Skip to main content
Log in

Factors affecting uptake and retention of technetium-99m-diphosphonate and 99m-pertechnetate in osseous, connective and soft tissues

  • Original Papers
  • Published:
Calcified Tissue Research Aims and scope Submit manuscript

Abstract

The bone scanning complex,99mTc−Sn·EHDP, consisting of the nuclide technetium-99m, stannous ion and ethane-1-hydroxy-1,1-diphosphonate, administered intravenously is retained in soft tissues in proportion to increasing calcium content of the tissues. Within bone tissue, the retention is proportional to vascularity and to surface area of calcium phosphate in bones and not necessarily to calcium and phosphate concentration. The nuclidic agent99mTcO 4 but not the99mTc-diphosphonate is selectively taken up by the thyroid and this uptake can be blocked by administering sodium perchlorate. Among the connective tissues studied, the tracheal cartilage seems to have the greatest potential to calcify with increasing age of the animal and man. Soft tissue does not retain the bone scanning complex99mTc−Sn·EHDP but does retain99mTcO 4 .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bonte, F.J., Parkey, R.W., Graham, K.D., Moore, J., Stokeley, E.M.: A new method for radionuclide imaging of myocardial infarcts. Radiology110, 473–474 (1974)

    PubMed  CAS  Google Scholar 

  2. Breazile, J.E.: Textbook of, veterinary physiology. p. 560–561. Philadelphia: Lea and Febiger 1971

    Google Scholar 

  3. Brookes, M.: The blood supply of bone, pp 7–66. London: Butterworths 1971

    Google Scholar 

  4. Fordham, E.W., Ramachandran, P.C.: Radionuclide imaging of osseous trauma. Seminars in Nuclear Med.4, 411–429 (1974)

    Article  CAS  Google Scholar 

  5. Francis, M.D.: The inhibition of calcium hydroxyapatite crystal growth by polyphosphonates and polyphosphates. Calcif. Tiss. Res.3, 151–162 (1969)

    Article  CAS  Google Scholar 

  6. Francis, M.D., Webb, N.C.: Hydroxyapatite formation from a hydrated calcium monohydrogen phosphate precursor. Calcif. Tiss. Res.6, 335–342 (1971)

    Article  CAS  Google Scholar 

  7. John, M.K.: Automated digestion system for safe use of perchloric acid. Analyt. Chem.44, 429–430 (1972)

    Article  CAS  Google Scholar 

  8. Lucena-Conde, F., Prat, L.: A new reagent for the colorimetric and spectrophotometric determination of phosphorus, arsenic, and germanium. Analyt. chim. Acta16, 473–479 (1957)

    Article  CAS  Google Scholar 

  9. McDougall, I.R., Pistenma, D.A.: Concentration of99mTc-diphosphonate in breast tissue. Radiology112, 655–657 (1974)

    PubMed  CAS  Google Scholar 

  10. Pendergrass, H.P., Potsaid, M.S., Castronovo, F.P.: The clinical use of99mTc-diphosphonate (HEDSPA). Radiology107, 557–562 (1973)

    PubMed  CAS  Google Scholar 

  11. Posner, A.S.: Crystal chemistry of bone mineral. Physol. Rev.49, 760–792 (1969)

    CAS  Google Scholar 

  12. Silberstein, E.B., Saenger, E.L., Tofe, A.J., Alexander, G.W., Park, H.M.: Imaging of bone metastases with99mTc−Sn·EHDP (diphosphonate),18F, and skeletal radiography. Radiology107, 551–555 (1973)

    PubMed  CAS  Google Scholar 

  13. Silberstein, E.B., Francis, M.D., Tofe, A.J., Slough, C.L.: Distribution of99mTc−Sn diphosphonate and free99mTc-pertechnetate in selected soft and hard tissues. J. Nucl. Med.16, 58–61 (1975)

    PubMed  CAS  Google Scholar 

  14. Subramanian, G., McAfee, J.G.: A new complex of99mTc for skeletal imaging. Radiology99, 192–196 (1971)

    PubMed  CAS  Google Scholar 

  15. Termine, J.D., Wuthier, R.E., Posner, A.S.: Amorphous- crystalline mineral changes during endochondral and periosteal bone formation. Proc. Soc. exp. Biol (N.Y.)125, 4–9 (1967)

    CAS  Google Scholar 

  16. Tofe, A.J., Francis, M.D.: Optimization of the ratio of stannous tin: ethane-1-hydroxy1,1-diphosphonate for bone scanning with99mTc-pertechnetate. J. Nucl. Med.15, 69–74 (1974)

    PubMed  CAS  Google Scholar 

  17. Van Dyke, D., Anger, H.O., Parker, H., McRae, J., Dobson, E.L., Yano, Y., Naets, J.P., Linfoot, J.: Markedly increased bone blood flow in myelofibrosis. J. Nucl. Med.12, 506–512 (1971)

    PubMed  Google Scholar 

  18. Van Dyke, D., Anger, H.O., Yano, Y., Bozzini, C.: Bone blood flow shown with F18 and the positron camera. Amer. J. Physiol.209, 65–70 (1965)

    Google Scholar 

  19. Wellman, H.N., Browne, A., Kavula, M., Khairi, M., Anger, R., Tofe, A.J., Francis, M.D.: Optimization of a new kit prepared skeletal-imaging agent,99mTc−Sn·EHDP, compared with18F. In: Radiopharmaceuticals and labeled compounds, vol. I, p. 93–108. Vienna: IAEA 1973

    Google Scholar 

  20. Werner, S.C., Ingbar, S.H.: The thyroid, 3rd ed., p. 42. New York: Harper & Row 1971

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Francis, M.D., Slough, C.L., Tofe, A.J. et al. Factors affecting uptake and retention of technetium-99m-diphosphonate and 99m-pertechnetate in osseous, connective and soft tissues. Calc. Tis Res. 20, 303–311 (1976). https://doi.org/10.1007/BF02546417

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02546417

Key words

Navigation