity of the selenocyanate anion and the bioprocessing of selenium by bacterial cells. Environ Biotechnol 8:32–38

    Google Scholar 

  312. Forney CF, Jordan MA (1998) Induction of volatile compounds in broccoli by postharvest hot-water dips. J Agric Food Chem 46:5295–5301. doi:10.1021/jf980443a

    Article  CAS  Google Scholar 

  313. Pilon-Smits EAH, Hwang S, Lytle CM, Zhu Y, Tai JC, Bravo RC, Chen Y, Leustek T, Terry N (1999) Overexpression of ATP sulfurylase in Indian mustard leads to increased selenate uptake, reduction, and tolerance. Plant Physiol 119:123–132. http://dx.doi.org/10.1104/pp.119.1.123

  314. Terry N, Zayed AM, de Souza MP, Tarun AS (2000) Selenium in higher plants. Annu Rev Plant Physiol Plant Mol Biol 51:401–432. doi:10.1146/annurev.arplant.51.1.401

    Article  CAS  PubMed  Google Scholar 

  315. de Souza MP, Pickering IJ, Walla M, Terry N (2002) Selenium assimilation and volatilization from selenocyanate-treated Indian mustard and muskgrass. Plant Physiol 128:625–633. doi:10.1104/pp.010686

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  316. Valigura D, Gracza T, Mašlejová A, Papánková B, Šima J, Špirková K (2004) Chemical tables (In Slovak). Slovak Technical University Press, Bratislava, p 189

    Google Scholar 

  317. Peško M, Kráľová K, Masarovičová E (2009) Influence of Cd accumulation in Vigna radiata L. plants by selenium (in Slovak). In: Bláha V, Hnilička F (eds) Effect of abiotic and biotic stressors on plant features. Research Institute of Plant Production, Praha, p 275–227. ISBN:978-80-87011-91-1

    Google Scholar 

  318. Škopíková A, Kráľová K, Masarovičová E (2008) Effect of Cd-Se interference on cadmium and selenium bioaccumulation in pea seedlings. In: Waclawek M, Waclawek W (eds) Proceedings of ECOpole ‘08, vol 2(1), Society of Ecological Chemistry and Engineering, Opole, pp 135–139. http://tchie.uni.opole.pl/ecoproc08a/Szkopikova_08a.pdf

  319. Peško M, Kráľová K, Masarovičová E (2010) Response of young Brassica juncea plants to cadmium and selenium treatment. Fresen Environ Bull 19:1505–1510

    Google Scholar 

  320. Lešíková J, Kráľová K, Masarovičová E, Kubová J, Ondrejkovičová I (2007) Effect of different cadmium compounds on chamomile plants. Acta Hortic (ISHS) 749:223–229. http://www.actahort.org/books/749/749_27.htm

    Article  Google Scholar 

  321. Kráľová K, Masarovičová E, Ondrejkovičová I (2008) Effect of selenium on cadmium and zinc bioaccumulation in Salvia officinalis L. plants (in Slovak). In: Bláha V, Hnilička F (eds) Effect of abiotic and biotic factors on plant features. Research Institutute of Plant Production, Praha, pp 175–178. ISBN: 978-80-87011-18-8

    Google Scholar 

  322. Wahid A, Ghani A (2008) Varietal differences in mungbean (Vigna radiata) for growth, yield, toxicity symptoms and cadmium accumulation. Ann Appl Biol 152:59–69. doi:10.1111/j.1744-7348.2007.00192.x

    Article  CAS  Google Scholar 

  323. Wahid A, Ghani A, Javed F (2008) Effect of cadmium on photosynthesis, nutrition and growth of mungbean. Agron Sustain Dev 28:273–280. doi:10.1051/agro:2008010

    Article  CAS  Google Scholar 

  324. Shanker K, Mishra S, Srivastava S, Srivastava R, Dass S, Prakash S, Srivastava MM (1996) Effect of selenite and selenate on plant uptake of cadmium by maize (Zea mays). Bull Environ Contam Toxicol 56:419–424. doi:10.1007/s001289900060

    Article  CAS  PubMed  Google Scholar 

  325. Whanger PD (1992) Selenium in the treatment of heavy metal poisoning and chemical carcinogenesis. J Trace Elem Electrolytes Health Dis 6:209–221

    CAS  PubMed  Google Scholar 

  326. Rout GR, Samantaray S, Das P (1999) Differential cadmium tolerance of mung bean and rice genotypes in hydroponic culture. Acta Agric Scand B Soil Plant Sci 49:234–241. doi:10.1080/713782026

    CAS  Google Scholar 

  327. Dhir B, Sharmila P, Saradhi PP (2004) Hydrophytes lack potential to exhibit cadmium stress induced enhancement in lipid peroxidation and accumulation of proline. Aquat Toxicol 66:141–147. doi:10.1016/j.aquatox.2003.08.005

    Article  CAS  PubMed  Google Scholar 

  328. Anjum NA, Umar S, Ahmad A, Iqbal M (2008) Responses of components of antioxidant system in moongbean genotypes to cadmium stress. Commun Soil Sci Plant Anal 39:2469–2483. doi:10.1134/S1021443710061019

    Article  CAS  Google Scholar 

  329. Shanker K, Mishra S, Srivastava S, Srivastava R, Dass S, Prakash S, Srivastava MM (1995) Effect of selenite and selenate on plant uptake of cadmium by kidney bean (Phaseolus mungo) with reference to Cd-Se interaction. Chem Spec Bioavailab 7:97–100. doi:10.1080/09542299.1995.11083251

    Article  CAS  Google Scholar 

  330. Ximenez-Embun P, Alonso I, Madrid-Albarran Y, Camara C (2004) Establishment of selenium uptake and species distribution in lupine, Indian mustard and sunflower plants. J Agric Food Chem 52:832–838. doi:10.1021/jf034835f

    Article  CAS  PubMed  Google Scholar 

  331. Zayed A, Lytle CM, Terry N (1998) Accumulation and volatilization of different chemical species of selenium by plants. Planta 206:284–292. doi:10.1007/s004250050402

    Article  CAS  Google Scholar 

  332. Barceló J, Poschenrieder C (1990) Plant water relations as affected by heavy metal stress: A review. J Plant Nutr 13:1–37. doi:10.1080/01904169009364057

    Article  Google Scholar 

  333. Stobart AK, Griffiths WT, Ameen-Bukhari I, Sherwood RP (1985) The effect of Cd2+ on the biosynthesis of chlorophyll in leaves of barley. Physiol Plant 63:293–298. doi:10.1111/j.1399-3054.1985.tb04268.x

    Article  CAS  Google Scholar 

  334. Padmaja K, Prasad DDK, Prasad ARK (1990) Inhibition of chlorophyll synthesis in Phaseolus vulgaris L. seedlings by cadmium acetate. Photosynthetica 24:399–405

    CAS  Google Scholar 

  335. Xue T, Hartikainen H, Piironen V (2001) Antioxidative and growth-promoting effect of selenium on senescing lettuce. Plant and Soil 237:55–61. doi:10.1023/A:1013369804867

    Article  CAS  Google Scholar 

  336. Mazzafera P (1998) Growth and biochemical alterations in coffee due to selenite toxicity. Plant and Soil 201:189–196. doi:10.1023/A:1004328717851

    Article  CAS  Google Scholar 

  337. Jonard M, Fürst A, Verstraeten A, Thimonier A, Timmermann V, Potočič N, Waldner P, Benham S, Hansen K, Merilä P, Ponette Q, De la Cruz A, Roskams P, Nicolas M, Croisé L, Ingerslev M, Matteucci G, Deciniti B, Bascietto M, Rautio P (2015) Tree mineral nutrition in deteriorating in Europe. Glob Chang Biol 21:418–430. doi:10.1111/gcb.12657

    Article  PubMed  Google Scholar 

  338. Masarovičová E, Májeková M, Vykouková I (2015) Functional traits and plasticity of plants in ecological research and education. Chem Didact Ecol Metrol 20:59–98. doi:10.1515/cdem-2015-0006

    Google Scholar 

  339. Stomp AM, Han KH, Wilbert S, Gordon MP (1993) Genetic improvement of tree species for remediation of hazardous wastes. In Vitro Cell Develop Biol Plant 29:227–232. doi:10.1007/BF02632039

    Article  Google Scholar 

  340. Chapell J (1997) Phytoremediation of TCE using Populus. Status report prepared for the U.S. EPA Technology Innovation Office under a National Network of Environmental Management Studies Fellowship. http://www.clu-in.org/products/intern/phytotce.htm

  341. Dietz AC, Schnoor JL (2001) Advances in phytoremediation. Environ Health Perspect 109(Suppl 1):163–168. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1240550/pdf/ehp109s-000163.pdf

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  342. Bittsánszky A, Kömives T, Gullner G, Gyulai G, Kiss J, Heszky L, Radimszky L, Rennenberg H (2005) Ability of transgenic poplars with elevated glutathione content to tolerate zinc(2+) stress. Environ Int 31:251–254. doi:10.1016/j.envint.2004.10.001

    Article  PubMed  CAS  Google Scholar 

  343. Šottníková A, Lunáčková L, Masarovičová E, Lux A, Streško V (2003) Changes in the rooting and growth of willows and poplars induced by cadmium. Biol Plant 46:129–131. doi:10.1023/A:1022395118998

    Article  Google Scholar 

  344. Lunáčková L, Šottníková A, Masarovičová E, Lux A, Streško V (2003/2004) Comparison of cadmium effect on willow and poplar in response to different cultivation conditions. Biol Plant 47:403–411. doi:10.1023/B:BIOP.0000023884.54709.09

    Google Scholar 

  345. Masarovičová E, Kráľová K (2005) Approaches to measuring plant photosynthetic activity. In: Pessarakli M (ed) Handbook of photosynthesis, 2nd edn. Taylor & Francis, Boca Raton, pp 617–656

    Google Scholar 

  346. Barceló J, Poschenrieder C (1999) Structural and ultrastructural changes in heavy metal exposed plants. In: Prasad MNV, Hagemeyer J (eds) Heavy metal stress in plants. Springer, Berlin, pp 83–205

    Google Scholar 

  347. Lunáčková L, Masarovičová E, Kráľová K, Streško V (2003) Response of fast growing woody plants from family Salicaceae to cadmium treatment. Bull Environ Contam Toxicol 70:576–585. doi:10.1007/s00128-003-0024-2

    Article  PubMed  CAS  Google Scholar 

  348. Nikolič N, Kojic D, Pilipovic A, Pajevic S, Krstic B, Borisev M, Orlovic S (2008) Responses of hybrid poplar to cadmium stress: photosynthetic characteristics, cadmium and proline accumulation, and antioxidant enzyme activity. Acta Biol Cracov-Ser Bot 50:95–103

    Google Scholar 

  349. Gu JG, Qi LW, Jiang WS, Liu DH (2007) Cadmium accumulation and its effects on growth and gas exchange in four Populus cultivars. Acta Biol Cracov-Ser Bot 49:7–14. http://www2.ib.uj.edu.pl/abc/pdf/49_2/01_gu.pdf

  350. Jensen JK, Holm PE, Nejrup J, Larsen MB, Borggaard OK (2009) The potential of willow for remediation of heavy metal polluted calcareous urban soils. Environ Pollut 157:931–937. doi:10.1016/j.envpol.2008.10.024

    Article  CAS  PubMed  Google Scholar 

  351. Vandecasteele B, Meers E, Vervaeke P, De Vos B, Quataert P, Tack FMG (2005) Growth and trace metal accumulation of two Salix clones on sediment-derived soils with increasing contamination levels. Chemosphere 58:995–1002. doi:10.1016/j.chemosphere.2004.09.062

    Article  CAS  PubMed  Google Scholar 

  352. Celik A, Kartal AA, Akdogan A, Kaska Y (2005) Determining the heavy metal pollution in Denizli (Turkey) by using Robinio pseudo-acacia L. Environ Int 31:105–112

    Article  CAS  PubMed  Google Scholar 

  353. Bernardini A, Salvatore E, Did Re S, Fuser L, Nervo G (2016) Natural and commercial Salix clones differ in their ecophysiological response to Zn stress. Photosynthetica 54:56–64. doi:10.1007/s11099-015-0155-9

  354. Kráľová K, Masarovičová E, Lunáčková L (2002) Effect of some organomercurials on production parameters of willow species. In: Anke M (ed) Macro and Trace Elements. Friedrich-Schiller-Universität, Jena, pp 347–352

    Google Scholar 

  355. Deflora S, Bennicelli C, Bagnasco M (1994) Genotoxicity of mercury compounds–a review. Mutat Res 317:57–79. doi:10.1016/0165-1110(94)90012-4

    Article  CAS  Google Scholar 

  356. Kungolos A, Aoyama I, Muramoto S (1999) Toxicity of organic and inorganic mercury to Saccharomyces cerevisiae. Ecotoxicol Environ Saf 43:149–155. doi:10.1006/eesa.1999.1767

  357. Hassett-Sipple B, Swartout J, Schoeny R, Mahaffey KR, Rice GE (1997) Mercury study report to congress. In: Health effects of mercury and mercury compounds, EPA-452/R-97-007.1997. USA Environmental Protection Agency, Washington, DC 5:1–349.

    Google Scholar 

  358. Honeycutt RC, Krogmann DW (1972) Inhibition of chloroplast reactions with phenylmercuric acetate. Plant Physiol 49:376–380. http://dx.doi.org/10.1104/pp.49.3.376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  359. Girault L, Boudou A, Dufourc EJ (1997) Methyl mercury interactions with phospholipid membranes as reported by fluorescence, 31P and 199Hg NMR. Biochim Biophys Acta Biomembranes 1325:250–262. doi:10.1016/S0005-2736(96)00263-5

    Article  CAS  Google Scholar 

  360. Šeršeň F, Kráľová K (2013) Action of some organomercury compounds on photosynthesis in spinach chloroplasts. Ecol Chem Eng S 20:489–498. doi:10.2478/eces-2013-0036

    Google Scholar 

  361. Matorin DN, Osipov VA, Seifullina NK, Venediktov PS, Rubin AB (2009) Increased toxic effect of methylmercury on Chlorella vulgaris under high light and cold stress conditions. Microbiology 78:321–327. doi:10.1134/S0026261709030102

    Article  CAS  Google Scholar 

  362. Kukarskikh GP, Graevskaya EE, Krendeleva TE, Timofeev KN, Rubin AB (2003) Effect of methylmercury on the primary photosynthetic activity of green microalgae Chlamydomonas reinhardtii. Biofizika 48:853–859

    CAS  PubMed  Google Scholar 

  363. Antal TK, Graevskaya EE, Matorin DN, Voronova EN, Pogosyan SY, Krendeleva TE, Rubin AB (2004) Study of chloride mercury and methylmercury effects on the photosynthetic activity of diatom Thalassiosira weissflogii by fluorescence methods. Biofizika 49:72–78

    CAS  PubMed  Google Scholar 

  364. Bizily SP, Rugh CL, Meagher RB (2000) Phytodetoxification of hazardous organomercurials by genetically engineered plants. Nat Biotechnol 18:213–217. doi:10.1038/72678

    Article  CAS  PubMed  Google Scholar 

  365. Ruiz ON, Hussein HS, Terry N, Daniell H (2003) Phytoremediation of organomercurial compounds via chloroplast genetic engineering. Plant Physiol 132:1344–1352. doi:10.1104/pp.103.020958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  366. Nagata T, Morita H, Akizawa T, Pan-Hou H (2010) Development of a transgenic tobacco plant for phytoremediation of methylmercury pollution. Appl Microbiol Biotechnol 87:781–786. doi:10.1007/s00253-010-2572-9

    Article  CAS  PubMed  Google Scholar 

  367. Fernández NR (1992) Nombres comúnes, uses y distribución geográfica del género Karwinskia (Rhamnaceae) en México. Anal Inst Biol Univ Nac Autón México ser Bot 63:1–23

    Google Scholar 

  368. Dreyer XA, Arai I, Bachman CD, Anderson RR, Smith RG, Daves GD (1988) Toxin causing noninflamatory paralytic neuropathy. Isolation and structure elucidation. J Am Chem Soc 97:4985–4990

    Article  Google Scholar 

  369. Waksman NT, Martínez L, Fernández R (1989) Chemical and toxicological screening in genus Karwinskia (Mexico). Rev Latinoamer Quím 20:27–29

    CAS  Google Scholar 

  370. Salazar R, Rivas V, Gonzalez G, Waksman N (2006) Antimicrobial activity of coupled hydroxyanthracenones isolated from plants of the genus Karwinskia. Fitoterapia 77:398–400. doi:10.1016/j.fitote.2005.04.025

    Article  CAS  PubMed  Google Scholar 

  371. Rojas-Flores C, Rios MY, Lopez-Marure R, Olivo HF (2014) Karwinaphthopyranones from the fruits of Karwinskia parvifolia and their cytotoxic activities. J Nat Prod 77:2404–2409. doi:10.1021/np500430q

    Article  CAS  PubMed  Google Scholar 

  372. Mucaji P, Nagy M, Sersen F, Svajdlenka E, Drozd J, Stujber M, Liptaj T (2012) Phenolic metabolites of Karwinskia humboldtiana leaves. Chem Listy 106:1143–1146. http://www.chemicke-listy.cz/docs/full/2012_12_1143-1146.pdf

    CAS  Google Scholar 

  373. Saavedra JS, Van der Klei IJ, Keiser I, Pineyro LA, Harder W, Weenhuis M (1992) Studies on the effects of toxin T-514 on the integrity of peroxisomes in methylotrophic yeast. FEMS Microbiol Lett 91:207–212. doi:10.1016/0378-1097(92)90699-O

    Article  Google Scholar 

  374. Guerrero M, Pineyro LA, Waksman TN (1987) Extraction and quantification of toxin from Karwinskia humboldtiana (tulidora). Toxicon 25:565–568

    Article  CAS  PubMed  Google Scholar 

  375. Waksman NT, Santoyo AR, Fernández NR, Pineyro AL (1991) Obtención de un producto de interés farmacológico. I. Busqueda de la feunte mas adecuada de extracción. In: Memorias IX. Encuentro de Investigación Biomédica. Fac. de Medicina, Monterrey, pp 151–153

    Google Scholar 

  376. Lunáčková L, Chrtianska S, Masarovičová E (2001) Some photosynthetic characteristics and chemical composition of Karwinskia parvifolia leaves. Biologia (Bratislava) 56:431–435

    Google Scholar 

  377. Masarovičová E, Lux A (1997) Physiological bases of growth and production in woody plants. Acta Univ Carol Biol, Charles University Prague 41:133–144

    Google Scholar 

  378. Masarovičová E, Welschen R, Lux A, Lambers H, Argalášová K, Brandšteterová E, Čaniová A (2000) Photosynthesis, biomass partitioning and peroxisomicine A1 production of Karwinskia species in response to nitrogen supply. Physiol Plant 108:300–306. doi:10.1034/j.1399-3054.2000.108003300.x

    Article  Google Scholar 

  379. Lujan-Rangel R, Olivares-Saenz E, Vazquez-Alvarado RE, Garza-Ocanas L, Torres-Alanis O, Garza-Ulloa HJ (2012) Intraspecific variability and nitrogen effects on dry fruit yield in Karwinskia parvifolia Rose. Phyton Int J Exp Bot 81:47–253. http://www.revistaphyton.fund-romuloraggio.org.ar/vol81/36-LUJAN-RANGEL.pdf

    Google Scholar 

  380. Zelko I, Lux A (2004) Effect of cadmium on Karwinskia humboldtiana roots. Biologia 59(Suppl 13):205–209

    CAS  Google Scholar 

  381. Meagher RB (2000) Phytoremediation of toxic elemental and organic pollutants. Curr Opin Plant Biol 3:153–162. doi:10.1016/S1369-5266(99)00054-0

    Article  CAS  PubMed  Google Scholar 

  382. Masarovičová E, Kráľová K (2007) Medicinal plants—past, nowadays, future. Acta Hortic 749:19–27

    Article  Google Scholar 

  383. Krämer U (2005) Phytoremediation: novel approaches to cleaning up polluted soils. Curr Opin Biotechnol 16:133–141. doi:10.1016/j.copbio.2005.02.006

    Article  PubMed  CAS  Google Scholar 

  384. Ebbs SD, Kochian LV (1997) Toxicity of zinc and copper to Brassica species: implications for phytoremediation. J Environ Qual 26:776–781. doi:10.2134/jeq 1997.00472425002600030026x

    Article  CAS  Google Scholar 

  385. Guerinot ML, Salt DE (2001) Fortified foods and phytoremediation. Two sides of the same coin. Plant Physiol 125:164–167. http://dx.doi.org/10.1104/pp.125.1.164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  386. Palmgren MG, Clemens S, Williams LE, Krämer U, Borg S, Schjorring JK, Sanders D (2008) Zinc biofortification of cereals: problems and solutions. Trends Plant Sci 13:464–473. doi:10.1016/j.tplants.2008.06.005

    Article  CAS  PubMed  Google Scholar 

  387. Broadley MR, White PJ, Bryson RJ, Meacharn MC, Bowen HC, Johnson SE, Hawkesford MJ, McGrath SP, Zhao FJ, Breward N, Harriman M, Tucker M (2006) Biofortification of UK food crops with selenium. Proc Nutr Soc 65:169–181. doi:10.1079/PNS2006490

    Article  CAS  PubMed  Google Scholar 

  388. Genc Y, Humphries MJ, Lyons GH, Graham RD (2005) Exploiting genotypic variation in plant nutrient accumulation to alleviate micronutrient deficiency in populations. J Trace Elem Med Biol 18:319–324. doi:10.1016/j.jtemb.2005.02.005

    Article  CAS  PubMed  Google Scholar 

  389. Lyons GH, Judson GJ, Ortiz-Monasterio I, Genc Y, Stangoulis JC, Graham RD (2005) Selenium in Australia: selenium status and biofortification of wheat for better health. J Trace Elem Med Biol 19:75–82. doi:10.1016/j.jtemb.2005.04.005

    Article  CAS  PubMed  Google Scholar 

  390. Naderi MR, Danesh-Shahraki A (2013) Nanofertilizers and their roles in sustainable agriculture. Int J Agric Crop Sci 5:2229–2232

    Google Scholar 

  391. Masarovičová E, Kráľová K, Zinjarde SS (2014) Metal nanoparticles in plants. Formation and action. Handbook of plant and crop physiology, 3rd edn. CRC, Taylor and Francis, Boca Raton, pp 683–731. ISBN 978-1-4665-5328-6

    Google Scholar 

  392. Dimkpa CO (2014) Can nanotechnology deliver the promised benefits without negatively impacting soil microbial life? J Basic Microbiol 54:889–904. doi:10.1002/jobm.201400298

    Article  CAS  PubMed  Google Scholar 

  393. Jampílek J, Kráľová K (2017) Nanopesticides: preparation, targeting and controlled release. In: Grumezescu AM (ed) New pesticides and soil sensors, Nanotechnology in the agri-food industry. Academic, London, pp 81–127. ISBN 978-0-12-804299-1

    Google Scholar 

  394. Jampílek J, Kráľová K (2017) Nanopesticides: preparation, targeting and controlled release. In: Grumezescu AM (ed) New Pesticides and Soil Sensors. Nanotechnology in the Agri-Food Industry, Academic Press, Elsevier Inc., London, pp 81–127. ISBN 978-0-12-804299-1

    Google Scholar 

Download references

Acknowledgements

This contribution was financially supported by the Grant Agency VEGA, grant No. 1/0218/14 and code ITMS 26240120004, funded by the ERDF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Masarovičová .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Masarovičová, E., Kráľová, K. (2017). Essential Elements and Toxic Metals in Some Crops, Medicinal Plants, and Trees. In: Ansari, A., Gill, S., Gill, R., R. Lanza, G., Newman, L. (eds) Phytoremediation. Springer, Cham. https://doi.org/10.1007/978-3-319-52381-1_7

Download citation

Publish with us

Policies and ethics