Skip to main content

Musculoskeletal System

  • Chapter
  • First Online:
The Pathophysiologic Basis of Nuclear Medicine

Abstract

Bone is a rigid connective tissue which provides support and protection for the organs and tissues of the body. Certain bones such as the skull, vertebrae, and ribs, marrow cavities serve as sites of blood formation. Bone also has an important function in mineral homeostasis. Scintigraphy plays a crucial role in the diagnosis and management of various skeletal diseases. The expanding use of this imaging modality in the area of benign bone disorders is particularly notable. Knowledge of the pathophysiologic features of the relevant diseases opens the way for effective utilization of different imaging modalities for the diagnosis of many conditions and helps proper interpretation of the studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Mourad LA (1998) structure and function of the musculoskeletal. In: McCane KL, Huether SE (eds) pathophysiology, 3rd edn. Mosby, Philadelphia, pp 1405–1434.

    Google Scholar 

  2. Föger-Samwald U, Dovjak P, Azizi-Semrad U, Kerschan-Schindl K, Pietschmann P (2020) Osteoporosis: pathophysiology and therapeutic options. EXCLI J 19:1017–1037. https://doi.org/10.17179/excli2020-2591

    Article  PubMed  PubMed Central  Google Scholar 

  3. Clarke BL, Khosla S (2010) Physiology of bone loss. Radiol Clin North Am 48:483–495

    Article  PubMed  PubMed Central  Google Scholar 

  4. Pacifici R (2018) Bone remodeling and the microbiome. Cold Spring Harb Perspect Med 2(8):a031203. https://doi.org/10.1101/cshperspect.a031203

    Article  CAS  Google Scholar 

  5. McCabe L, Britton RA, Parameswaran N (2015) Prebiotic and probiotic regulation of bone health: role of the intestine and its microbiome. Curr Osteoporos Rep 13(6):363–371

    Article  PubMed  PubMed Central  Google Scholar 

  6. Watson EC, Adams Ralf H (2018) Biology of bone: the vasculature of the skeletal system. Cold Spring Harb Perspect Med 8:a031559

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Tondevold E, Eliasen P (1982) Blood flow rates in canine cortical and cancellous bone measured with TC 99 m, labeled human albumin microspheres. Acta Orthop Scand 53:7–11

    Article  CAS  PubMed  Google Scholar 

  8. McCarthy EF (1997) Histopathologic correlates of positive bone scan. Semin Nucl Med 27:309–320

    Article  CAS  PubMed  Google Scholar 

  9. Ralston SH (2017) Bone structure and metabolism. Medicine 45(9):560–564

    Article  Google Scholar 

  10. Benova A, Tencerova M (2020) Obesity-induced changes in bone marrow homeostasis. Front Endocrinol 11:294. https://doi.org/10.3389/fendo.2020.00294

  11. Tencerova M, Kassem M (2016) The bone marrow-derived stromal cells: commitment and regulation of adipogenesis. Front Endocrinol 7:127

    Article  Google Scholar 

  12. Muruganandan S, Govindarajan R, Sinal CJ (2018) Bone marrow adipose tissue and skeletal health. Curr Osteopor Rep 16:434–442

    Article  Google Scholar 

  13. Dalinka MK, Aronchick JM, Haddad JG (1983) Paget’s disease. Orthop Clin North Am 4:3–19

    Article  Google Scholar 

  14. Vogler JB, Murphy WA (1988) Bone marrow imaging. Radiology 168:679–693

    Article  PubMed  Google Scholar 

  15. Bonakdar-pour A, Gaines VD (1983) The radiology of osteomyelitis. Orthop Clin North Am 14:21–37

    Article  CAS  PubMed  Google Scholar 

  16. Francis MD, Martodam RR (2018) Chemical, biochemical, and medicinal properties of the diphosphonates. In: The role of phosphonates in living systems. CRC Press, Boca Raton, pp 55–96

    Chapter  Google Scholar 

  17. Francis MD, Slough CL, Tofe AJ, Silberstein EB (1976) Factors affecting uptake and retention of technetium-99 m-diphosphonate and technetium 99 m pertechnetate in osseous, connective and soft tissues. Cacif Tissue Res 20:303–311

    Article  CAS  Google Scholar 

  18. Jaramillo D (2011) Infection: musculoskeletal. Pediatr Radiol 41(suppl 1):S127–S134

    Article  PubMed  Google Scholar 

  19. Arnold SR, Elias D, Buckingham SC, Thomas ED, Novais E, Arkader A, Howard C (2006) Changing patterns of acute hematogenous osteomyelitis and septic arthritis: emergence of community-associated methicillin-resistant Staphylococcus aureus. J Pediatr Orthop 26:703–708

    Article  PubMed  Google Scholar 

  20. Gafur OA, Copley LA, Hollmig ST, Browne RH, Thornton LA, Crawford SE (2008) The impact of the current epidemiology of pediatric musculoskeletal infection on evaluation and treatment guidelines. J Pediatr Orthop 28:777–785

    Article  PubMed  Google Scholar 

  21. Haas DW, McAndrew M (1996) Bacterial osteomyelitis in adults: evolving considerations in diagnosis and treatment. Am J Med 101:550–561

    Article  CAS  PubMed  Google Scholar 

  22. Cierny G, Mader JT, Pennick H (1985) A clinical staging system of adult osteomyelitis. Contemp Orthop 10:17–37

    Google Scholar 

  23. Mandell JC, Khurana B, Smith JT et al (2018) Osteomyelitis of the lower extremity: pathophysiology, imaging, and classification, with an emphasis on diabetic foot infection. Emerg Radiol 25:175–188

    Article  PubMed  Google Scholar 

  24. Hofstee et al (2020) Current concepts of osteomyelitis from pathologic mechanisms to advanced research methods. Am J Pathol 190:1151–1163. https://doi.org/10.1016/j.ajpath.2020.02.007

    Article  CAS  PubMed  Google Scholar 

  25. Calhoun JH, Manring MM (2005) Adult osteomyelitis. Infect Dis Clin North Am 19(4):765–786

    Article  PubMed  Google Scholar 

  26. Torda AJ, Gottlieb T, Bradbury R (1995) Pyogenic vertebral osteomyelitis: analysis of 20 cases and review. Clin Infect Dis 20:320–328

    Article  CAS  PubMed  Google Scholar 

  27. Song KS, Ogden JA, Ganey T, Guidera KT (1997) Contiguous discitis and osteomyelitis in children. J Pediatr Orthop 17:470–477

    Article  CAS  PubMed  Google Scholar 

  28. Babinchak TJ, Riley DK, Rotheram EB (1997) Pyogenic vertebral osteomyelitis of the posterior elements. Clin Infect Dis 25:221–224

    Article  CAS  PubMed  Google Scholar 

  29. Lipsky BA, Berendt AR, Cornia PB, Pile JC, Peters EJ, Armstrong DG et al (2012) Infectious Diseases Society of America clinical practice guideline for the diagnosis and treatment of diabetic foot infections. Clin Infect Dis 54(12):e132–e173

    Article  PubMed  Google Scholar 

  30. Jaramillo D, Dormans JP, Delgado J, Laor T, St Geme III, J. W. (2017) Hematogenous osteomyelitis in infants and children: imaging of a changing disease. Radiology 283:629–643

    Article  PubMed  Google Scholar 

  31. Schwartz GS, Berenyi MR, Siegel MW (1969) Atrophic arthropathy and diabetic neuritis. Am J Roentgenol Radium Ther Nucl Med 106:523–529

    Article  Google Scholar 

  32. Lee YJ, Sadigh S, Mankad K, Kapse N, Rajeswaran G (2016) The imaging of osteomyelitis. Quant Imaging Med Surg 6(2):184–198

    Article  PubMed  PubMed Central  Google Scholar 

  33. Arıcan P, Okudan B, Şefizade R, Naldöken S (2019) Diagnostic value of bone SPECT/CT in patients with suspected osteomyelitis. Mol Imaging Radionucl Ther 28:89–95

    Article  PubMed  PubMed Central  Google Scholar 

  34. Elgazzar AH, Abdel-Dayem HM (1999) Imaging skeletal infections: evolving considerations. In: Feeman LM (ed) Nuclear medicine annual. Lippincott/Williams and Wilkins, Philadelphia, pp 157–191

    Google Scholar 

  35. Elgazzar AH, Abdel-Dayem HM, Clark J, Maxon HR (1995) Multimodality imaging of osteomyelitis. Eur J Nucl Med 22:1043–1063

    Article  CAS  PubMed  Google Scholar 

  36. Issa K, Diebo BG, Faloon M, Naziri Q, Pourtaheri S, Paulino CB, Emami A (2018) The epidemiology of vertebral osteomyelitis in the United States from 1998 to 2013. Clin Spine Surg 31(2):E102–E108

    Article  PubMed  Google Scholar 

  37. Mete B, Kurt C, Yilmaz MH, Ertan G, Ozaras R, Mert A, Tabak F, Ozturk R (2012) Vertebral osteomyelitis: eight years’ experience of 100 cases. Rheumatol Int 32:3591–3597

    Article  PubMed  Google Scholar 

  38. Zimmerli W (2010) Clinical practice. Vertebral osteomyelitis. N Engl J Med 362(11):1022–1029

    Article  CAS  PubMed  Google Scholar 

  39. Batson OV (1967) The vertebral system of veins as a means for cancer dissemination. Prog Clin Cancer 3:1–18

    CAS  PubMed  Google Scholar 

  40. Bamberger DM, Daus GP, Gerding DN (1987) Osteomyelitis in the feet of diabetic patients: long term results, prognostic factors, and the role of antimicrobial and surgical therapy. Am J Med 83:653–660

    Article  CAS  PubMed  Google Scholar 

  41. Schwartz GS, Berenyi MR, Siegel MW (1969) Atrophic arthropathy and diabetic neuritis. Am J Roentgenol Radium TherNucl Med 106:523–529

    Article  Google Scholar 

  42. Horwitz SH (1993) Diabetic neuropathy. Clin Orthop 296:78–85

    Google Scholar 

  43. Gold RH, Tang DTF, Crim JR, Seeger LL (1995) Imaging the diabetic foot. Skeletal Radiol 24:563–571

    Article  CAS  PubMed  Google Scholar 

  44. Giurato L, Meloni M, Izzo V, Uccioli L (2017) Osteomyelitis in diabetic foot: a comprehensive overview. World J Diabetes 8:135–142

    Article  PubMed  PubMed Central  Google Scholar 

  45. Malhotra R, Chan CS-Y, Nather A (2014) Osteomyelitis in the diabetic foot. Diabetic Foot Ankle 5:24445

    Article  Google Scholar 

  46. Mandell GA (1996) Imaging in the diagnosis of musculoskeletal infections in children. Curr Probl Pediatr 26:218–237

    Article  CAS  PubMed  Google Scholar 

  47. Rand JA (1995) Preoperative planning for total knee arthroplasty. In: Callaghan JJ, Dennis DA, Paprosky WG, Rosenberg AG (eds) Orthopedic knowledge update. Hip and knee reconstruction. American Academy of Orthopedic Surgeons, Rosemont

    Google Scholar 

  48. American Academy of Orthopaedic Surgeons (1995) Proceedings of the American Academy of Orthopaedic Surgeons. AAOS, Rosemont, pp 255–263

    Google Scholar 

  49. Griffiths HJ (1995) Orthopedic complications. Radiol Clin North Am 33:401–410

    Article  CAS  PubMed  Google Scholar 

  50. Seabald JE, Nepola JV (1999) Imaging techniques for evaluation of postoperative orthopedic infections. Q J Nucl Med 43:21–28

    Google Scholar 

  51. Harris WH, Sledge CB (1990) Total hip and total knee replacement (part I). N Engl J Med 323:725–731

    Article  CAS  PubMed  Google Scholar 

  52. Johnson JA, Christle MJ, Sandler MP, Parks PF Jr, Horma L, Kayle JJ (1988) Detection of occult infection following total joint arthroplasty using sequential technetium-99 m HDP bone scintigraphy and Indium-111 WBC imaging. J Nucl Med 29:1347–1353

    CAS  PubMed  Google Scholar 

  53. Hendrix RW, Anderson TM (1981) Arthrographic and radiologic evaluation of prosthetic joints. Radiol Clin North Am 19:349–364

    Article  CAS  PubMed  Google Scholar 

  54. Griffiths HJ, Lovelock JE, Evarts CM (1984) The radiology of total hip replacement. Skeletal Radiol 12:1–11

    Article  CAS  PubMed  Google Scholar 

  55. Calvo C, Núñez E, Camacho M, Clemente D, Fernández-Cooke E et al (2001) Epidemiology and management of acute, uncomplicated septic arthritis and osteomyelitis. Pediatr Infect Dis J 35:1288–1293

    Article  Google Scholar 

  56. Manz N, Krieg AH, Heininger U, Ritz N et al (2018) Evaluation of the current use of imaging modalities and pathogen detection in children with acute osteomyelitis and septic arthritis. Eur J Pediatr 177:1071–1080

    Article  PubMed  Google Scholar 

  57. Barton LL, Dunkle LM, Habib FH (1987) Septic arthritis in childhood: a 13-year review. Am J Dis Child 141:898–900

    Article  CAS  PubMed  Google Scholar 

  58. Mathews CJ, Weston VC, Jones A, Field M, Coakley G (2012) Bacterial septic arthritis in adults. Lancet 375(9717):846–855

    Article  Google Scholar 

  59. Silberstein EB, Elgazzar AH, Fernandez-Uloa M, Nishiyama H (1996) Skeletal scintigraphy in non-neoplastic osseous disorders. In: Henkin RE, Bles MA, Dillehay GL, Halama JR, Karesh SM, Wagner PH, Zimmer AM (eds) Textbook of nuclear medicine. Mosby, New York, pp 1141–1197

    Google Scholar 

  60. Hofmann SR, Schnabel A, Rösen-Wolff A, Morbach H, Girschick HH, Hedrich CM (2016) Chronic nonbacterial osteomyelitis: pathophysiological concepts and current treatment strategies. J Rheumatol 43:1956–1964. https://doi.org/10.3899/jrheum.160256]

    Article  CAS  PubMed  Google Scholar 

  61. Waldvogel FA, Medoff G, Swartz MN (1970) Osteomyelitis: a review of clinical features, therapeutic considerations and unusual aspects, part I. N Engl J Med 282:198–206

    Article  CAS  PubMed  Google Scholar 

  62. Paliwal AK, Sahdev R, Deshwal A, Ram B (2021) Role of ultrasound in the diagnosis of paediatric acute osteomyelitis. J Ultrasonogr 21(84):34

    Article  Google Scholar 

  63. Llewellyn A, Jones-Diette J, Kraft J, Holton C, Harden M, Simmonds M (2019) Imaging tests for the detection of osteomyelitis: a systematic review. Health Technol Assess 23:1–128

    Article  PubMed  PubMed Central  Google Scholar 

  64. Kan JH, Hilmes MA, Martus JE, Yu C, Hernanz-Schulman M (2008) Value of MRI after recent diagnostic or surgical intervention in children with suspected osteomyelitis. AJR Am J Roentgenol 191:1595–1600

    Article  PubMed  Google Scholar 

  65. Liu C, Bayer A, Cosgrove SE, Daum RS, Fridkin SK et al (2011) Clinical practice guidelines by the infectious diseases society of america for the treatment of methicillin-resistant Staphylococcus aureus infections in adults and children: executive summary. Clin Infect Dis. 52:285–292. https://doi.org/10.1093/cid/cir034. PMID: 21217178

    Article  PubMed  Google Scholar 

  66. Hatzenbuehler J, Pulling TJ (2011) Diagnosis and management of osteomyelitis. Am Fam Physician 84:1027–1033

    PubMed  Google Scholar 

  67. Glaudemans AWJM, Jutte PC, Cataldo MA et al (2019) Consensus document for the diagnosis of peripheral bone infection in adults: a joint paper by the EANM, EBJIS, and ESR (with ESCMID endorsement). Eur J Nucl Med Mol Imaging 46:957–970

    Article  PubMed  PubMed Central  Google Scholar 

  68. Handmaker H, Leonards R (1976) The bone scan in inflammatory osseous disease. Semin Nucl Med 6:95–105

    Article  CAS  PubMed  Google Scholar 

  69. Connolly LP, Connolly SA, Drubach LA, Jaramillo D, Treves ST (2002) Acute hematogenous osteomyelitis of children: assessment of skeletal scintigraphy-based diagnosis in the era of MRI. J Nucl Med 43:1310–1316

    PubMed  Google Scholar 

  70. Tuson GE, Hoffman EB, Mann MD (1994) Isotope bone scanning for acute osteomyelitis and septic arthritis in children. J Bone Joint Surg [Br] 76B:306–310

    Article  Google Scholar 

  71. Handmaker H, Giammona ST (1984) Improved early diagnosis of acute inflammatory skeletal – articular diseases in children: a two radiopharmaceutical approach. Pediatrics 73:661–669

    CAS  PubMed  Google Scholar 

  72. Sfakianakis GN, Scoles P, Welch M et al (1978) Evolution of the bone imaging findings in osteomyelitis. J Nucl Med 19:706

    Google Scholar 

  73. Pennington WT, Mott MP, Thometz JG, Sty JR, Metz D (1999) Photopenic bone scan osteomyelitis: a clinical perspective. J PediatrOrthop 19:695–698

    CAS  Google Scholar 

  74. Lauri C, Tamminga M, Glaudemans AW, Orozco LEJ, Erba PA, Jutte PC et al (2017) Detection of osteomyelitis in the diabetic foot by imaging techniques: a systematic review and meta-analysis comparing MRI, white blood cell scintigraphy, and FDG-PET. Diabetes Care 40(8):1111–1120

    Article  PubMed  Google Scholar 

  75. Grerand S, Dolan M, Laing P, Bird M, Smith ML, Klenerman L (1996) Diagnosis of osteomyelitis in neuropathic foot ulcers. J Bone Joint Surg [Br] 78B:51–55

    Article  Google Scholar 

  76. Ezuddin S, Yuille D, Spiegelhoff D (1992) The role of dual bone and WBC scan imaging in the evaluation of osteomyelitis and cellulitis using both planar and SPECT imaging. J Nucl Med 33:839

    Google Scholar 

  77. Johnson JE, Kennedy EJ, Shereff MJ, Patel NC, Collier BD (1996) Prospective study of bone, In-111 labeled white blood cell and gallium scanning for the evaluation of osteomyelitis in the diabetic foot. Foot Ankle Int 17:10–16

    Article  CAS  PubMed  Google Scholar 

  78. Hakki S, Harwood SJ, Morrissey MA et al (1997) Comparative study of monoclonal antibody scan in diagnosing orthopedic infection. Clin Orthop 335:275–285

    Article  Google Scholar 

  79. Plate A, Weichselbaumer V, Schüpbach R, Fucentese SF, Berli M, Hüllner M, Achermann Y (2020) Diagnostic accuracy of 99mTc-antigranulocyte SPECT/CT in patients with osteomyelitis and orthopaedic device-related infections: a retrospective analysis. Int J Infect Dis 91:79–86

    Article  CAS  PubMed  Google Scholar 

  80. Loessel C, Mai A, Starke M, Vogt D, Stichling M, Willy C (2021) Value of antigranulocyte scintigraphy with Tc-99m-sulesomab in diagnosing combat-related infections of the musculoskeletal system. BMJ Mil Health 167:8–17

    Article  PubMed  Google Scholar 

  81. Koort J, Makinen TJ et al (2004) Comparative 18F-FDG PET of experimental S. aureus osteomyelitis and normal bone healing. J Nucl Med 45:1406–1411

    PubMed  Google Scholar 

  82. Kumar V, Boddeti DK (2013) (68)Ga-radiopharmaceuticals for PET imaging of infection and inflammation. Recent Results Cancer Res 194:189–219

    Article  CAS  PubMed  Google Scholar 

  83. Lipsky BA, Aragon‐Sanchez J, Diggle M et al (2016) IWGDF guidance on the diagnosis and management of foot infections in persons with diabetes. Diabetes Metab Res Rev 32(suppl 1):S45–S74

    Article  Google Scholar 

  84. Newman LG, Waller J, Palestro CJ, Schwantz M, Klein MJ, Hermann G, Harrington E, Harrington M, Roman SH, Stagnaro-Green A (1991) Unsuspected osteomyelitis in diabetic foot ulcers: diagnosis and monitoring by leukocyte scanning with In-111 oxyquinoline. JAMA 266:1246–1251

    Article  CAS  PubMed  Google Scholar 

  85. Palestro CJ, Mehta HH, Patel M, Freeman SJ, Harrington WN, Tomas MB, Marwin SE (1998) Marrow versus infection in Charcot joint: indium-111 leukocyte and technetium 99 m sulfur colloid scintigraphy. J Nucl Med 39:349–350

    Google Scholar 

  86. Tailji S, Yacoub TY, Abdella N, Albunni A, Mahmoud A, Doza B, Loutfi I, Al-Za’abi K, Heiba S, Elgazzar A (1999) Optimization of simultaneous dual In-111 labeled leukocytes (WK)and Tc-99 m MDP bone scans in diabetic foot. Eur J Nucl Med 26:1201

    Google Scholar 

  87. Poirier JY, Garin E, Derrien C, Devillers A, Moisan A, Bourguet P, Maugendre D (2002) Diagnosis of osteomyelitis in the diabetic foot with a 99mTc-HMPAO leucocyte scintigraphy combined with a 99mTc-MDP bone scintigraphy. Diabetes Metab 28:485–490

    CAS  PubMed  Google Scholar 

  88. Erdman WA, Buethe J, Bhore R, Ghayee HK, Thompson C, Maewal P, Anderson J, Klemow S, Oz OK (2012) Indexing severity of diabetic foot infection with 99mTc-WBC SPECT/CT hybrid imaging. Diabetes Care 35:1826–1831

    Article  PubMed  PubMed Central  Google Scholar 

  89. Heiba S, Kolker D, Ong L, Sharma S, Travis A, Teodorescu V, Ellozy S, Kostakoglu L, Savitch I, Machac J (2013) Dual-isotope SPECT/CT impact on hospitalized patients with suspected diabetic foot infection: saving limbs, lives, and resources. Nucl Med Commun 34:877–884

    Article  PubMed  Google Scholar 

  90. Filippi L, Uccioli L, Giurato L, Schillaci O (2009) Diabetic foot infection: usefulness of SPECT/CT for 99mTc-HMPAO-labeled leukocyte imaging. J Nucl Med 50(7):1042–1046

    Article  PubMed  Google Scholar 

  91. Newman LG, Waller J, Palestro CJ, Hermann G, Klein MJ, Schwatrz M, Harrington E et al (1992) Leukocyte scanning with 111-In is superior to magnetic resonance imaging in diagnosis of clinically unsuspected osteomyelitis in diabetic foot ulcers. Diabetes Care 15:1527–1530

    Article  CAS  PubMed  Google Scholar 

  92. Cook TA, Rahim N, Simpson HC, Galland RB (1996) Magnetic resonance imaging in the management of diabetic foot infection. Br J Surg 83:245–248

    CAS  PubMed  Google Scholar 

  93. Morrison W, Schweitzer ME, Wapner KL, Hecht PJ, Gannon FH, Behm WR (1995) Osteomyelitis in diabetics: clinical accuracy, surgical utility and cost effectiveness of MR imaging. Radiology 196:557–564

    Article  CAS  PubMed  Google Scholar 

  94. Beltran J, Campanini DS, Knight C, McCalla M (1990) The diabetic foot: magnetic resonance imaging. Skeletal Radiol 19:37–41

    Article  CAS  PubMed  Google Scholar 

  95. Lauri C, Tamminga M, Glaudemans AWJM et al (2017) Detection of osteomyelitis in the diabetic foot by imaging techniques: a systematic review and meta-analysis comparing MRI, white blood cell Scintigraphy, and FDG-PET. Diabetes Care 40:1111–1120

    Article  PubMed  Google Scholar 

  96. Nickerson EK, Sinha R (2016) Vertebral osteomyelitis in adults: an update. Br Med Bull 117:121–138

    Article  PubMed  Google Scholar 

  97. Modic M, Palestro CJ, Love C, Miller TT (2006) Infection and musculoskeletal conditions: imaging of musculoskeletal infections. Best Pract Res Clin Rheumatol. 20:1197–1218

    Article  Google Scholar 

  98. Duarte RM, Vaccaro AR (2013) Spinal infection: state of the art and management algorithm. Eur Spine J 22:2787–2799

    Article  PubMed  PubMed Central  Google Scholar 

  99. Cassar-Pullicino VN (2004) MR imaging of spinal infection. Semin Musculoskelet Radiol 8:215–229

    Article  PubMed  Google Scholar 

  100. Quinn SF, Murray W, Clark RA (1988) MR imaging of chronic osteomyelitis. J Comput Assist Tomogr 12:113–117

    Article  CAS  PubMed  Google Scholar 

  101. Cahill DW, Love LC, Rechtine GR (1991) Pyogenic osteomyelitis of the spine in the elderly. J Neurosurg 74:878–886

    Article  CAS  PubMed  Google Scholar 

  102. Kouijzer IJ, Scheper H, De Rooy JW, Bloem JL, Janssen MJ, van Den Hoven L et al (2018) The diagnostic value of 18 F–FDG-PET/CT and MRI in suspected vertebral osteomyelitis–a prospective study. Eur J Nucl Med Mol Imaging 45(5):798–805

    Article  CAS  PubMed  Google Scholar 

  103. Love C, Petel M, Lonner BS, Tomas MB, Palestro CJ (2000) Diagnosing spinal osteomyelitis: a comparison of bone and Ga-67 scintigraphy and magnetic resonance imaging. Clin Nucl Med 25:963–977

    Article  CAS  PubMed  Google Scholar 

  104. Love C, Palestro CJ (2016) Nuclear medicine imaging of bone infections. Clin Radiol 71:632–646

    Article  CAS  PubMed  Google Scholar 

  105. Tamm AS (2017) Bone and gallium single photon emission computed tomography computed tomography is equivalent to magnetic resonance imaging in the diagnosis of infectious spondylodiscitis: a retrospective study. Can J Radiol 68:41–46

    Article  Google Scholar 

  106. Schlaeffer F, Mikolich DJ, Mates SM (1987) Technetium-99m diphosphonate bone scan. False-normal findings in elderly patients with hematogenous vertebral osteomyelitis. Arch Intern Med 147:2024–2026

    Article  CAS  PubMed  Google Scholar 

  107. Palestro CJ, Kim CK, Swyer A et al (1991) Radionuclide diagnosis of vertebral osteomyelitis: indium-111-leukocyte and technetium-99m-methylene diphosphonate bone scintigraphy. J Nucl Med 32:1861–1865

    CAS  PubMed  Google Scholar 

  108. Whalen IL, Brown ML, McLeod R et al (1991) Limitations of indium leukocyte imaging for the diagnosis of spine infections. Spine 16:193–197

    CAS  PubMed  Google Scholar 

  109. Fernandez-Ulloa M, Vasavada PJ, Hanslits MJ et al (1985) Vertebral osteomyelitis imaging with In-111 labeled white blood cells and Tc-99m bone scintigrams. Orthopedics 8:1144–1150

    Article  CAS  PubMed  Google Scholar 

  110. Dannoon SF, Al-Fouzan W, Alenezi SA, Alosaimi A, Alhusain M, Elgazzar AH (2019) Effect of causative micro-organisms on patterns of labeled white blood cells in osteomyelitis. Indian J Nucl Med 34:27–31

    Article  PubMed  PubMed Central  Google Scholar 

  111. Stumpe KDM, Zanetti M, Weishaupt D, Hodler J, Boos N, Schulthess GK (2002) FDG positron emission tomography for differentiation of degenerative and infectious end plate abnormalities in the lumbar spine detected on MR imaging. AJR Am J Roentgenol 179:1151–1157

    Article  PubMed  Google Scholar 

  112. Gemmel F, Dumarey N, Palestro CJ (2006) Radionuclide imaging of spinal infections. Eur J Nucl Med Mol Imaging 33:1226–1237

    Article  PubMed  Google Scholar 

  113. Palestro CJ (2016) Radionuclide imaging of musculoskeletal infection: a review. J Nucl Med 57:1406–1412

    Article  CAS  PubMed  Google Scholar 

  114. Seifen T, Rettenbacher L, Thaler C, Holzmannhofer J, Mc Coy M, Pirich C (2012) Prolonged back pain attributed to suspected spondylodiscitis: the value of 18F-FDG PET/CT imaging in the diagnostic work-up of patients. Nuklearmedizin 51:194–200

    Article  CAS  PubMed  Google Scholar 

  115. Fuster D, Tomás X, Mayoral M et al (2015) Prospective comparison of whole-body 18F-FDG PET/CT and MRI of the spine in the diagnosis of haematogenous spondylodiscitis. Eur J Nucl Med Mol Imaging 42:264–271

    Article  CAS  PubMed  Google Scholar 

  116. Ioannou S, Chatziioannou S, Pneumaticos SG, Zormpala A, Sipsas NV (2013) Fluorine-18 fluoro2-deoxy-D-glucose positron emission tomography/computed tomography scan contributes to the diagnosis and management of brucellar spondylodiskitis. BMC Infect Dis 13:73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Riccio SA, Chu AKM, Rabin HR, Kloiber R (2015) Fluorodeoxyglucose positron emission tomography/computed tomography interpretation criteria for assessment of antibiotic treatment response in pyogenic spine infection. Can Assoc Radiol J 66:145–152

    Article  PubMed  Google Scholar 

  118. Skanjeti A, Penna D, Douroukas A et al (2012) PET in the clinical work-up of patients with spondylodiscitis: a new tool for the clinician? Q J Nucl Med Mol Imaging 6:569–570

    Google Scholar 

  119. Tumeh SS, Aliabadi P, Weissman BN, McNeil BJ (1986) Chronic osteomyelitis: bone and gallium scan patterns associated with active disease. Radiology 158:685–688

    Article  CAS  PubMed  Google Scholar 

  120. Tumeh SS, Tohmeh AG (1991) Nuclear medicine techniques in septic arthritis and osteomyelitis. Rheum Dis Clin North Am 17:559–583

    Article  CAS  PubMed  Google Scholar 

  121. Krznaric E, De Roo M, Verbruggen A, Stuyck J, Mortelinans L (1996) Chronic osteomyelitis: diagnosis with technetium 99 m d,1-hexamethylpropelene amine oxime labeled leukocytes. Eur J Nucl Med 23:792–797

    Article  CAS  PubMed  Google Scholar 

  122. Demirev A, Weijers R, Geurts J, Mottaghy F, Walenkamp G, Brans B (2014) Comparison of [18 F] FDG PET/CT and MRI in the diagnosis of active osteomyelitis. Skeletal Radiol 43(5):665–672

    Article  PubMed  Google Scholar 

  123. Sciuk J, Brandau W, Vollet B, Stucker R, Erlemann R, Bartenstein P et al (1991) Comparison of technetium-99 m polyclonal human immunoglobulin and technetium-99 m monoclonal antibodies for imaging chronic osteomyelitis. Eur J Nucl Med 18:401–407

    Article  CAS  PubMed  Google Scholar 

  124. Lankinen P, Seppänen M, Mattila K, Kallajoki M, Knuuti J, Aro HT (2017) Intensity of 18F-FDG PET uptake in culture-negative and culture-positive cases of chronic osteomyelitis. Contrast Media Mol Imaging 2017:9754293

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Basu S, Chryssikos T, Houseni M, Malay DS, Shah JH, Zhuang M et al (2007) Potential role of FDG PET in the setting of diabetic neuro-osteoarthropathy: can it differentiate uncomplicated Charcot’s neuroarthropathy from osteomyelitis and soft-tissue infection? Nucl Med Commun 28:465–472

    Article  PubMed  Google Scholar 

  126. Guhlmann A, Brecht-Krauss D, Sugar G, Glatting G, Kotzerke J, Kinzi L, Reske SN (1998) Chronic osteomyelitis: detection with FDG PET and correlation with histopathologic findings. Radiology 206:749–753

    Article  CAS  PubMed  Google Scholar 

  127. Zhuang HM, Duarte PS, Poudehnad M et al (2000) The exclusion chronic osteomyelitis with F-18 fluorodeoxyglucose positron tomography imaging. Clin Nucl Med 25:281–284

    Article  CAS  PubMed  Google Scholar 

  128. De Winter F, Dierckx R, De Bondt P et al (2000) FDG PET as a single technique is more accurate than the combination bone scan/white blood cell scan in chronic orthopedic infection (COI). J Nucl Med 41:59 (Abstract)

    Google Scholar 

  129. Love C, Tomas MB, Marwin SE, Pugliese PV, Palestro CHF (2001) Role of nuclear medicine in diagnosis of the infected joint replacement. Radiographics 21:1229–1238

    Article  CAS  PubMed  Google Scholar 

  130. Oswald SG, VanNostrand D, Savory CG, Callaghan JJ (1989) Three phase bone scan and indium white blood cell scintigraphy following porous-coated hip arthroplasty: a prospective study of the prosthetic hip. J Nucl Med 30:1321–1331

    CAS  PubMed  Google Scholar 

  131. Oswald SG, VanNostrand D, Savory CG, Anderson JH, Callghan JJ (1990) The acetabulum: a prospective study of three-phase bone and indium white blood cell scintigraphy following porous coated hip arthroplasty. J Nucl Med 31:274–280

    CAS  PubMed  Google Scholar 

  132. Rosenthal L, Lepantp L, Raymond F (1987) Radiophosphate uptake in asymptomatic knee arthroplasty. J Nucl Med 28:1546–1549

    Google Scholar 

  133. Seabold JE, Nepola JV, Marsh JL et al (1991) Postoperative bone marrow alterations: potential pitfalls in the diagnosis of osteomyelitis with In-111-labeled leukocyte scintigraphy. Radiology 180:741–747

    Article  CAS  PubMed  Google Scholar 

  134. Palestro CJ (2015) Radionuclide imaging of osteomyelitis. Semin Nucl Med 45:32–46

    Article  PubMed  Google Scholar 

  135. van der Bruggen W, Bleeker-Rovers CP, Boerman OC, Gotthardt M, Oyen WJ (2010) PET and SPECT in osteomyelitis and prosthetic bone and joint infections: a systematic review. Semin Nucl Med 40:3–15

    Article  PubMed  Google Scholar 

  136. Mariani G, Bruselli L, Kuwert T, Kim EE, Flotats A, Israel O, Dondi M, Watanabe N (2010) A review on the clinical uses of SPECT/CT. Eur J Nucl Med Mol Imaging 37:1959–1985

    Article  PubMed  Google Scholar 

  137. Oyen WJG, VanHorn JR, Claessens RAMJ, Slooff JJH, Van der Meer JWM, Corstens HM (1992) Diagnosis of bone, joint and joint prosthesis infections with In-111-labeled nonspecific human immunoglobulin G scintigraphy. Radiology 182:195–199

    Article  CAS  PubMed  Google Scholar 

  138. Lorberboym M, Feldbrin Z, Hendel D, Blankenberg FG, Schachter P (2009) The use of 99mTc-recombinant human annexin V imaging for differential diagnosis of aseptic loosening and low-grade infection in hip and knee prostheses. J Nucl Med 50:534–537

    Article  PubMed  Google Scholar 

  139. Zhuang H, Durate PS, Pourdehnad M et al (2001) The promising role of F-18-FDG PET in detecting infected lower limb prosthesis implants. J Nucl Med 42:44–48

    CAS  PubMed  Google Scholar 

  140. Chacko TK, Zhuang H, Stevenson K, Moussavian B, Alavi A (2002) The influence of the location of fluodeoxyglucose uptake in periprosthetic infection in painful; hip prosthesis. Nucl Med Commun 23:851–855

    Article  CAS  PubMed  Google Scholar 

  141. Palestro CJ (2013) FDG PET in musculoskeletal infections. Semin Nucl Med 43:367–376

    Article  PubMed  Google Scholar 

  142. Tseng JR, Chang YH, Yang LY et al (2019) Potential usefulness of 68Ga-citrate PET/CT in detecting infected lower limb prostheses. EJNMMI Res 9:2. https://doi.org/10.1186/s13550-018-0468-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Yaddanapudi K, Matthews R, Brunetti V, Martin B, Franceschi D (2017) PET-MRI in diagnosing pedal osteomyelitis in diabetic patients. J Nucl Med 56:307

    Google Scholar 

  144. Mitea C, van de Weijer T, van de Meer L, Jacobi L, Loeffen D, Hulsen D, Moonen R (2020) Imaging of osteomyelitis with FDG PET-MR. Infection 5:6

    Google Scholar 

  145. Amunden TR, Siegel MJ, Siegel BA (1984) Osteomyelitis and infarction in sickle cell hemoglobinopathies: differentiation by combined technetium and gallium scintigraphy. Radiology 153:807–812

    Article  Google Scholar 

  146. Van Kroonenburgh AMJL, Van der Meer WL, Bothof RJP, Van Tilburg M, Van Tongeren J, Postma AA (2018) Advanced imaging techniques in skull base osteomyelitis due to malignant otitis externa. Curr Radiol Rep 6(1):1–14

    Google Scholar 

  147. Shavit S, Bernstine H, Sopov V, Nageris B, Hilly O (2019) FDG-PET/CT for diagnosis and follow-up of necrotizing (malignant) external otitis. Laryngoscope 129(4):961–966

    Article  CAS  Google Scholar 

  148. Porrino J, Richardson ML, Flaherty E, Albahhar M, Ha AS, Mulcahy H, Chew FS (2019) Septic arthritis and joint aspiration: the radiologist’s role in image-guided aspiration for suspected septic arthritis. Semin Roentgenol 54:177–189

    Article  PubMed  Google Scholar 

  149. Jaramillo D, Treves ST, Kasser JR, Harper M, Sundel R, Laor T (1995) Osteomyelitis and septic arthritis in children. Appropriate use of imaging to guide treatment. AJR Am J Roentgenol 165:399–403

    Article  CAS  PubMed  Google Scholar 

  150. Sundberg SB, Savage JP, Foster BK (1989) Technetium phosphate bone scan in the diagnosis of septic arthritis in childhood. J PediatrOrthop 9:579–585

    CAS  Google Scholar 

  151. Zhao Y, Ferguson PJ (2018) Chronic nonbacterial osteomyelitis and chronic recurrent multifocal osteomyelitis in children. Pediatr Clin 65:783–800

    Google Scholar 

  152. Buch K, Thuesen ACB, Brøns C, Schwarz P (2019) Chronic non-bacterial osteomyelitis: a review. Calcif Tissue Int 104:544–553

    Article  CAS  PubMed  Google Scholar 

  153. Hedrich CM, Morbach H, Reiser C, Girschick HJ (2020) New insights into adult and paediatric chronic non-bacterial osteomyelitis CNO. Curr Rheumatol Rep 22:1–11

    Article  Google Scholar 

  154. Khanna G, Sato TS, Ferguson P (2009) Imaging of chronic recurrent multifocal osteomyelitis. Radiographics. 29:1159–1177

    Article  PubMed  Google Scholar 

  155. Gicchino MF, Diplomatico M, Granato C, Capalbo D, Marzuillo P, Olivieri AN, Miraglia Del Giudice E (2018) Chronic recurrent multifocal osteomyelitis: a case report. Ital J Pediatr 44:26. https://doi.org/10.1186/s13052-018-0463-3. PMID: 29454377; PMCID: PMC5816363

    Article  PubMed  PubMed Central  Google Scholar 

  156. Bahk YW, Chung SK, Kim SH et al (1992) Pinhole scintigraphic manifestations of sternoclavicular hyperostosis: report of a case. Korean J Nucl Med 26:155–159

    Google Scholar 

  157. Shandilya R, Gadre KS, Sharma J, Joshi P (2013) Infantile cortical hyperostosis (Caffey disease): a case report and review of the literature--where are we after 70 years? J Oral Maxillofac Surg 71:1195–1201

    Article  PubMed  Google Scholar 

  158. Handmaker H, Kamoun-Goldrat A, le Merrer M (2008) Infantile cortical hyperostosis (Caffey disease): a review. J Oral Maxillofac Surg 66:2145–2150

    Article  Google Scholar 

  159. Nouri A, Walmsley D, Pruszczynski B, Synder M (2014) Transient synovitis of the hip: a comprehensive review. J Pediatr Orthop B. 23:32–36

    Article  PubMed  Google Scholar 

  160. Sawyer JR, Kapoor M (2009) The limping child: a systemic approach to diagnosis. Am Fam Physician 79:215–224

    PubMed  Google Scholar 

  161. Kang MS, Jeon JY, Park S-S (2020) Differential MRI findings of transient synovitis of the hip in children when septic arthritis is suspected according to symptom duration. J Pediatr Orthop B 29:297–303

    Article  PubMed  Google Scholar 

  162. Mc Affe JG, Roba RC, Majid M (1995) The musculoskeletal system. In: Wagner HN (ed) Principles of nuclear medicine, 2nd edn. Saunders, Philadelphia, pp 986–1020

    Google Scholar 

  163. Graham J, Wood SK (1976) Aseptic necrosis of bone following trauma. In: Davidson JK (ed) Aseptic necrosis of bone. Excerpta Medica, Amsterdam, p 101

    Google Scholar 

  164. Achar S, Yamanaka J (2019) Apophysitis and osteochondrosis: common causes of pain in growing bones. Am Fam Physician 99(10):610–618

    PubMed  Google Scholar 

  165. Murphey MD, Foreman KL, Klassen-Fischer MK, Fox MG, Chung EM, Kransdorf MJ (2014) From the radiologic pathology archives imaging of osteonecrosis: radiologic-pathologic correlation. Radiographics 34:1003–1028

    Article  PubMed  Google Scholar 

  166. Agrawal K, Tripathy SK, Sen RK, Santhosh S, Bhattacharya A (2017) Nuclear medicine imaging in osteonecrosis of hip: old and current concepts. World J Orthop 8(10):747–753. https://doi.org/10.5312/wjo.v8.i10.747]

    Article  PubMed  PubMed Central  Google Scholar 

  167. Resnick D (1989) Bone and joint imaging. Saunders, Philadelphia, pp 979–999

    Google Scholar 

  168. Laine JC, Martin BD, Novotny SA, Kelly DM (2018) Role of advanced imaging in the diagnosis and management of active Legg-Calve-Perthes disease. J Am Acad Orthop Surg 26(15):526–536

    Article  PubMed  Google Scholar 

  169. de Sanctis N, Rondinella F (2000) Prognostic evaluation of Legg-Calvé-Perthes disease by MRI. Part II: pathomorphogenesis and new classification. J PediatrOrthop 20:463–470

    Google Scholar 

  170. Fragniere B, Chotel F, Vargas Barreto B, Berard J (2001) The value of early postoperative bone scan in slipped capital femoral epiphysis. J PediatrOrthop B 10:51–55

    CAS  Google Scholar 

  171. Conway JJ (1993) A scintigraphic classification of Legg-Calve-Perthes disease. Semin Nucl Med 23:274–295

    Article  CAS  PubMed  Google Scholar 

  172. Tsao AK, Dias LS, Conway JJ, Straka P (1997) The prognostic value and significance of serial bone scintigraphy in Legg-Calvé-Perthes disease. J Pediatr Orthop 17:230–239

    Article  CAS  PubMed  Google Scholar 

  173. Comte F, De Rosa V, Zekri H, Eberle MC, Dimeglio A, Rossi M, Mariano-Goulart D (2003) Confirmation of the early prognostic value of bone scanning and pinhole imaging of the hip in Legg-Calve-Perthes disease. J Nucl Med 44:1761–1766

    PubMed  Google Scholar 

  174. Resnick D, Niwayama G (1998) Osteonecrosis: diagnostic techniques and complications. In: Resnick D, Niwayama G (eds) Diagnosis of bone and joint disorders second editions. Saunders, Philadelphia, p 3268

    Google Scholar 

  175. Smith JA (1996) Bone disorders in sickle cell disease. Hematol Oncol Clin North Am 10:1345–1346

    Article  CAS  PubMed  Google Scholar 

  176. Keeley K, Buchanan GR (1982) Acute infarction of long bones in children with sickle cell anemia. J Pediatr 101:170–175

    Article  CAS  PubMed  Google Scholar 

  177. Skaggs DL, Kim SK, Green NW, Harris D, Miler JH (2001) Differentiation between bone infarct and acute osteomyelitis in children with sickle-cell disease with use of sequential radionuclide bone-marrow and bone scans. J Bone Joint Surg Am 83:1810–1813

    Article  CAS  PubMed  Google Scholar 

  178. Jain R, Sawhney S, Rizvi SG (2008) Acute bone crises in sickle cell disease: the T1 fat-saturated sequence in differentiation of acute bone infarcts from acute osteomyelitis. Clin Radiol 63:59–70

    Article  CAS  PubMed  Google Scholar 

  179. Bouden AK, Kaïs C, Abdallah NB, Kraiem NH, Jamoussi MM (2005) [MRI contribution in diagnosis of acute bone infarcts in children with sickle cell disease]. Tunis Med 83:344–348

    Google Scholar 

  180. Sisayan R, Elgazzar AH, Webner P, Religioso DG (1996) Impact of bone scintigraphy on clinical management of a sickle cell patient with recent chest pain. Clin Nucl Med 21:523–526

    Article  CAS  PubMed  Google Scholar 

  181. Kim HK (2012) Pathophysiology and new strategies for the treatment of Legg-Calvé-Perthes disease. J Bone Joint Surg Am 94:659–669

    Article  PubMed  Google Scholar 

  182. Kawai K, Maruno H, Watanabe Y, Hirohata K (1980) Fat necrosis of osteocytes as a causative factor in idiopathic osteonecrosis inheritable hyperlipemic rabbits. Clin Orthop Relat Res 153:273

    Article  Google Scholar 

  183. Collier BD, Carrera GF, Johnson RP, Isitman AT, Hellman RS, Knobel J et al (1985) Detection of femoral head avascular necrosis in adults by SPECT. J Nucl Med 26:979–987

    CAS  PubMed  Google Scholar 

  184. Greyson ND, Lotem MM, Gross AE (1982) Radionuclide evaluation of spontaneous femoral osteonecrosis. Radiology 142:729–735

    Article  CAS  PubMed  Google Scholar 

  185. Janig W, Baron R (2003) Complex regional pain syndrome: mystery explained? Lancet Neurol 2:687–697

    Article  PubMed  Google Scholar 

  186. Shehab D, Al-Jarralah K, Al-Awadhi A et al (1999) Reflex sympathetic dystrophy: an under-recognized entity in Kuwait. APLAR J Rheumatol 3:343–347

    Google Scholar 

  187. Cappello ZJ, Kasdan ML, Louis DS (2012) Meta-analysis of imaging techniques for the diagnosis of complex regional pain syndrome type I. J Hand Surg 37:288–296

    Article  Google Scholar 

  188. Blockx P, Driessens M (1991) The use of Tc-99-m-HSA dynamic vascular examination in the staging and therapy monitoring of reflex sympathetic dystrophy. Nucl Med Commun 12:725–731

    Article  CAS  PubMed  Google Scholar 

  189. Goldstein DS, Tack C, Li TS (2000) Sympathetic innervation and function in reflex sympathetic dystrophy. Ann Neurol 48:49–59

    Article  CAS  PubMed  Google Scholar 

  190. Sankaya A, Sankaya I, Pekindil G, Firat MF, Pekindil Y (2001) Technetium-99m sestamibi limb scintigraphy in post-traumatic reflex sympathetic dystrophy: preliminary results. Eur J Nucl Med 28:1517–1522

    Article  CAS  Google Scholar 

  191. Haensch C, Jorg J, Lerch H (2002) I-123 metaiodobenzyl-guanidine uptake of the forearm shows dysfunction of sympathetic mediated neurovascular transmission in complex regional pain syndrome 1 (CRPS 1). J Neurol 249:1742–1743

    Article  CAS  PubMed  Google Scholar 

  192. Yoon D, Xu Y, Cipriano PW, Alam IS, Mari Aparici CA, Tawfik VL et al (2021) Neurovascular, muscle, and skin changes on [18F] FDG PET/MRI in complex regional pain syndrome of the foot: a prospective clinical study. Pain Med 23:339. https://doi.org/10.1093/pm/pnab315

    Article  PubMed Central  Google Scholar 

  193. Bernateck M, Rolke R, Birklein F et al (2007) Successful intravenous regional block with low-dose tumor necrosis factor α antibbody Infliximab for treatment of complex regional pain syndrome. Anesthesia and analgesia 105:1148–1151

    Article  CAS  PubMed  Google Scholar 

  194. Yoon D, Xu Y, Cipriano P, Tawfik V, Curtin C, Carroll I, Biswal S (2019) Musculoskeletal changes on [18F]FDG PET/MRI from complex regional pain syndrome in foot. J Nucl Med 60:94 (abstract)

    Google Scholar 

  195. Tsuyuguchi N, Ohata K, Morino M, Takami T, Goto T, Nishio A, Hara M, Sunada I (2002) Magnetic resonance imaging and [11c] methyl-L-methionine positron emission tomography of fibrous dysplasia-two case reports. Neurol Med Chir 42:341–345

    Article  Google Scholar 

  196. Papadakis GZ, Manikis GC, Karantanas AH, Florenzano P, Bagci U et al (2019) 18F‐NaF PET/CT imaging in fibrous dysplasia of bone. J Bone Miner Res 34:1619–1631

    Article  CAS  PubMed  Google Scholar 

  197. Kairemo KJ, Verho S, Dunkel L (1999) Imaging of McCune Albright syndrome using bone single photon emission computed tomography. Eur J Pediatr 158:123–126

    Article  CAS  PubMed  Google Scholar 

  198. Mourad A (1998) Alterations of musculoskeletal function. In: McCance KL, Huether SE (eds) Pathophysiology, 3rd edn. Mosby, Philadelphia, pp 1435–1485

    Google Scholar 

  199. Schneider R (2005) Radionuclide techniques. In: Resnick D, Kransdorf MJ (eds) Bone and joint imaging, 3rd edn. Elsevier/Saunders, Philadelphia, pp 86–117

    Chapter  Google Scholar 

  200. Zwas TS, Elkanovitch R, Frank G (1987) Interpretation and classification of bone scintigraphic findings in stress fractures. J Nucl Med 28:452–457

    CAS  PubMed  Google Scholar 

  201. Brukner P, Bennell K, Matheson G (1999) Diagnosis of stress fractures. In: Stress fractures. Blackwell Science, Victoria, pp 83–96

    Google Scholar 

  202. Amin I, Moroz A (2017) Medial tibial stress syndrome (shin splints). In: Musculoskeletal sports and spine disorders. Springer, Cham, pp 281–282

    Chapter  Google Scholar 

  203. Holder LE, Michael RH (1984) The specific scintigraphic pattern of shin splints in the lower leg: concise communication. J Nucl Med 25:865–869

    CAS  PubMed  Google Scholar 

  204. Chung CC, Shimer AL (2021) Lumbosacral spondylolysis and spondylolisthesis. Clin Sports Med 40(3):471–490

    Article  PubMed  Google Scholar 

  205. Gaddikeri S, Matesan M, Alvarez J, Hippe DS, Vesselle HJ (2018) MDP‐SPECT versus hybrid MDP‐SPECT/CT in the evaluation of suspected pars interarticularis fracture in young athletes. J Neuroimaging 28(6):635–639

    Article  PubMed  Google Scholar 

  206. Reed A, Joyner C, Brawnlow H, Simpson H (2001) Radiological classification of human nonunions does not reflect biological activity. In: Proceeding of the 47th annual meeting. Orthopedic Research Society, San Francisco, p 971 (abstract)

    Google Scholar 

  207. Sty JR, Starshak RJ (1983) The role of bone scintigraphy in the evaluation of the suspected abused child. Radiology 146:369–375

    Article  CAS  PubMed  Google Scholar 

  208. Malki A, Elgazzar A, Ashqar T, Owunwanne A, Abdel-Dayem AH (1992) New technique for assessing muscle damage after trauma. J R Coll Surg Edinb 37:131–133

    CAS  PubMed  Google Scholar 

  209. Malki A, Owunwanne A, Elgazzar A, Abdel-Dayem AH (1999) Assessment of skeletal muscle damage in experimental animal using In-111 antimyosin. Int J Surg Investig 1:99–105

    CAS  PubMed  Google Scholar 

  210. Sharkey CA, Harcke HT, Mandell GA et al (1986) SPECT techniques in the evaluation of growth plate abnormalities about the knee. J Nucl Med Tech 14:Ab13

    Google Scholar 

  211. Harcke HT, Zapf SE, Mandell GA et al (1987) Angular deformity of the lower extremity: evaluation with quantitative bone scintigraphy. Radiology 164:437–440

    Article  CAS  PubMed  Google Scholar 

  212. Harcke HT (1978) Bone imaging in infants and children: a review. J Nucl Med 19:324–329

    PubMed  Google Scholar 

  213. Mandell GA (1998) Nuclear medicine in pediatric orthopedics. Semin Nucl Med 28:95–115

    Article  CAS  PubMed  Google Scholar 

  214. Etchebehere EC, Caron M, Pereira JA, Lima MC, Santos AO, Ramos CD, Barros FB, Sanches A, Santos-Jesus R, Belangero W, Camargo EE (2001) Activation of the growth plates on three-phase bone scintigraphy: the explanation for the overgrowth of fractured femurs. Eur J Nucl Med 28:72–80

    Article  CAS  PubMed  Google Scholar 

  215. Harcke HT, Mandell GA (1993) Scintigraphic evaluation of the growth plate. Semin Nucl Med 23:266–273

    Article  CAS  PubMed  Google Scholar 

  216. Etchebehere EC, Etchebehere M, Gamba R, Belangero W, Camargo EE (1998) Orthopedic pathology of the lower extremities: scintigraphic evaluation in the thigh, knee, and leg. Semin Nucl Med 28:41

    Article  CAS  PubMed  Google Scholar 

  217. Yamane T, Kuji I, Seto A, Matsunari I (2018) Quantification of osteoblastic activity in epiphyseal growth plates by quantitative bone SPECT/CT. Skeletal Radiol 47:805–810

    Article  PubMed  Google Scholar 

  218. Wioland M, Bonnerot V (1993) Diagnosis of partial and total physeal arrest by single photon emission computed tomography. J Nucl Med 34:1410–1415

    CAS  PubMed  Google Scholar 

  219. Peterson HA (1984) Partial growth plate arrest and its treatment. J Pediatr Orthop 4:246–258

    Article  CAS  PubMed  Google Scholar 

  220. DeCampo JF, Boldt DW (1986) Computed tomography in partial growth plate arrest: initial experience. Skeletal Radiol 183:119–123

    Google Scholar 

  221. Jaramillo D, Hoffer EA, Shapiro F et al (1990) MR imaging of fracture of the growth plate. AJR Am J Roentgenol 155:1261–1265

    Article  CAS  PubMed  Google Scholar 

  222. Khan A, Bilezikian J (2000) Primary hyperparathyroidism: pathophysiology and impact on bone. CMAJ 163:184–718

    CAS  PubMed  PubMed Central  Google Scholar 

  223. Lander PH, Hadjipavlou AG (1986) A dynamic classification of Paget’s disease. J Bone Joint Surg [Br] 68B:431–438

    Article  Google Scholar 

  224. Boutin RD, Spitz DJ, Newman JS, Lenchik L, Steinbach LS (1998) Complications in Paget disease at MR imaging. Radiology 209:641–651

    Article  CAS  PubMed  Google Scholar 

  225. Vandes Berg BC, Malghem J, Lecouvet FE, Maldague B (2001) Magnetic resonance appearance of uncomplicated Paget’s disease of bone. Semin Musculoskelet Radiol 5:69–77

    Article  Google Scholar 

  226. Cherian RA, Haddaway MJ, Davie MW, McCall IW, Cassar-Pullicino VN (2000) Effect of Paget’s disease of bone on areal lumbar spine bone mineral density measured by DXA, and density of cortical and trabecular bone measured by quantitative CT. Br J Radiol 73:720–726

    Article  CAS  PubMed  Google Scholar 

  227. Serafini AN (1976) Paget’s disease of bone. Semin Nucl Med 6:47–58

    Article  CAS  PubMed  Google Scholar 

  228. Fogelman I, Carr D (1980) A comparison of bone scanning and radiology in the evaluation of patients with metabolic bone disease. Clin Radiol 31:321–326

    Article  CAS  PubMed  Google Scholar 

  229. King MA, Maxon HR (1984) Paget’s disease: the role of nuclear medicine in diagnosis and treatment. In: Silberstein EB (ed) Bone scintigraphy. Futura Publishing, Mount Kisco, pp 333–346

    Google Scholar 

  230. Renier JC, Audran M (1997) Polyostotic Paget’s disease. A search for lesions of different durations and for new lesions. Rev Rhum Engl Ed 64:233–242

    CAS  PubMed  Google Scholar 

  231. Elgazzar AH, Yeung HW, Webner PJ (1996) Indium-111 leukocyte and technetium 99 m sulfur colloid uptake in Paget’s disease. J Nucl Med 37:858–861

    CAS  PubMed  Google Scholar 

  232. Kaplan FS (1987) Osteoporosis: pathophysiology and prevention. Chin Sympozia 39:2

    Google Scholar 

  233. Matkovic V, De Kanic D (1989) Developing strong bones: the teenage female. In: Kleerehoper M, Krane SM (eds) Clinical disorders of bone and mineral metabolism. Mary Ann Liebert Inc., New York, p 165

    Google Scholar 

  234. Gillespy T, Gillespy MP (1991) Osteoporosis. Radiol Clin North Am 29:77–84

    Article  PubMed  Google Scholar 

  235. Christiansen C, Riis BJ (1989) Optimizing bone mass in the perimenopause. In: Kleerehoper M, Krane SM (eds) Clinical disorder of bone and mineral metabolism. Mary An Liebert, Inc., New York, p 189

    Google Scholar 

  236. Lang P, Steiger P, Faulkner K et al (1991) Current techniques and recent developments in quantitative bone densitometry. Radiol Clin North Am 29:49–76

    Article  CAS  PubMed  Google Scholar 

  237. Snyder W (1975) Report of the task group on reference man. Pergamon Press, Oxford

    Google Scholar 

  238. Recker RR, Heaney RP (1989) Effects of age, sex and race on bone remodeling. In: Kellerehoper M, Krane SM (eds) Clinical disorders of bone and mineral metabolism. Mary Ann Liebert, Inc., New York, p 59

    Google Scholar 

  239. Heaney RP (1989) Optimizing bone mass in the permenopause: calcium. In: Kleerehoper M, Krane SM (eds) Clinical disorders of bone and mineral metabolism. Mary Ann Liebert, Inc, New York, p 181

    Google Scholar 

  240. Frost HM (1964) Dynamics of bone remodelling. In: Frost HM (ed) Bone biodynamics. Little, Brown, Boston, pp 315–334

    Google Scholar 

  241. Ettinger B, Genant HK (eds) (1987) Osteoporosis update. Radiology Research and Education Foundation, San Francisco

    Google Scholar 

  242. Hippisley-Cox J, Coupland C (2009) Predicting risk of osteoporotic fracture in men and women in England and Wales: prospective derivation and validation of Qfracture Scores. BMJ 339:b4229

    Article  PubMed  PubMed Central  Google Scholar 

  243. Cooper C, Aihie-Sayer A (1994) Osteoporosis: recent advances in pathogenesis and treatment. Q J Med 87:203–209

    CAS  PubMed  Google Scholar 

  244. Simon SR (1994) Osteoporosis: orthopedic basic science. American Academy of Orthopedic Surgeons, Chicago

    Google Scholar 

  245. Chen CC, Wang SS, Jeng FS, Lee SD (1996) Metabolic bone disease of liver cirrhosis: is it parallel to the clinical severity of cirrhosis? J Gastroenterol Hepatol 11:417–421

    Article  CAS  PubMed  Google Scholar 

  246. Fogelman I (1987) The bone scan in metabolic bone disease. In: Fogelman I (ed) Bone scanning in clinical practice. Springer, Berlin, pp 73–88

    Chapter  Google Scholar 

  247. Lack CA, Rarber JL, Rubin E (1999) The endocrine system. In: Rubin E, Farber JL (eds) Pathology, 3rd edn. Lippincott-Raven, Philadelphia, pp 1179–1183

    Google Scholar 

  248. Marshall D, Johnell O, Wedel H (1996) Meta-analysis of how well measures of bone mineral density predict occurrence of osteoporotic fractures. BMJ 312:1254–1259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Cummings SR, Black DM, Nevitt MC et al (1993) Bone density at various sites for prediction of hip fractures. Lancet 341:72–75

    Article  CAS  PubMed  Google Scholar 

  250. Eastell R (1998) Treatment of postmenopausal osteoporosis. N Engl J Med 338:736–746

    Article  CAS  PubMed  Google Scholar 

  251. Njeh CF, Fuerst T, Hans D, Blake GM, Genant HK (1999) Radiation exposure in bone mineral assessment. Appl Radiat Isot 50:215–236

    Article  CAS  PubMed  Google Scholar 

  252. WHO Technical Report Series 843 (1994) Assessment of fracture risk and its application to screening for postmenopausal osteoporosis. World Health Organization, Geneva

    Google Scholar 

  253. Genant HK, Grampp S, Glüer C-C et al (1994) Universal standardization for dual x-ray absorptiometry: patient and phantom cross-calibration results. J Bone Miner Res 9:1503–1514

    Article  CAS  PubMed  Google Scholar 

  254. Basha B, Rao DS, Han ZH, Parfitt AM (2000) Osteomalacia due to vitamin D depletion: a neglected consequence of intestinal malabsorption. Am J Med 108:296–300

    Article  CAS  PubMed  Google Scholar 

  255. Reginato AJ, Falasca GF, Pappu R, McKnight B, Agha A (1999) Musculoskeletal manifestations of osteomalacia: report of 26 cases and literature review. Semin Arthritis Rheum 28:287–304

    Article  CAS  PubMed  Google Scholar 

  256. Akbunar AT, Orhan B, Alper E (2000) Bone-scan-like pattern with 99Tcm(V)-DMSA scintigraphy in patients with osteomalacia and primary hyperparathyroidism. Nucl Med Commun 21:181–185

    Article  CAS  PubMed  Google Scholar 

  257. Leitha T (1998) Rapid changes in the scintigraphic pattern in Tc-99m DPD whole-body scanning in metabolic bone disease. Clin Nucl Med 23:784–785

    Article  CAS  PubMed  Google Scholar 

  258. Brasier AR, Nussbaum SR (1988) Hungry bone syndrome: clinical and biochemical predictors of its occurrence after parathyroid surgery. Am J Med 84:654

    Article  CAS  PubMed  Google Scholar 

  259. Goen G, Mazzaferro S (1994) Bone metabolism and its assessment in renal failure. Nephron J 67:383–401

    Article  Google Scholar 

  260. Rosengerg AE (1991) The pathology of metabolic bone disease. Radiol Clin North Am 29:19–36

    Article  Google Scholar 

  261. Dabbagh S (1998) Renal osteodystrophy. Curr Opin Pediatr 10:190–196

    Article  CAS  PubMed  Google Scholar 

  262. Cicconetti A, Maffeini C, Piro FR (1999) Differential diagnosis in a case of brown tumor caused by primary hyperparathyroid ism. Minerva Stomatol 48:553–558

    CAS  PubMed  Google Scholar 

  263. Loder RT, Hensinger RN (1997) Slipped capital femoral epiphysis associated with renal failure osteodystrophy. J Pediatr Orthop 17:205–211

    Article  CAS  PubMed  Google Scholar 

  264. Yalcinkaya F, Ince E, Tumer N, Ensari A, Ozkaya N (2000) Spectrum of renal osteodystrophy in children on continuous ambulatory peritoneal dialysis. Pediatr Int 42:53–57

    Article  CAS  PubMed  Google Scholar 

  265. Jorgetti V, Lopez BD, Caorsi H, Ferreira A, Palma A, Menendez P, Douthat W, Olaizola I, Ribeiro S, Jarava C, Moreira E, Cannata J (2000) Different patterns of renal osteodystrophy in IberoAmerica. Am J Med Sci 320:76–80

    Article  CAS  PubMed  Google Scholar 

  266. Olaizola I, Aznarez A, Jorgetti V, Petroglia A, Caorsi H, Acuna G, Fajardo L, Ambrosoni P, Mazzuchi N (1998) Are there any differences in the parathyroid response in the different types of renal osteodystrophy? Nephrol Dial Transplant 13(suppl):15–18

    Article  PubMed  Google Scholar 

  267. Seggewiss R, Hess T, Fiehn C (2003) A family with a variant form of primary hypertrophic osteoarthropathy restricted to the lower extremities. Joint Bone Spine 70:230–233

    Article  PubMed  Google Scholar 

  268. Howell DS (1985) Hypertrophic osteoarthropathy. In: Mc Carty DJ (ed) Arthritis and allied conditions, 10th edn. Lea and Febiger, Philadelphia, pp 1195–1201

    Google Scholar 

  269. Ali A, Tetalman MR, Fordham EW et al (1980) Distribution of hypertrophic pulmonary osteoarthropathy. AJR Am J Roentgenol 134:771–780

    Article  CAS  PubMed  Google Scholar 

  270. Wang CJ, Huang CH, Leung SW, Chen HC, Huang EY (1998) Hypertrophic osteoarthropathy in nasopharyngeal carcinoma patient: two case report. Changgeng Yi Xue Za Zhi 21:222–226

    CAS  PubMed  Google Scholar 

  271. Morgan B, Coakley F, Finlay DB, Belton I (1996) Hypertrophic osteoarthropathy in staging skeletal scintigraphy for lung cancer. Clin Radiol 51:694–697

    Article  CAS  PubMed  Google Scholar 

  272. Albrecht S, Keller A (2003) Postchemotherapeutic reversibility of hypertrophic osteoarthropathy in a patient with bronchogenic adenocarcinoma. Clin Nucl Med 28:463–466

    Article  CAS  PubMed  Google Scholar 

  273. Rosenthall L (1991) Nuclear medicine techniques in arthritis. Rheum Dis Clin North Am 17:585–597

    Article  CAS  PubMed  Google Scholar 

  274. McCarthy D (ed) (1984) Arthritis and allied conditions. Lea and Fabiger, Philadelphia

    Google Scholar 

  275. Goldenberg DL, Cohen AS (1978) Synovial membrane histopathology in the differential diagnosis of rheumatoid arthritis, gout, pseudogout, systemic lupus erythematosus, infectious arthritis and degenerative joint disease. Medicine 57:239–252

    Article  CAS  PubMed  Google Scholar 

  276. Zeman MN, Scott PJ (2012) Current imaging strategies in rheumatoid arthritis. Am J Nucl Med Mol Imaging 2(2):174–220

    PubMed  PubMed Central  Google Scholar 

  277. Cindas A, Gokce-Kustal Y, Kirth PO, Caner B (2001) Scintigraphic evaluation of synovial inflammation in rheumatoid arthritis with (99m) technetium-labelled human polyclonal immunoglobulin G. Rheumatol Int 20:71–77

    Article  CAS  PubMed  Google Scholar 

  278. Weissberg DI, Resnick D, Taylor A et al (1978) Rheumatoid arthritis and its variants: analysis of scintiphotographic, radiographic and clinical examination. AJR Am J Roentgenol 131:665–673

    Article  CAS  PubMed  Google Scholar 

  279. McQueen FM (2013) Imaging in early rheumatoid arthritis. Best Pract Res Clin Rheumatol 27(4):499–522

    Article  PubMed  Google Scholar 

  280. Al-Janabi MA, Solanki K, Critchley M et al (1992) Radioleukoscintigraphy in osteoarthritis. Is there an inflammatory component? Nucl Med Commun 13:706–712

    Article  CAS  PubMed  Google Scholar 

  281. Berna L, Torres G, Diez C et al (1992) Technetium-99 m human polyclonal immunoglobulin G studies and conventional bone scans to detect active joint inflammation in chronic rheumatoid arthritis. Eur J Nucl Med 19:173–176

    Article  CAS  PubMed  Google Scholar 

  282. Beckers C, Ribbens C, André B, Marcelis S, Kaye O, Mathy L et al (2004) Assessment of disease activity in rheumatoid arthritis with 18F-FDG PET. J Nucl Med 45(6):956–964

    CAS  PubMed  Google Scholar 

  283. Kubota K, Ito K, Morooka M, Mitsumoto T, Kurihara K, Yamashita H et al (2009) Whole-body FDG-PET/CT on rheumatoid arthritis of large joints. Ann Nucl Med 23(9):783–791

    Article  PubMed  Google Scholar 

  284. Okamura K, Yonemoto Y, Arisaka Y, Takeuchi K, Kobayashi T, Oriuchi N et al (2012) The assessment of biologic treatment in patients with rheumatoid arthritis using FDG-PET/CT. Rheumatology 51(8):1484–1491

    Article  CAS  PubMed  Google Scholar 

  285. Zhu W, He X, Cheng K, Zhang L, Chen D, Wang X et al (2019) Ankylosing spondylitis: etiology, pathogenesis, and treatments. Bone Res 7(1):1–16

    Article  CAS  Google Scholar 

  286. Bahk Y (2000) Combined scintigraphic and radiographic diagnosis of bone and joint diseases, 2nd edn. Springer, Berlin

    Book  Google Scholar 

  287. Mijiyawa M (1995) Gout in patients attending the rheumatology unit of Lome Hospital. Br J Rheumatol 34:843–846

    Article  CAS  PubMed  Google Scholar 

  288. Sato J, Watanabe H, Shinozaki T, Fukuda T, Shirakura K, Takagishi K (2001) Gouty tophus of the patella evaluated by PET imaging. J Orthop Sci 6:604–607

    Article  CAS  PubMed  Google Scholar 

  289. George E, Creamer P, Dieppe PA (1994) Clinical subsets of osteoarthritis. J Musculoskelet Med 11:14

    CAS  Google Scholar 

  290. Gelber AC, Hochberg MC, Mead LA, Wang NY, Wigley FM, Klag MJ (2000) Joint injury in young adults and risk of subsequent knee and hip osteoarthritis. Ann Intern Med 133:321–328

    Article  CAS  PubMed  Google Scholar 

  291. Orzel JA, Redd TG (1985) Heterotopic bone formation: clinical, laboratory and imaging correlation. J Nucl Med 26:125–132

    CAS  PubMed  Google Scholar 

  292. Choi YH, Kim KE, Lim SH, Lim JY (2012) Early presentation of heterotopic ossification mimicking pyomyositis – two case reports. Ann Rehabil Med 36:713–718

    Article  PubMed  PubMed Central  Google Scholar 

  293. Hassan F, Enayat M, Mohammed F, Vijayanathan S, Gnanasegaran G (2012) Heterotrophic ossification in a patient suspected of having osteomyelitis: additional value of SPECT/CT. Clin Nucl Med 37:170–171

    Article  Google Scholar 

  294. Elgazzar AH, Martich V, Gelfand MJ (1995) Advanced fibrodysplasia ossificans progressiva. Clin Nucl Med 20:519–521

    Article  CAS  PubMed  Google Scholar 

  295. Hod N, Fishman S, Horne T (2002) Detection of rhabdomyolysis associated with compartment syndrome by bone scintigraphy. Clin Nucl Med 27:885–886

    Article  PubMed  Google Scholar 

  296. Kawaguchi Y, Hasegawa T, Oka S, Sato C, Arima N, Norimatsu H (2001) Mechanism of intramedullary high intensity area on T2-weighted magnetic resonance imaging in osteoid osteoma: a possible role of COX-2 expression. Pathol Int 51:933–937

    Article  CAS  PubMed  Google Scholar 

  297. Dablin DC, Conventry MB (1967) Osteogenic sarcoma: a study of 600 cases. J Bone Joint Surg Am 49:101–110

    Article  Google Scholar 

  298. Flemming DJ, Murphey MD (2000) Enchondroma and chondrosarcoma. Semin Musculoskelet Radiol 4(1):59–71

    Article  CAS  PubMed  Google Scholar 

  299. Marco RA, Gitelis S, Brebach GT, Healey JH (2000) Cartilage tumors: evaluation and treatment. J Am Acad Orthop Surg 8:292–304

    Article  CAS  PubMed  Google Scholar 

  300. Yaccoby S (2010) Advances in the understanding of myeloma bone disease and tumour growth. Br J Haematol 149(3):311–321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  301. Maheshwari AV, Cheng EY (2010) Ewing sarcoma family of tumors. J Am Acad Orthop Surg 18:94–107

    Article  PubMed  Google Scholar 

  302. Murphey MD, Kransdorf MJ (2021) Staging and classification of primary musculoskeletal bone and soft tissue tumors based on the 2020 WHO update, from the AJR special series on cancer staging. Am J Roentgenol 217:1038

    Article  Google Scholar 

  303. Huvos AG (1991) Bone tumors; diagnosis, treatment and prognosis, 2nd edn. Saunders, Philadelphia

    Google Scholar 

  304. Resnik D, Kyriakos M, Greenway GD (2002) Tumors and tumor-like lesions of bone. In: Diagnosis of bone and joint disorders, 4th edn. Saunders, Philadelphia, pp 3979–3985

    Google Scholar 

  305. Choi JJ, Murphey MD (2000) Angiomatous skeletal lesions. Semin Musculoskelet Radiol 4:103–112

    Article  CAS  PubMed  Google Scholar 

  306. Han BK, Ryu JS, Moon DH, Shin MJ, Kim YT, Lee HK (1995) Bone SPECT imaging of vertebral hemangioma correlation with MR imaging and symptoms. Clin Nucl Med 20:916–921

    Article  CAS  PubMed  Google Scholar 

  307. Gupta A (2018) Ewing sarcoma. In: PET/MR imaging. Springer, Cham, pp 9–11

    Chapter  Google Scholar 

  308. Weber W (2020) Clinical PET/MR. In: Molecular imaging in oncology. Springer, Cham, pp 747–764

    Chapter  Google Scholar 

  309. Gholamrezanezhad A, Guermazi A, Salavati A, Alavi A (2018) Evolving role of PET-computed tomography and PET-MR imaging in assessment of musculoskeletal disorders and its potential revolutionary impact on day-to-day practice of related disciplines. PET Clin 13(4):xiii-xiv

    Article  PubMed  Google Scholar 

  310. Elgazzar AH, Malki AA, Abdel-Dayem HM, Sahweil A, Razzak S, Jahan S, Elsayed M, Omar YT (1989) Role of thallium 201 in the diagnosis of solitary bone lesions. Nucl Med Commun 10:477–485

    Article  CAS  PubMed  Google Scholar 

  311. Elgazzar AH, Fernendaz-Ulloa M, Silberstein EB (1993) Thallium 201 as a tumor imaging agent: current status and future consideration. Nucl Med Commun 14:96–103

    Article  CAS  PubMed  Google Scholar 

  312. Caner B, Kitapcl M, Unlu M et al (1992) Technetium 99m MIBI uptake in benign and malignant bone lesions: a comparative study with technetium 99m MDP. J Nucl Med 33:319–324

    CAS  PubMed  Google Scholar 

  313. Pneumaticos SG, Chatziioannou SN, Moore WH, Johnson M (2001) The role of radionuclides in primary musculoskeletal tumors beyond the bone scan. Crit Rev Oncol Hematol 37(3):217–226

    Article  CAS  PubMed  Google Scholar 

  314. Aoki J, Watanabe H, Shinozaki T, Takagishi K, Ishijima H, Oya N, Sato N, Inoue T, Endo K (2001) FDG PET of primary benign and malignant bone tumors: standardized uptake value in 52 lesions. Radiology 219:774–777

    Article  CAS  PubMed  Google Scholar 

  315. Franzius C, Sciuk J, Brinkschmidt C, Jurgens H, Schober O (2000) Evaluation of chemotherapy response in primary bone tumors with F-18 FDG positron emission. Clin Nucl Med 25:874–878

    Article  CAS  PubMed  Google Scholar 

  316. Dimitrakopoulou-Strauss A, Heichel TO, Lehner B, Bernd L, Ewerbeck V, Burger C, Strauss LG (2001) Quantitative evaluation of skeletal tumors with dynamic FDG PET: SUV in comparison to Patlak analysis. Eur J Nucl Med 28:704–710

    Article  PubMed  CAS  Google Scholar 

  317. Johnson JD, Rainer WG, Rose PS, Houdek MT (2020) Utility of bone scintigraphy and PET-CT in the surgical staging of skeletal chondrosarcoma. Anticancer Res 40(10):5735–5738

    Article  PubMed  Google Scholar 

  318. Franzius C, Sciuk J, Daldrup-Link HE, Jurgens H, Schober O (2000) FDG-PET for detection of osseous metastases from malignant primary bone tumors: comparison with bone scintigraphy. Eur J Nucl Med 27:1305–1311

    Article  CAS  PubMed  Google Scholar 

  319. Yildiz C, Erler K, Atesalp AS, Basbozkurt M (2003) Benign bone tumors in children. Curr Opin Pediatr 15:58–67

    Article  PubMed  Google Scholar 

  320. Bhure U, Roos JE, Strobel K (2019) Osteoid osteoma: multimodality imaging with focus on hybrid imaging. Eur J Nucl Med Mol Imaging 46:1019

    Article  PubMed  Google Scholar 

  321. Miller SL, Hoffer FA (2001) Malignant and benign bone tumors. Radiol Clin North Am 39:673–699

    Article  CAS  PubMed  Google Scholar 

  322. Buhler M, Binkert C, Exner GU (2001) Osteoid osteoma: technique of computed tomography-controlled percutaneous resection using standard equipment available in most orthopaedic operating rooms. Arch Orthop Trauma Surg 121:458–461

    Article  CAS  PubMed  Google Scholar 

  323. Clement ND, Porter DE (2014) Hereditary multiple exostoses: anatomical distribution and burden of exostoses is dependent upon genotype and gender. Scott Med J 59(1):35–44. http://www.ncbi.nlm.nih.gov/pubmed/24413927

    Article  CAS  PubMed  Google Scholar 

  324. Woerthler K, Linder N, Gosheger G, Brinkschmidt C, Heindel W (2000) MR imaging of tumor-related complications. Eur Radiol 10:832–840

    Article  Google Scholar 

  325. Brian WE, Mirra JM, Luck JV Jr (1999) Benign and malignant tumors of bone and joint: their anatomical and theoretical basis with an emphasis on radiology, pathology and clinical biology II, Juxtacortical cartilage tumors. Skeletal Radiol 28:1–20

    Article  Google Scholar 

  326. Moody EB, Classman SB, Hansen AV, Lawrence SK, Delbeke D (1992) Nuclear medicine case of the day. AJR Am J Roentgenol 158:1382–1386

    Article  CAS  PubMed  Google Scholar 

  327. Siddiqui RA, Ellis JH (1982) “Cold spots” on bone scan at the site of primary osteosarcoma. In: Rosslleigh MA, Smith J, Yeh SDJ et al (1987) Case reports: a photopenic lesion in osteosarcoma. Br J Radiol 60:497–499

    Google Scholar 

  328. Bloem JL, Taminiau AHM, Eulderink F, Hermans J, Pauwels EKJ (1988) Radiologic staging of primary bone sarcoma: MR imaging, scintigraphy, angiography, and CT correlated with pathologic examination. Radiology 169:805–810

    Article  CAS  PubMed  Google Scholar 

  329. McKillop JH, Etcubanas E, Goris ML (1981) The indications for and limitations of bone scintigraphy in osteogenic sarcoma. Cancer 48:1133–1138

    Article  CAS  PubMed  Google Scholar 

  330. Hurley C, McCarville MB, Shulkin BL, Mao S, Wu J, Navid F et al (2016) Comparison of 18F-FDG-PET-CT and bone scintigraphy for evaluation of osseous metastases in newly diagnosed and recurrent osteosarcoma. Pediatr Blood Cancer 63:1381–1386. https://doi.org/10.1002/pbc.26014

    Article  PubMed  PubMed Central  Google Scholar 

  331. Liu F, Zhang Q, Zhou D et al (2019) Effectiveness of 18F-FDG PET/CT in the diagnosis and staging of osteosarcoma: a meta-analysis of 26 studies. BMC Cancer 19:323. https://doi.org/10.1186/s12885-019-5488-5

    Article  PubMed  PubMed Central  Google Scholar 

  332. Burak Z, Ersoy O, Moretti JL, Erinc R, Ozcan Z, Dirlik A, Sabah D, Basdemir G (2001) The role of 99mTc-MIBI scintigraphy in the assessment of MDR1 overexpression in patients with musculoskeletal sarcomas: comparison with therapy response. Eur J Nucl Med 28:1341–1350

    Article  CAS  PubMed  Google Scholar 

  333. Gorlick R, Liao AC, Antonescu C, Huvos AG, Healey JH, Sowers R, Daras M, Calleja E, Wexler LH, Panicek D, Meyers PA, Yeh SD, Larson SM (2001) Lack of correlation of functional scintigraphy with (99 m)technetium-methoxyisobutylisonitrile with histological necrosis following induction chemotherapy or measures of P-glycoprotein expression in high-grade osteosarcoma. Clin Cancer Res 7:3065–3070

    CAS  PubMed  Google Scholar 

  334. Kaste SC, Billips C, Tan M, Meyer WH, Parham DM, Rao BN, Pratt CB, Fletcher BD (2001) Thallium bone imaging as an indicator of response and outcome in nonmetastatic primary extremity osteosarcoma. PediatrRadiol 31:251–256

    CAS  Google Scholar 

  335. Byun BH, Kong CB, Lim I, Kim BI, Choi CW, Song WS, Cho WH, Jeon DG, Koh JS, Lee SY (2013) Comparison of (18)F-FDG PET/CT and (99 m)Tc-MDP bone scintigraphy for detection of bone metastasis in osteosarcoma. Skeletal Radiol 42:1673–1681

    Article  PubMed  Google Scholar 

  336. Franzius F, Bielack S, Flege S, Sciuk J, Jürgens H, Schober O (2002) Prognostic significance of 18F-FDG and 99Tc-mehylene diphosphonate uptake in primary osteosarcoma. J Nucl Med 43:1012–1017

    CAS  PubMed  Google Scholar 

  337. Hillengass J, Moulopoulos LA, Delorme S, Koutoulidis V, Mosebach J, Hielscher T, Terpos E (2017) Whole-body computed tomography versus conventional skeletal survey in patients with multiple myeloma: a study of the International Myeloma Working Group. Blood Cancer J 7(8):e599–e599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  338. Gleeson TG, Moriarty J, Shortt CP et al (2009) Accuracy of whole-body low-dose multidetector CT (WBLDCT) versus skeletal survey in the detection of myelomatous lesions, and correlation of disease distribution with whole-body MRI (WBMRI). Skeletal Radiol 38:225–236

    Article  CAS  PubMed  Google Scholar 

  339. Zamagn E, Tacchetti P, Cavo M (2019) Imaging in multiple myeloma: how? When? Blood 133:644–651. https://doi.org/10.1182/blood-2018-08-825356

    Article  CAS  Google Scholar 

  340. Sasikumar A, Joy A, Pilla MRA, Nanabala R, Thomas B (2016) G-68a-PSMA PET/CT imaging in multiple myeloma. Clin Nucl Med 42:e126–e127

    Article  Google Scholar 

  341. Connolly LP, Drubach LA, Ted Treves S (2002) Applications of nuclear medicine in pediatric oncology. Clin Nucl Med 27:117–125

    Article  PubMed  Google Scholar 

  342. Hung GU, Tan TS, Kao CH, Wang SJ (2000) Multiple skeletal metastases of Ewing’s sarcoma demonstrated on FDG-PET and compared with bone and gallium scans. Kaohsiung J Med Sci 16:315–318

    CAS  PubMed  Google Scholar 

  343. Daldrup-Link HE, Franzius C, Link TM et al (2001) Whole-body MR imaging for detection of bone metastases in children and young adults: comparison with skeletal scintigraphy and FDG PET. AJR Am J Roentgenol 177:229–236

    Article  CAS  PubMed  Google Scholar 

  344. Mar WA, Taljanovic MS, Bagatell R et al (2008) Update on imaging and treatment of Ewing sarcoma family tumors: what the radiologist needs to know. J Comput Assist Tomogr 32:108–118

    Article  PubMed  Google Scholar 

  345. Gaston LL, Di Bella C, Slavin J, Hicks RJ, Choong PF (2011) 18F-FDG PET response to neoadjuvant chemotherapy for Ewing sarcoma and osteosarcoma are different. Skeletal Radiol 40:1007–1015

    Article  PubMed  Google Scholar 

  346. Dorland WAN (1988) Dorland’s Illustrated medical dictionary, 27th edn. Saunders, Philadelphia, p 1016

    Google Scholar 

  347. Cuccurullo V, Cascini GL, Rossi A, Tamburrini O, Rotando A, Mansi L (2011) Pathophysiological premises to radiotracers for bone metastases. Q J Nucl Med Mol Imaging 55:353–373

    CAS  PubMed  Google Scholar 

  348. Batson OV (1940) The function of the vertebral veins and their role in the spread of metastases. Ann Surg 112:138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  349. Resnick D, Niwayama G (1998) Skeletalmetastases. In: Resnick D, Niwayama G (eds) Diagnosis of bone and joint disorders, 2nd edn. Saunders, Philadelphia, pp 3945–4010

    Google Scholar 

  350. Resnick D, Niwayama K, Galasko CSD (1981) Bone metastasis studied in experimental animal. Clin Orthop Relat Res 155:269

    Google Scholar 

  351. Galasko CSD (1982) Mechanisms of lytic and blastic metastatic disease of bone. Clin Orthop Relat Res 169:20

    Article  Google Scholar 

  352. Roodman GD (2004) Mechanism of bone metastasis. N Engl J Med 350:1655–1664

    Article  CAS  PubMed  Google Scholar 

  353. Mihailović J, Freeman LM (2012) Bone: from planar imaging to SPECT & PET/CT. Arch Oncol 20(3–4):117–120

    Article  Google Scholar 

  354. Padhani A, Husband J (1998) Bone metastases. In: Husband JES, Reznek RH (eds) Imaging in oncology. Isis medical Media Ltd, Oxford, pp 765–787

    Google Scholar 

  355. O’Connel MJ, Wahner HW, Alhann DL et al (1978) Value of preoperative radionuclide bone scan in suspected primary breast carcinoma. Mayo Clin Proc 53:221–226

    Google Scholar 

  356. Baker RR (1978) Preoperative assessment of patients with breast cancer. Surg Clin North Am 58:681–691

    Article  CAS  PubMed  Google Scholar 

  357. Wilner D (1982) Radiology of bone tumors and allied disorders. Saunders, Philadelphia, p 3641

    Google Scholar 

  358. Ripamonti C, Fulfaro F, Ticozzi C, Casuccio A, De Conno F (1998) Role of pamidronate disodium in the treatment of metastatic bone disease. Tumori. 84:442–455

    Article  CAS  PubMed  Google Scholar 

  359. Huang JF, Shen J, Li X, Rengan R, Silvestris N, Wang M, Derosa L, Zheng X, Belli A, Zhang XL, Li YM, Wu A (2020) Incidence of patients with bone metastases at diagnosis of solid tumors in adults: a large population-based study. Ann Transl Med 8:482

    Article  PubMed  PubMed Central  Google Scholar 

  360. Ryan C, Stoltzfus KC, Horn S, Chen H, Louie AV, Lehrer EJ, Trifiletti DM, Fox EJ, Abraham JA, Zaorsky NG (2022) Epidemiology of bone metastases. Bone. 2022;158:115783. https://doi.org/10.1016/j.bone.2020.115783. Epub 2020 Dec 1. PMID: 33276151.

  361. Hernandez RK, Wade SW, Reich A, Pirolli M, Liede A, Lyman GH (2018) Incidence of bone metastases in patients with solid tumors: analysis of oncology electronic medical records in the United States. BMC Cancer 18:44

    Article  PubMed  PubMed Central  Google Scholar 

  362. Ryan PJ, Evans PA, Gibson T et al (1992) Chronic low back pain: comparison of bone SPECT with radiography and CT. Radiology 13:497–854

    CAS  Google Scholar 

  363. Bushnell DL, Kahn D, Huston B et al (1995) Utility of SPECT imaging for determination of vertebral metastases in patients with known primary tumors. Skeletal Radiol 24:13–16

    Article  CAS  PubMed  Google Scholar 

  364. Ron IG, Striecker A, Lerman H, Bar-Am A, Frisch B (1999) Bone scan and bone biopsy in the detection of skeletal metastases. Oncol Rep 6:185–188

    CAS  PubMed  Google Scholar 

  365. Elgazzar AH, Abdel-Dayem HM, Shible O (1991) Brucellosis simulating metastases on Tc99m MDP bone scan. Clin Nucl Med 16:162–164

    Article  PubMed  Google Scholar 

  366. Goris ML, Basso LV, Etcublanaas E (1980) Photopenic lesions in bone scintigraphy. Clin Nucl Med 5:299–301

    Article  CAS  PubMed  Google Scholar 

  367. Sy WM, Westring DW, Weinberger G (1975) Cold lesions on bone imaging. J Nucl Med 16:1013–1016

    CAS  PubMed  Google Scholar 

  368. Galasko CSB (1980) Mechanism of uptake of bone imaging isotopes by skeletal metastases. Clin Nucl Med 12:565

    Google Scholar 

  369. Daldrup-Link HE, Franzius C, Link TM, Laukamp D, Sciuk J, Jurgens H, Schober O, Rummeny EJ (2001) Whole-body MR imaging for detection of bone metastases in children and young adults: comparison with skeletal scintigraphy and FDG PET. AJR Am J Roentgenol 177:229–236

    Article  CAS  PubMed  Google Scholar 

  370. Kao CH, Hsieh JF, Tsai SC, Ho YJ, Yen RF (2000) Comparison and discrepancy of 18F-2-deoxyglucose positron emission tomography and Tc-99m MDP bone scan to detect bone metastases. Anticancer Res 20:2189–2192

    CAS  PubMed  Google Scholar 

  371. Moog F, Kotzerke J, Reske SN (1999) FDG PET can replace bone scintigraphy in primary staging of malignant lymphoma. J Nucl Med 40:1407–1413

    CAS  PubMed  Google Scholar 

  372. Schirrmeister H, Guhlmann A, Elsner K, Kotzerke J, Glatting G, Rentschler M, Neumaier B, Trager H, Nussle K, Reske SN (1999) Sensitivity in detecting osseous lesions depends on anatomic localization: planar bone scintigraphy versus F18 PET. J Nucl Med 40:1623–1629

    CAS  PubMed  Google Scholar 

  373. Garcia JR, Simo M, Soler M, Perez G, Lopez S, Lomena F (2005) Relative roles of bone scintigraphy and positron emission tomography in assessing the treatment response of bone metastases. Eur J Nucl Med Mol Imaging 32:1243–1244

    Article  CAS  PubMed  Google Scholar 

  374. Toegel S, Hoffmann O, Wadsak W et al (2006) Uptake of bone-seekers is solely associated with mineralization! A study with (99m)Tc-MDP, Sm-EDTMP and fluoride-(18F) on osteoblasts. Eur J Nucl Med Mol Imaging 33:491–494

    Article  PubMed  Google Scholar 

  375. Czernin J, Satyamurthy N, Schiepers C (2010) Molecular mechanisms of bone 18F-NaF deposition. J Nucl Med 51:1826–1829

    Article  CAS  PubMed  Google Scholar 

  376. Segall G, Delbeke D, Stabin MG, Even-Sapir E, Fair J, Sajdak R, Smith GT (2010) SNM practice guideline for sodium 18F-fluoride PET/CT bone scans. J Nucl Med 51:1813–1820

    Article  PubMed  Google Scholar 

  377. Yen RF, Chen CY, Cheng MF, Wu YW, Shiau YC, Wu K, Hong RL, Yu CJ, Wang KL, Yang RS (2010) The diagnostic and prognostic effectiveness of F-18 sodium fluoride PET-CT in detecting bone metastases for hepatocellular carcinoma patients. Nucl Med Commun 31:537–545

    Article  CAS  Google Scholar 

  378. Sheth S, Colletti PM (2012) Atlas of sodium fluoride PET bone scans: atlas of NaF PET bone scans. Clin Nucl Med 37:e110–e115

    Article  PubMed  Google Scholar 

  379. Blake GM, Park-Holohan SJ, Cook GJ et al (2001) Quantitative studies of bone with the use of 18F-fluoride and 99mTc-methylene diphosphonate. Semin Nucl Med 31:28–49

    Article  CAS  PubMed  Google Scholar 

  380. Cook GJ, Fogelman I (2001) The role of positron emission tomography in skeletal disease. Semin Nucl Med 31:50–61

    Article  CAS  PubMed  Google Scholar 

  381. Even-Sapir E (2005) Imaging of malignant bone involvement by morphologic, scintigraphic, and hybrid modalities. J Nucl Med 46:1356–1367

    PubMed  Google Scholar 

  382. Cook GJ, Houston S, Rubens R et al (1998) Detection of bone metastases in breast cancer by 18-FDG PET: differing metabolic activity in osteoblastic and osteolytic lesions. J Clin Oncol 16:3375–3379

    Article  CAS  PubMed  Google Scholar 

  383. Gnanasegaran G, Cook G, Fogelman I (2007) Musculoskeletal system. In: Biersac HJ, Freeman LM (eds) Clinical nuclear medicine. Springer, Berlin, pp 241–262

    Chapter  Google Scholar 

  384. Taira AV, Herfkens RJ, Gambhir SS, Quon A (2007) Detection of bone metastases: assessment of integrated FDG PET/CT imaging. Radiology 243(1):204–211

    Article  PubMed  Google Scholar 

  385. Costelloe CM, Chuang HH, Chasen BA, Pan T, Fox PS, Bassett RL, Madewell JE (2013) Bone windows for distinguishing malignant from benign primary bone tumors on FDG PET/CT. J Cancer 4:524–530

    Article  PubMed  PubMed Central  Google Scholar 

  386. Kruger S et al (2009) Detection of bone metastases in patients with lung cancer: 99mTc-MDP planar bone scintigraphy, 18F-fluoride PET or 18F-FDG PET/CT. Eur J Nucl Med Mol Imaging 36:1807

    Article  PubMed  Google Scholar 

  387. Iagaru A et al (2012) Prospective evaluation of (99m)Tc MDP scintigraphy, (18)F NaF PET/CT, and (18)F FDG PET/CT for detection of skeletal metastases. Mol Imaging Biol 14:252

    Article  PubMed  Google Scholar 

  388. Jadvar H et al (2012) Prospective evaluation of 18F-NaF and 18F-FDG PET/CT in detection of occult metastatic disease in biochemical recurrence of prostate cancer. Clin Nucl Med 37:637

    Article  PubMed  PubMed Central  Google Scholar 

  389. Lin FI et al (2012) Prospective comparison of combined 18F-FDG and 18F-NaF PET/CT vs. 18F-FDG PET/CT imaging for detection of malignancy. Eur J Nucl Med Mol Imaging 39:262

    Article  CAS  PubMed  Google Scholar 

  390. Iagaru A, Mittra E, Mosci C, Dick DW, Sathekge M, Prakash V, Gambhir SS (2013) Combined 18F-fluoride and 18F-FDG PET/CT scanning for evaluation of malignancy: results of an international multicenter trial. J Nucl Med 54(2):176–183

    Article  CAS  PubMed  Google Scholar 

  391. Karamzade-Ziarati N, Manafi-Farid R, Ataeinia B, Langsteger W, Pirich C, Mottaghy FM, Beheshti M (2019) Molecular imaging of bone metastases using tumor-targeted tracers. Q J Nucl Med Mol Imaging. 63(2):136–149

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Elgazzar, A.H., Alenezi, S.A. (2022). Musculoskeletal System. In: Elgazzar, A.H. (eds) The Pathophysiologic Basis of Nuclear Medicine. Springer, Cham. https://doi.org/10.1007/978-3-030-96252-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-96252-4_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-96251-7

  • Online ISBN: 978-3-030-96252-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics