Skip to main content

Genomic Design for Abiotic Stress Resistance in Pigeonpea

  • Chapter
  • First Online:
Genomic Designing for Abiotic Stress Resistant Pulse Crops

Abstract

Pigeonpea is a versatile food grain that grows in the regions of tropical and subtropical climates. Biotic and abiotic factors have a big impact on pigeonpea yields. This chapter gives an insight into the major abiotic stresses affecting pigeonpea production and productivity across the globe, such as drought, waterlogging (WL), salinity tolerance, temperature tolerance (heat and cold), photoperiod, and metal toxicity. These above-mentioned abiotic stresses are expected to exacerbate by changing climate scenario. Despite the fact that traditional breeding efforts paved the way for the use of genetic diversity in a large-scale, yield levels have not improved significantly. Abiotic stress screening among cultivars and germplasm through traditional methods is difficult as abiotic stress is influenced by soil and agronomic variables and is frequently complicated by significant variation in occurrence, duration, and intensity. High-throughput and innovative phenotyping platforms helps in achieving the precision and also speed up the assessment of pigeonpea germplasm for different abiotic stresses. Modern genomic, as well as phenomic technologies and also the latest speed breeding methods may greatly benefit and fast track the development of climate-smart pigeonpea cultivars. The recent advances in the in modern breeding technologies like quantitative trait locus (QTL) mapping, marker-assisted back cross breeding (MABC), marker-assisted recurrent selection (MARS), next-generation sequencing (NGS), genomic selection (GS), genomics-assisted breeding (GAB) and their application in the categorization of helpful traits related to abiotic stresses can alleviate and advance the process of trait transfer from wild and its relative species into the backgrounds of cultivated better genotypes. In this chapter, we summarise the options for combating abiotic stresses by exploring the recent genomic technologies based on trait-specific improvements as well as their potential limitations and challenges.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdelrahman M, Jogaiah S, Burritt DJ, Tran LSP (2018) Legume genetic resources and transcriptome dynamics under abiotic stress conditions. Plant Cell Environ 1–12. https://doi.org/10.1111/pce.13123

  • Abdi A, Bekele E, Asfaw Z, Teshome A (2002) Patterns of morphological variation of sorghum (Sorghum bicolor (L.) Moench) landraces in qualitative characters in North Showa and South Welo. Ethiopia. Hereditas 137:161–172

    Google Scholar 

  • Abhijit A, Daspute Y, Kobayashi SK, Panda B, Fakrudin Y, Kobayashi M, Tokizawa S, Iuchi CAK, Yamamoto YY, Koyamal H (2017) Characterization of CcSTOP1; a C2H2 type transcription factor regulates Al tolerance gene in pigeonpea. Planta. https://doi.org/10.1007/s00425-017-2777-6

  • Ahmed M, Hassen F, Qadeer U, Aslam MA (2011) Silicon application and drought tolerance mechanism of sorghum. Afr J Agri Res 6(3):594–607

    Google Scholar 

  • Ariyanayagam RP, Spence JA (1978) A possible gene source for early, day length neutral pigeonpeas, Cajanus cajan (L.) Millspaugh. Euphytica 27:505–509

    Google Scholar 

  • Arora S, Mahato AK, Singh S, Mandal P, Bhutani S, Dutta S., Kumawat,G., Singh BP,Chaudhary AK, Yadav R, Gaikwad K, Sevanthi, AM, Datta S, Raje, RS, Sharma, TR, Singh NK (2017) A high-density intraspecific SNP linkage map of pigeonpea (Cajanas cajan L. Millsp.). PLoS One 12(6):e0179747. https://doi.org/10.1371/journal

  • Aruna R, Rao DM, Sivaramakrishnan S, ReddyJL BP, Upadhyaya H (2008) Efficiency of three DNA markers in revealing genetic variation among wild Cajanus species. Plant Genet Resour 7:113–121. https://doi.org/10.1017/S1479262108061479

  • Ashraf M (1994) Salt tolerance of pigeonpea (Cajanus cajan (L.) Millsp.) at three growth stages. Ann Appl Biol 124:153–164

    Google Scholar 

  • Atif RM, Patat-Ochatt EM, Svabova L, Ondrej V, Klenoticova Jacas L, Griga M, Ochatt SJ (2013) Gene transfer in legumes. In: Lüttge U, Beyschlag W, Francis D, Cushman J (eds) Progress in Botany. Springer-Verlag, Berlin Heidelberg, pp 73–100

    Google Scholar 

  • Ayenan MAT, Ofori K, Ahoton LE, and Danquah A (2017) Pigeonpea [(Cajanus cajan (L.) Millsp.)] production system, farmers’ preferred traits and implications for variety development and introduction in Benin. Agric Food Secur 6:48. https://doi.org/10.1186/s40066-017-0129-1

  • Babasaheb W, Akarsh P, Pratibha C, Pachchigar K, Chauhan RM (2013) Genetic analysis of wild and cultivated germplasm of pigeonpea using random amplified polymorphic DNA (RAPD) and simple sequence repeats (SSR) markers. Afr J Biotechnol 12(40):5823–5832

    Google Scholar 

  • Bahl PN (2015) Climate change and pulses: approaches to combat its impact. Agric Res. https://doi.org/10.1007/s40003-015-0163-9

  • Barrena R, Casals E, Colon J, Font X, Sanchez A, Puntes V (2009) Evaluation of the ecotoxicity of model nanoparticles. Chemosphere 75:850–857

    Google Scholar 

  • Bansal R, Srivastava JP (2015) Effect of waterlogging on photosynthetic and biochemical parameters in pigeonpea. Russ J Plant Physiol 62:322–327. https://doi.org/10.1134/S1021443715030036

  • Basu PS, Singh U, Kumar A, Praharaj CS, Shivran RK (2016) Climate change and its mitigation strategies in pulses production. Indian J Agron 6:S71–S82

    Google Scholar 

  • Berger JD, Buck R, Henzell JM, Turner NC (2005) Evolution in the genus Cicer-vernalization response and low temperature pod set in chickpea (C. arietinum L.) and its annual wild relatives. Aust J Agric Res 56:1191–1200

    Google Scholar 

  • Bhatnagar-Mathur P, Rao JS, Vadez V, Sharma KK (2010) Transgenic strategies for improved drought tolerance in legumes of semi-arid tropics. J Crop Improv 24:92–111

    Article  CAS  Google Scholar 

  • Bhatnagar-Mathur P, Vadez V, Devi M, Lavanya M, Vani G, Sharma KK (2009) Genetic engineering of chickpea (Cicerarietinum L.) with the P5CSF129A gene for osmoregulation with implications on drought tolerance. Mol Breed 23:591–606

    Article  CAS  Google Scholar 

  • Bhutani S (2011) Where is our Oryza? hybrid rice in india and its impacts on farmers’ rights over seeds. Living Farms and Development Research Communication and Services Centre (DRCSC), Odisha. November. livingfarms. org/wp/wp-content/uploads/2017/02/Hybrid- Rice-in-India-and-its-Impact-on-Farmers-Rights-Over- Seeds

    Google Scholar 

  • Bohra A, Dubey A, Saxena RK, Penmetsa RV, Poornima KN, Kumar N, Farmer AD, Srivani G, Upadhyaya HD, Gothalwal R, Ramesh R, Singh D, Saxena KB, Kavi Kishor PB, Singh NK, Town CD, May GD, Cook DR, Varshney RK (2011a) Analysis of BAC-end sequences (BESs) and development of BES-SSR markers for genetic mapping and hybrid purity assessment in pigeonpea. BMC Plant Biol 11:56

    Google Scholar 

  • Bohra A, Dubey A, Saxena RK, Penmetsa RV, Poornima KN, Kumar N, Farmer AD, Srivani,G., Upadhyaya HD, Gothalwal R, Ramesh S, Singh D, Saxena K, Kishor PBK, Singh NK, Town CD, May GD, Cook DR, Varshney RK (2011b) Analysis of BAC-end sequences (BESs) and development of BES-SSR markers for genetic mapping and hybrid purity assessment in pigeonpea (Cajanus spp.). BMC Plant Biol 11:56. http://www.biomedcentral.com/1471-2229/11/56

  • Bohra A, Jha UC, Kishor PK, Pandey S, Singh NP (2014) Genomics and molecular breeding in lesser explored pulse crops: current trends and future opportunities. Biotechnol Adv 32(8):1410–1428

    Google Scholar 

  • Bohra A, Jha R, Pandey G, Patil PG, Saxena RK, Singh IP, Singh D, Mishra RK, Mishra A, Singh F, Varshney RK, Singh NP (2017) New hypervariable SSR markers for diversity analysis, hybrid purity testing and trait mapping in pigeonpea [Cajanus cajan (L.) Millspaugh]. Front Plant Sci 8:1–15

    Google Scholar 

  • Bohra A, Mallikarjuna N, Saxena K, Upadhyaya HD, Vales I, Varshney RK (2010) Harnessing the potential of crop wild relatives through genomics tools for pigeonpea improvement. J Plant Biol 37(1):83–98

    Google Scholar 

  • Bohra A, Pareek S, Jones M, Jha UC, Naik SSJ, Kaashyap M, Patil PG, Maurya AK, Saxena R, Varshney RK (2019) Genomic interventions to improve resilience of pigeonpea in changing climate. In: Kole C (eds) Genomic Designing of Climate-Smart Pulse Crops. Springer, Cham, pp 107–134. https://doi.org/10.1007/978-3-319-96932-9_2

  • Bohra A, Saxena KB, Varshney RK, Saxena RK (2020) Genomics assisted breeding for pigeonpea improvement. Theor Appl Genet 133:1721–1737. https://doi.org/10.1007/s00122-020-03563-7

    Article  CAS  PubMed  Google Scholar 

  • Bohra A, Saxena RK, Gnanesh BN, Saxena KB, Byregowda M, Rathore A, KaviKishor PB, Cook DR, Varshney RK (2012) An intra-specific consensus genetic map of pigeonpea [Cajanus cajan (L.) Millspaugh] derived from six mapping populations. Theor Appl Genet 125:1325–1338

    Article  PubMed  PubMed Central  Google Scholar 

  • Bohra A, Singh NP (2015) Whole genome sequences in pulse crops: a global community resource to expedite translational genomics and knowledge-based crop improvement. Biotechnol Lett 37:1529–1539

    Article  CAS  PubMed  Google Scholar 

  • Burns MJ, Edwards KJ, Newbury HJ, Ford-Lloyd BV, Baggott CD (2001) Development of simple sequence repeat (SSR) markers for the assessment of gene flow and genetic diversity in pigeonpea (Cajanuscajan). Mol Ecol Notes 1:283–285

    Article  CAS  Google Scholar 

  • Byth DE, Wallis ES, Saxena KB (1981) Adaptation and breeding strategies for pigeonpea. In: Proceedings of ICRISAT/ICAR international workshop on Pigeonpeas, vol 1, pp 450–465

    Google Scholar 

  • Cai Y, Chen L, Liu X, Guo C, Sun S, Wu C, Jiang B, Han T, Hou W (2018) CRISPR/Cas9-mediated targeted mutagenesis of GmFT2a delays flowering time in soya bean. Nature 16:176–185

    CAS  Google Scholar 

  • Campbell TA, Foy CD, Mc Murty E, Elgin JE Jr (1988) Selection of alfalfa for tolerance to toxic levels of Al. Can J Plant Sci 68(3):743–753

    Article  CAS  Google Scholar 

  • Chapman AL, Muchow RC (1985) Nitrogen accumulated and partitioned at maturity by grain legumes grown under different water regimes in a semi-arid tropical environment. Field Crop Res 11:69–79

    Google Scholar 

  • Chauhan YS, Johansen C, Moon J, Lee L, Lee Y, Lee S (2002) Photoperiod responses of extra-short duration pigeonpea lines developed at different latitudes. Crop Sci 42:1139–1146

    Article  Google Scholar 

  • Chen K, Wang Y, Zhang R, Zhang H, Gao C (2019) CRISPR/Cas genome editing and precision plant breeding in agriculture. Annu Rev Plant Biol 70:667–697

    Article  CAS  PubMed  Google Scholar 

  • Cheng X, Li G, Tang Y, Wen J (2018) Dissection of genetic regulation of compound inflorescence development in Medicago truncatula. Development 145. https://doi.org/10.1242/dev.158766

  • Chikelu M, Afza R, Jain SM, Gregorio GB, Arias ZFJ (2007) Induced mutations for enhancing salinity tolerance in rice. In: Jenks MA, Hasegawa PM, Jain SM (eds) Advances in molecular breeding toward drought and salt tolerant crops. Springer, Netherlands, pp 413–454

    Google Scholar 

  • Cho S, Chen W, Muehlbauer FJ (2004) Pathotype-specific genetic factors in chickpea (Cicer arietinum L.) for quantitative resistance to ascochyta blight. Theor Appl Genet 109(4):733–739

    Google Scholar 

  • Choudhary AK (2007) Selection criteria for low temperature tolerance in long-duration pigeonpea. In: Proceedings of national symposium on ecologocal sustainability: emerging challenges and opportunities. Indian Society of Pulses Research and Development, Kanpur, India

    Google Scholar 

  • Choudhary DK, Prakash A Johri BN (2007) Induced systemic resistance (ISR) in plants: mechanism of action. Indian J Microbiol 47(4):289–297

    Google Scholar 

  • Choudhary AK (2013) Technological and extension yield gaps in pulses in Mandi district of Himachal Pradesh. Indian J Soil Conserve 41(1):88–97

    Google Scholar 

  • Choudhary AK, Sultana R, Vales MI, Saxena KB, Kumar RR, Ratnakumar P (2018) Integrated physiological and molecular approaches to improvement of abiotic stress tolerance in two pulse crops of the semi-arid tropics. Crop J 6(2):99–114

    Google Scholar 

  • Choudhary AK, Raje RS, Datta S, Sultana R, Ontagodi T (2013) Conventional and molecular approaches towards genetic improvement in pigeonpea for insects resistance. Am J Plant Sci 4:372–385

    Article  Google Scholar 

  • Choudhary AK, Singh D (2011) Screening of pigeonpea genotypes for nutrient up take efficiency under aluminium toxicity. Physiol Mol Biol Plants 17:145–152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choudhary AK, Sultana R, Chaturvedi SK, Sharma R, Bhattand BP, Singh SP (2015) Breeding strategies to mitigate abiotic stresses in pulses. In: Lead paper presented during the national conference on “emerging challenges and opportunities in biotic and abiotic stress management (ECOBASM-2014) held at Directorate of Rice Research, Hyderabad, India during, pp 16–21

    Google Scholar 

  • Choudhary AK, Sultana R, Pratap A, Nadarajan N, Jha UC (2011) Breeding for abiotic stresses in pigeonpea. J Food Legumes 24(3):165–174

    Google Scholar 

  • Choudhary AK, Vijayakumar AG (2012) Glossary of plant breeding: a perspective. LAP Lambert Academic Publishing, Saarbrücken

    Google Scholar 

  • Choudhary K, Sultana R, Chaturvedi SK, Sharma R, Bhatt BP, Singh SP (2014) Breeding strategies to mitigate abiotic stresses in pulses. In: Emerging challenges and opportunities for biotic and abiotic stress management (ECOBASM), pp 16–21

    Google Scholar 

  • Choudhury RP, Singh IP, Shulabhi V, Singh NP, Kumar S (2008) RAPD markers for identification of cytoplasmic genic male sterile, maintainer and restorer lines of pigeonpea. J Food Legumes 21:218–221

    Google Scholar 

  • Colin KK, Nora PC, Harold A, Chrystian CS, Vivian B, Mulualem TK, Sally LN, Van der Maesen LGJ, Upadhyaya HD et al (2015) Crop wild relatives of pigeonpea [Cajanus cajan (L.) Millsp.]: distributions, ex situ conservation status, and potential genetic resources for abiotic stress tolerance. Biol Conserv 184:259–270

    Article  Google Scholar 

  • Corbesier L, Vincent C, Jang S et al (2007) FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis. Science 316:1030–1033. https://doi.org/10.1126/science.1141752

    Article  CAS  Google Scholar 

  • Danekar P, Tyagi A, Mahto A, Krishna KG, Singh A, Raje RS, Gaikwad K, Singh NK (2014) Genome wide characterization of Hsp 100 family genes from pigeonpea. Ind J Genet 74(3):325–334. https://doi.org/10.5958/0975-6906.2014.00850.5

    Article  CAS  Google Scholar 

  • Das A, Das B (2019) Nanotechnology a potential tool to mitigate abiotic stress in crop plants. In: De Oliveira A (ed) Abiotic and biotic stress in plants. intechopen, London. http://dx.doi.org/https://doi.org/10.5772/intechopen.83562

  • Das A, Datta S, Sujayanand GK, Kumar M, Singh AK, Shukla A, Ansari J, Faruqui L, Thakur S, Kumar PA, Singh NP (2016) Expression of chimeric Bt gene, Cry1Aabc in transgenic pigeonpea (cv. Asha) confers resistance to gram pod borer (Helicoverpa armigera Hubner.). Plant Cell Tiss Org Cult 127(3):705–15

    Google Scholar 

  • Das G, Patra JK, Baek KH (2017) Insight into MAS: a molecular tool for development of stress resistant and quality of rice through gene stacking. Front Plant Sci 8

    Google Scholar 

  • Das S, Upadhyaya HD, Srivastava R, Bajaj D, Gowda CLL, Sharma S, Singh S, Tyagi AK, Parida SK (2015) Genome-wide insertion–deletion (InDel) marker discovery and genotyping for genomics assisted breeding applications in chickpea. DNA Res dsv020

    Google Scholar 

  • Daspute A, Fakrudin B (2015) Identification of coupling and repulsion phase DNA marker associated with an allele of a gene conferring host plant resistance to pigeonpea sterility mosaic virus (PPSMV) in pigeonpea (Cajanus cajan L. Millsp.). Plant Pathol J 31(1):33–40

    Google Scholar 

  • Daspute AA, Sadhukhan A, Tokizawa M, Kobayashi Y, Panda SK, Koyama H (2017) Transcriptional regulation of aluminum-tolerance genes in higher plants: clarifying the underlying molecular mechanisms. Front Plant Sci 8:1358

    Article  PubMed  PubMed Central  Google Scholar 

  • De Ronde JA, Cress WA, Kruger GHJ, Strasser RJ, Van Staden J (2004) Photosynthetic response of transgenic soybean plants, containing an Arabidopsis P5CR gene, during heat and drought stress. J Plant Physiol 161:1211–1224

    Article  PubMed  Google Scholar 

  • Deokar AA, Ramsey L, Sharpe AG, Diapari M, Bett K, Warkentin TD, Taran B (2014) Genome wide SNP identification in chickpea for use in development of a high density genetic map and improvement of chickpea reference genome assembly. BMC Genomics 15:1–19

    Article  Google Scholar 

  • Deshmukh DV, Mate SN (2013) Evaluation of pigeonpea geno-types form morpho physiological traits related to drought tolerance. World J Agric Sci 9:17–23

    Google Scholar 

  • Dhanasekar P, Dhumal KH, Reddy KS (2010) Identification of RAPD marker linked to plant type gene in pigeonpea. Ind J Biotechnol 9:58–63

    CAS  Google Scholar 

  • Dima O, Bocken H, Custers R, Inze D, Puigdomenech P (2020) Genome editing for crop improvement. Symp Summary, Berlin. https://doi.org/10.26356/gen-editing-crop.DOI:10.5958/0975-6906.2016.00066.3

    Book  Google Scholar 

  • Dubey SK, Uma S, Singh SK (2011a) Impact of climate change on pulse productivity and adaptation strategies as practiced by the pulse growers of Bundelkhand region of Uttar Pradesh. J Food Legumes 24(3):230–234

    Google Scholar 

  • Dubey A, Farmer A, Schlueter J, Cannon SB, Abernathy B, Tuteja R, Woodward J, Shah T, Mulasmanovic B, Kudapa H, Raju NL, Gothalwal R, Pande S, Xiao Y, Town CD, Singh NK, May GD, Jackson S, Varshney RK (2011b) Defining the transcriptome assembly and its use for genome dynamics and transcriptome profiling studies in pigeonpea (Cajanus cajan L.). DNA Res 18:153–164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duhan S, Sheok S, Kumari A (2017) Oxidative stress and antioxidative enzymes activity in pigeonpea leaves at different stages of development under waterlogging, salinity and combined stress of waterlogging and salinity. J Food Legumes 30(2):59–64

    Google Scholar 

  • Durgesh K, Joshi R, Kumar K, Gaikwad K, Raje RS, Prashat GR (2019). Inheritance pattern of cold tolerance in pigeonpea [Cajanus cajan (L.) Millsp.]. Ind J Genet 79(2): 404–410.

    Google Scholar 

  • Dutta S, Kumawat G, Singh BP, Gupta DK, Singh S, Dogra V, Gaikwad K, Sharma TR, Raje RS, Bandhopadhya TK, Datta S, Singh MN, Bashasab F, Kulwal P, Wanjari KB, Varshney RK, Cook DR, Singh NK (2011) Development of genic-SSR markers by deep transcriptome sequencing in pigeonpea [Cajanus cajan (L.) Millspaugh]. BMC Plant Biol 11:17

    Google Scholar 

  • Elsik CG, Mackey AJ, Reese JT, Milshina NV, Roos DS, Weinstock GM (2007) Creating a honey bee consensus gene set. Genome Biol 8(1):R13. https://doi.org/10.1186/gb-2007-8-1-r13.PMID:17241472;PMCID:PMC1839126

    Article  PubMed  PubMed Central  Google Scholar 

  • Flower DJ, Ludlow MM (1987) Variation among accessions of pigeonpea (Cajanus cajan ) in osmotic adjustment and dehydration tolerance of leaves. Field Crops Res 17:229–243

    Article  Google Scholar 

  • Frankel OH (1984) Genetic perspective of germplasm conservation. In: Arber W, Limensee K, Peacock WJ, Stralinger P (eds) Genetic Manipulation: Impact on Man and Society. Cambridge University Press, UK, pp 161–170

    Google Scholar 

  • Ganapathy KN, Byregowda M, Venkatesha SC, Rama Chandra R, Gnanesh BN, Girish G (2009) Identification of AFLP markers linked to sterility mosaic disease in pigeonpea Cajanus cajan(L.) Millsp. Intl J Integr Biol 7:145–149

    CAS  Google Scholar 

  • Ganguly S, Ghosh G, Purohit A, Chaudhuri RK, Chakraborti D (2018) Development of transgenic pigeonpea using high throughput plumular meristem transformation method. Plant Cell Tiss Org Cult 135(1):73–83

    Article  CAS  Google Scholar 

  • Garcia J, Silva W, Massel M (1979) An efficient method for screening maize inbred lines for Al tolerance. Maydica 233:75–82

    Google Scholar 

  • Gaur PM, Jukanti AK, Varshney RK (2012) Impact of genomic technologies on chickpea breeding strategies. Agronomy 2:199–221

    Article  Google Scholar 

  • Gepts P (1999) Development of an integrated linkage map. In: Singh SP (ed) Development in Plant Breeding. Common Bean Improvement in the Twenty-First Century. Kluwer, Dordrecht, The Netherlands, pp 53–91

    Google Scholar 

  • Ghosh G, Ganguly S, Purohit A, Chaudhuri RK, Das S, Chakraborti D (2017) Transgenic pigeonpea events expressing Cry1Ac and Cry2Aa exhibit resistance to Helicoverpa armigera. Plant Cell Rep 36(7):1037–1051

    Article  CAS  PubMed  Google Scholar 

  • Ghosh G, Purohit A, Chaudhuri RK, Chakraborti D (2014a) Advances in genetic transformation of important pulse crop pigeonpea. OA Biotechnol 12:5

    Google Scholar 

  • Ghosh G, Purohit A, Ganguly S, Chaudhuri RK, Chakraborti D (2014b) In vitro shoot grafting on rootstock: An effective tool for Agrobacterium-mediated transformation of pigeonpea (Cajanus cajan (L.) Millsp.). Plant Biotechnol 31:301–308

    Article  CAS  Google Scholar 

  • Gill LS, Husaini SWH (1986) Cytological observations in Leguminosae from Southern Nigeria. Willdenowia 15:521–527

    Google Scholar 

  • Gnanesh BN, Bohra A, Sharma M, Byregowda M, Pande S, Wesley V, Saxena RK, Saxena KB, KaviKishor PB, Varshney RK (2011a) Genetic mapping and quantitative trait locus analysis of resistance to sterility mosaic disease in pigeonpea [Cajanus cajan (L.) Millsp.]. Field Crops Res 123:53–61

    Article  Google Scholar 

  • Gnanesh BN, Ganapathy KN, Ajay BC, Byre Gowda M (2011b) Inheritance of sterility mosaic disease resistance to Bangalore and Patancheru isolates in pigeonpea (Cajanus cajan (L.) Millsp.). Elec J Plant Breed 2:218–223

    Google Scholar 

  • Goodman MM (1990) Genetic and germ plasm stocks worth conserving. J Hered 81(1):11–16

    Article  CAS  PubMed  Google Scholar 

  • Greilhuber J, Obermayer R (1998) Genome size variation in Cajanus cajan (Fabaceae): a reconsideration. Plant Syst Evol 212(1):135–141

    Article  Google Scholar 

  • Gubis J, Vanková R, Cervená V, Dragúnová M, Hudcovicová M, Lichtnerová H, Dokupil T, Jureková Z (2007) Transformed tobacco plants with increased tolerance to drought. S Afr J Bot 73:505–511

    Article  CAS  Google Scholar 

  • Gull R, Bhat TA, Sheikh TA, Wani OA, Fayaz S, Nazir A, Saad AA, Jan S, Nazir I, Nisah R (2020) Climate change impact on pulse in India—a review. J Pharmacog Phytochem 9(4):3159–3166

    CAS  Google Scholar 

  • Gupta PK, Varshney RK (2000) The development and use of microsatellite markers for genetic analysis and plant breeding with emphasis on bread wheat. Euphytica 113:163–185

    Article  CAS  Google Scholar 

  • Handschumacher RE, Harding MW, Rice J, Drugge RJ, Speicher DW (1984) Cyclophilin: a specific cytosolic binding protein for cyclosporin A. Science 226(4674):544–547

    Article  CAS  PubMed  Google Scholar 

  • Harlan JR, de Wet JMJ (1971) Towards a rational classification of cultivated plants. Taxon 20:509–517

    Article  Google Scholar 

  • He H, He L, Gu M (2014) Role of microRNAs in Aluminium stress in plants. Plant Cell Rep 33:831–836

    Article  CAS  PubMed  Google Scholar 

  • Hickey LT, Hafeez Amber N, Robinson H, Jackson SA, Leal- Bertioli SCM, Tester M, Gao C, Godwin ID, Hayes BJ, Wulff BBH (2019) Breeding crops to feed 10 billion. Nat Biotechnol 37:744–754

    Article  CAS  PubMed  Google Scholar 

  • Hingane AJ, Saxena KB, Patil SB, Sultana R, Srikanth S, Mallikarjuna N, Kumar SCV (2015) Mechanism of water-logging tolerance in pigeonpea. Ind J Genet 75(2):208. https://doi.org/10.5958/0975-6906.2015.00032.2

    Article  Google Scholar 

  • Hiremath PJ, Kumar A, Penmetsa RV, Farmer A, Schlueter JA, Chamarthi SK, Adam M, Carrasquilla-Garcia N, Gaur PM, Upadhyaya HD, Kavikishor PB, Shah TM, Cook DR, Varshney RK (2012) Large-scale development of cost-effective SNP marker assays for diversity assessment and genetic mapping in chickpea and comparative mapping in legumes. Plant Biotechnol J 10:716–732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hosoda F, Nishimura S, Uchida H, Ohki M (1990) An F factor based cloning system for large DNA fragments. Nucl Acids Res 18(13):3863–3869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hospital F (2003) Marker assisted breeding In: Newbury HJ (ed) Plant molecular breeding. Blackwell Publishing, Carlton, Australia 30–56. http://dx.doi.org/https://doi.org/10.1007/s00299-014-1565-z

  • Ibrahim AK, Zhang L, Niyitanga S et al (2020) Principles and approaches of association mapping in plant breeding. Tropical Plant Biol 13:212–224

    Article  Google Scholar 

  • Izawa T (2007) Daylength measurements by rice plants in photoperiodic shortday flowering. Int Rev Cytol 256:191–222

    Article  CAS  PubMed  Google Scholar 

  • Jaberzadeh A, Moaveni P, Moghadam HRT, Zahedi H (2013) Influence of bulk and nanoparticles titanium foliar application on some agronomic traits, seed gluten and starch contents of wheat subjected to water deficit stress. Notulae Botanicae Horti Agrobotanici Cluj- Napoca 41:201–207

    Article  CAS  Google Scholar 

  • Jackson SA, Iwata A, Lee SH, Schmutz J, Shoemaker R (2011) Sequencing crop genomes: approaches and applications. New Phytol 191:915–925

    Article  CAS  PubMed  Google Scholar 

  • Jaglo-Ottosen KR, Gilmour SJ, Zarka DG, Schabenberger O, Thomashow MF (1998) Arabidopsis CBF1 over expression induces COR genes and enhances freezing tolerance. Science 280:104–106

    Article  CAS  PubMed  Google Scholar 

  • Jeong S, Clark SE (2005) Photoperiod regulates flower meristem development in Arabidopsis thaliana. Genetics 169:907–915. https://doi.org/10.1534/genetics.104.033357

  • Joshi S, Nimbalkar JD (1983) Effect of salt stress on growth and yield in Cajanus cajan L. Plant Soil 74:291–294

    Article  CAS  Google Scholar 

  • Kaila T, Chaduvla PK, Saxena S, Bahadur K, Gahukar SJ, Chaudhury A, Sharma TR, Singh NK, Gaikwad K (2016) Chloroplast genome sequence of pigeonpea (Cajanus cajan (L.) Millspaugh) and Cajanus scarabaeoides (L.) Thouars: genome organization and comparison with other legumes. Front Plant Sci 7:1847. https://doi.org/10.3389/fpls.2016.01847

  • Kallihal PK, Chandrashekhar SS, Shwetha KS, Salimath PM, Dhone KV (2016) Characterization of pigeonpea (Cajanus cajan L. Millsp.) genotypes based on morphological traits. Bioinfolet 13:212–215

    Google Scholar 

  • Karajol K, Naik GR (2011) Seed Germination rate as a phenotypical marker for the selection of Nacl tolerant cultivars in pigeonpea (Cajanus cajan (L.) Millsp.). World J Sci Technol 1:01–08

    Google Scholar 

  • Kassa MT, Penmetsa RV, Carrasquilla-Garcia N, Sarma BK, Datta S, Upadhyaya HD, Varshney RK, Von Wettberg EJB, Cook DR (2012a) Genetic patterns of domestication in pigeonpea (Cajanus cajan (L.) Millsp.) and wild Cajanus relatives. PLoS One 7:e39563

    Google Scholar 

  • Kassa MT, Varma PR, Garcia CN, Sarma BK, Datta S et al (2012b) Genetic patterns of domestication in pigeonpea (Cajanus cajan (L) Millsp) and wild Cajanus relatives. PLoS ONE 7:6

    Article  Google Scholar 

  • Kaul T, Sony SK, Verma R, Motelb KFA, Prakash AT, Eswaran M, Bharti J, Nehra M, Kaul R (2020) Revisiting CRISPR/Cas-mediated crop improvement: Special focus on nutrition. J Biosci 45:137. https://doi.org/10.1007/s12038-020-00094-7

    Article  CAS  PubMed  Google Scholar 

  • Kaur A, Sharma M, Sharma C, Kaur H, Kaur N, Sharma S, Arora R, Singh I, Sandhu JS (2016) Pod borer resistant transgenic pigeon pea (Cajanus cajan L.) expressing cry1Ac transgene generated through simplified Agrobacterium transformation of pricked embryo axes. Plant Cell Tiss Org Cult 127(3):717–727

    Google Scholar 

  • Kaushal N, Bhandari K, Siddique KH, Nayyar H (2016) Food crops face rising temperatures: an overview of responses, adaptive mechanisms, and approaches to improve heat tolerance. Cogent Food Agri 2(1):1134380

    Google Scholar 

  • Kennedy RA, Rumpho ME, Fox TC (1992) Anaerobic metabolism in plants. Plant Physiol 100(1):1–6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khalekar GD, Akhare AA, Gahukar SJ, Singh NK, Kumar M (2014) Identification of simple sequence repeat markers associated with wilt resistance in pigeonpea. J Environ Biol 35(5):955–960

    PubMed  Google Scholar 

  • Khera P, Saxena R, Sameerkumar CV, Saxena K, Varshney RK (2015) SSRs and their utility in distinguishing wild species, CMS lines and maintainer lines in pigeonpea (Cajanus cajan L.). Euphytica 206:737–746

    Article  CAS  Google Scholar 

  • Khoiriyah N, Yuniastut IE, Purnomo D (2018) Genetic diversity of pigeonpea (Cajanus cajan (l.) Millsp.) based on molecular characterization using randomly amplified polymorphic DNA (RAPD) markers. Earth Environ Sci 129:012016. https://doi.org/10.1088/1755-1315/129/1/012016

  • Kimani PM, Benzioni A, Ventura M (1994) Genetic variation in pigeonpea (Cajanus cajan (L.) Mill sp.) in response to successive cycles of water stress. Plant Soil 158:193–201

    Article  CAS  Google Scholar 

  • Kimaro D, Melisa R, Sibiyaa J, Shimelisa H (2021) Agro-morphological characterization of pigeonpea (Cajanus cajan (L.) Millsp.): Basis to breeding. Agric Nat Resour 55:23–32

    Google Scholar 

  • Kinraide TB, Arnold RC, Baligar VC (1985) A rapid assay for aluminium phytotoxicity at submicromolar concentrations. Physiol Plant 65(3):245–250

    Article  CAS  Google Scholar 

  • Kochian LV (1995) Cellular mechanisms of aluminium toxicity and resistance in plants. Annu Rev Plant Physiol Plant Mol Biol 46:237–260. https://doi.org/10.1146/annurev.pp.46.060195.001321

    Article  CAS  Google Scholar 

  • Kochian LV, Pineros MA, Hoekenga OA (2005) The physiology, genetics and molecular biology of plant aluminum resistance and toxicity. Plant Soil 274:175–195. https://doi.org/10.1007/s11104-004-1158-7

    Article  CAS  Google Scholar 

  • Kooner SK, Cheema BL (2006) Source of resistance in Pigeonpea pod borer: pulse pathology progress report. Legume Res 4:11–16

    Google Scholar 

  • Kotresh H, Fakrudin B, Punnuri S, Rajkumar B, Thudi M, Paramesh H, Lohithswa H, Kuruvinashetti M (2006) Identification of two RAPD markers genetically linked to a recessive allele of a Fusarium wilt resistance gene in pigeonpea (Cajanus cajan (L.) Millsp.). Euphytica 149:113–120

    Article  CAS  Google Scholar 

  • Krishna G, Reddy PS, Ramteke PW, Bhattacharya PS (2010) Progress of tissue culture and genetic transformation research in pigeonpea pea [Cajanus cajan, L. Millsp.]. Plant Cell Rep 29:1079–1095

    Article  CAS  PubMed  Google Scholar 

  • Krishna TG, Reddy LJ (1981) Species affinities between cajanus cajan and some atylosia species based on esterase isoenzymes. Euphytica 31:709–713

    Article  Google Scholar 

  • Krishna TG, Reddy LJ (1982) Species affinities between Cajanus cajan and some Atylosia species based on esterase isozymes. Euphytica 31:709–713

    Article  Google Scholar 

  • Krishnamurthy L, Upadhyaya HD, Saxena KB, Vadez V (2011) Variation for temporary water logging response within the mini core pigeonpea germplasm. J Agri Sci 10:1–8

    Google Scholar 

  • Kudapa H, Bharti AK, Cannon SB, Farmer AD, Mulaosmanovic B, Kramer R et al (2012) A comprehensive transcriptome assembly of pigeonpea (Cajanaus cajan L.) using Sanger and secondgeneration sequencing platforms. Mol Plant 5:1020–1028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar D, Sultana R, Kumar RR, Kirti M (2020) Characterization of pigeonpea genotypes for waterlogging tolerance based on morpho-physiological and molecular traits. Curr J Appl Sci Technol 39(12):21–33

    Article  Google Scholar 

  • Kumar J, Choudhary AK, Solanki R, Pratap A (2011) Towards marker assisted selection in pulses—a review. Plant Breed 130:297–313

    Article  CAS  Google Scholar 

  • Kumar SM, Kumar BK, Sharma KK, Devi P (2004) Genetic transformation of pigeon pea with rice chitinase gene. Plant Breed 123:485–489

    Article  CAS  Google Scholar 

  • Kumar U, Shukla A (1991) The utilization of cold tolerant genotypes in pigeonpea. Plant Genet Resour Newsl 87:20–21

    Google Scholar 

  • Kumar V, Khan AW, Saxena RK, Garg V, Varshney RK (2016) First generation hapmap in Cajanus spp. reveals untapped variations in parental lines of mapping populations. Plant Biotechnol J 14:1673–1681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumawat G, Raje RS, Bhutani S, Pal JK, Mithra SVCR, Gaikwad K, Sharma TR, Singh NK (2012) Molecular mapping of QTLs for plant type and earliness traits in pigeonpea (Cajanus cajan L. Millsp). BMC Genetics 13:84

    Google Scholar 

  • Kummari D, Palakolanu SR, Kishor PK, Bhatnagar-Mathur P, Singam P, Vadez V, Sharma KK (2020) An update and perspectives on the use of promoters in plant genetic engineering. J Biosci 45(1):1–24

    Article  Google Scholar 

  • Kumutha D, Sairam RK, Ezhilmathi K, Chinnusamy V, Meena RC (2008) Effect of waterlogging on carbohydrate metabolism in pigeon pea (Cajanus cajan L.): upregulation of sucrose synthase and alcohol dehydrogenase. Plant Sci 175(5):706–716

    Google Scholar 

  • Kusum Y, Sanjay KY, Anurag Y, Veda PP, Upendra ND (2012) Genetic diversity of pigeonpea (Cajanus cajan (L.) Millsp.) cultivars and its wild relatives using randomly amplified polymorphic DNA (RAPD) markers. Amer J Plant Sci 3:322–330

    Article  Google Scholar 

  • Ladizinsky G, Hamel A (1980) Seed protein profiles of pigeonpea (Cajanus cajan) and some Atylosia species. Euphytica 29(3):13–317

    Google Scholar 

  • Lakshmi MP, Senthilkumar P, Parani M, Jithesh MN, Parida AK (2000) PCR-RFLP analysis of chloroplast gene regions in Cajanus (Leguminosae) and allied genera. Euphytica 116:243–250. https://doi.org/10.1023/A:1004030207084

    Article  CAS  Google Scholar 

  • Laware SL, Raskar S (2014) Effect of titanium dioxide nanoparticles on hydrolytic and antioxidant enzymes during seed germination in onion. Intl J Curr Microbiol Appl Sci 3(7):749–760

    CAS  Google Scholar 

  • Lawrence PK, Koundal KR (2001) Agrobacterium tumefaciens mediated transformation of pigeonpea (Cajanus cajan L. Millsp.) and molecular analysis of regenerated plants. Curr Sci 80:1428–1432

    CAS  Google Scholar 

  • Lee CW, Mahendra S, Zodrow K, Li D, Tsai YC, Braam J et al (2010) Developmental phytotoxicity of metal oxide nanoparticles to Arabidopsis thaliana. Environ Toxicol Chem 29:669–675

    Article  CAS  PubMed  Google Scholar 

  • Li C, Liu C, Qi X, Wu Y, Fei X, Mao L, Cheng B, Li X, Xie C (2017) RNA-guided Cas9 as an in vivo desired-target mutator in maize. Plant Biotechnol J 15:1566–1576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li H, Rasheed A, Hickey LT, He Z (2018) Fast-forwarding genetic gain. Trends Plant Sci 23:184–186

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Liu Z, Xing A, Moon BP, Koellhoffer JP, Huang L, Ward RT, Clifton E, Falco SC, Cigan AM (2015) Cas9 guide RNA directed genome editing in soybean. Plant Physiol 169:960–970

    Article  PubMed  PubMed Central  Google Scholar 

  • Lichtenzveig J, Scheuring C, Dodge J, Abbo S, Zhang HB (2005) Construction of BAC and BIBAC libraries and their applications for generation of SSR markers for genome analysis of chickpea. Cicer Arietinum L. Theor Appl Genet 110(3):492–510

    Google Scholar 

  • Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1998) Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell 10:1391–1406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lohithaswa HC, Hittalmani S, Shashidhar HE, Dhanaraj PS (2003) Assessment of genetic variability in some pigeonpea [Cajanus cajan (L.) Millsp.] genotypes using RAPD markers. Ind J Genet 63:329–330

    CAS  Google Scholar 

  • Lopez FB, Johansen C, Chauhan YS (1996) Effects of timing of drought stress on phenology, yield and yield components of short-duration pigeonpea. J Agric Crop Sci 177:311–320. https://doi.org/10.1111/j.1439-037X.1996.tb00251.x

    Article  Google Scholar 

  • Luque PDA (2017) Interaction of nanomaterials with plants: what do we need for real applications in agriculture? Front Environ Sci 5:12

    Google Scholar 

  • Lusser M, Cerezo ER (2012) Comparative regulatory approaches for new plant breeding techniques. In: Workshop proceedings (https://www.nbtplatform.org/background-documents/jrc-comparative-regulatory-approaches-for-nbts.pdf)

  • Lv J, Christie P, Zhang S (2019) Uptake, translocation and transformation of metal-based nanoparticles in plants: recent advances and methodological challenges. Environ Sci Nano 6(1):41–59

    Article  CAS  Google Scholar 

  • Mahmoodzadeh H, Nabavi M, Kashefi H (2013) Effect of nanoscale titanium dioxide particles on the germination and growth of canola (Brassica napus). J Ornament Hortic Plants 3:25–32

    Google Scholar 

  • Majumder ND, Singh F (2005) Pigeonpea improvement in India. In: Souvenir 4th International Food Legume Research Conference, October 18-22, 2005, New Delhi, pp 53–66

    Google Scholar 

  • Mallikarjuna N (2003) Wide hybridization in important food legumes. In: Jaiwal PK, Singh RP (eds) Improvement strategies for leguminosae biotechnology. Kluwer Academic Publishers, Dordrecht, pp 155–171

    Chapter  Google Scholar 

  • Mallikarjuna N, Jadhav D, Reddy P (2006) Introgression of Cajanus platycarpus genome into cultivated pigeonpea. C. Cajan. Euphytica 149:161–167

    Google Scholar 

  • Mallikarjuna N, Saxena KB (2002) Production of hybrids between Cajanus acutifolius and C. cajan. Euphytica 124:107–110

    Article  CAS  Google Scholar 

  • Mallikarjuna N, Saxena KB, Jadjav DR (2011) Cajanus. In: Kole C (ed) Wild crop relatives: genomic and breeding resources. Legume Crops and Forages. Springer, Berlin, pp 21–33

    Google Scholar 

  • Mallikarjuna N, Saxena RK, Byre Gowda M, Varshney RK (2017) Wide crossing technology for pigeonpea improvement. In: Varshney RK, Saxena RK, Jackson SA (eds) The Pigeonpea Genome. A volume of Kole C (ed) Compendium of Plant Genomes. Springer International Publishing AG, Switzerland, pp 41–54. https://doi.org/10.1007/978-3-319-63797-6-1

  • Mallikarjuna N, Jadhav D (2008) Techniques to produce hybrid between Cicer arietinum L. x C. pinnatifidum Jaub. Ind J Genet 68(4):398–405

    Google Scholar 

  • Malviya N, Yadav D (2010) RAPD analysis among pigeonpea [Cajanus cajan (L.) Millsp.] cultivars for their genetic diversity. Genet Eng Biotechnol J 1:1–9

    Google Scholar 

  • Maneesha KCU (2017) Analysis of genetic diversity in pigeonpea germplasm using retrotransposon-based molecular markers. J Genet 96(4):551–561

    Article  CAS  PubMed  Google Scholar 

  • Matsunaga R, Ito O, Tobita S, Rao TP (1991) Response of the pigeonpea [Cajanus cajan (L.) Millsp.] to nitrogen application and temporary waterlogging. In: Kutschera L, Hubl E, Lichtenegger E, Persson H, Sobotic M (eds) IRR Symposium. Wien University, Bodenkultur, Klagenfurt, pp 183–186

    Google Scholar 

  • Mehmood S, Bashir A, Ahmad A, Akram Z, Jabeen N, Gulfraz M (2008) Molecular characterization of regional Sorghum bicolor varieties from Pakistan. Pak J Bot 40:2015–2021

    CAS  Google Scholar 

  • Mellacheruvu S, Tamirisa S, Vudem DR, Khareedu VR (2016) Pigeonpea hybrid-proline-rich protein (CcHyPRP) confers biotic and abiotic stress tolerance in transgenic rice. Front Plant Sci 6:1167

    Article  PubMed  PubMed Central  Google Scholar 

  • Miller JC, Tanksley SD (1990) RFLP analysis of phylogenetic relationships and genetic variation in the genus Lycopersicon. Theor Appl Genet 80:437–448

    Article  CAS  PubMed  Google Scholar 

  • Mir RR, Saxena RK, Saxena KB, Upadhyaya HD, Kilian A, Cook DR, Varshney RK (2013) Whole‐genome scanning for mapping determinacy in Pigeonpea (Cajanus spp.). Plant Breed 132(5):472–478

    Google Scholar 

  • Mir RR, Kudapa H, Srikanth S, Saxena RK, Sharma A, Azam S, Saxena KB, Penmetsa RV, Varshney RK (2014) Candidate gene analysis for determinacy in pigeonpea (Cajanus spp.). Theor Appl Genet 127:2663–2678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mir RR, Rather IA, Bhat MA, Parray GA, Varshney RK (2017) Molecular mapping of genes and QTLs in pigeonpea. In: Varshney RK, Saxena RK, Jackson SA (eds) The Pigeonpea Genome. A Volume of Kole C (ed) Compendium of plant genomes. Springer International Publishing AG, Switzerland. https://doi.org/10.1007/978-3-319-63797-6_6

  • Modrzejewski D, Hartung F, Sprink T, Krause D, Kohl C, Wilhelm R (2019) What is the available evidence for the range of applications of genome-editing as a new tool for plant trait modification and the potential occurrence of associated off-target effects: a systematic map. Environ Evid 8:27

    Article  Google Scholar 

  • Mun JH, Kim DJ, Choi HK, Gish J, Debelle F, Mudge J, Denny R, Endre G, Saurat O, Dudez AM, Kiss GB, Roe B, Young ND, Cook D (2006) Distribution of microsatellites in the genome of Medicago truncatula: a resource of genetic markers that integrate genetic and physical maps. Genetics 172:2541–2555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Munns R, James RA (2003) Avenues for increasing salt tolerance of crops and role of physiologically based selection traits. Plant Soil 247:93–105. https://doi.org/10.1023/A:1021119414799

    Article  Google Scholar 

  • Murdock LL, Coulibaly O, Higgins TJV, Huesing JE, Ishiyaku M, Sithole-Niang I (2008) Cowpea. In: Kole C, Hall TC (eds) Compendium of transgenic crop plants: transgenic legume grains and forages. Wiley-Blackwell, pp 23–56

    Google Scholar 

  • Mustafa G, Sakata K, Komatsu S (2015) Proteomic analysis of flooded soybean root exposed to aluminum oxide nanoparticles. J Proteom 128:280–297

    Article  CAS  Google Scholar 

  • Nadimpalli RG, Jarret JL, Pathak SC, Kochert G (1993) Phylogenetic relationships of pigeonpea (Cajanus cajan) based on nuclear restriction fragment length polymorphism. Genome 36:216–223. https://doi.org/10.1139/g93-030

    Article  CAS  PubMed  Google Scholar 

  • Navneet A, Sikarwar RS, Singh AK, Anilkumar R (2017) Genetic diversity in pigeonpea (Cajanus cajan L. Millsp.). Intl J Agric Sci 9:4177–4179

    Google Scholar 

  • Nayyar H, Bains T, Kumar S (2005) Low temperature induced floral abortion in chickpea: relationship to abscisic acid and cryoprotectants in reproductive organs. Environ Exper Bot 53(1):39–47

    Article  CAS  Google Scholar 

  • Neha KS (2019) Psp68, A Dead Box Helicase confers salinity tolerance in transgenic pigeon pea. Intl J Curr Microbiol Appl Sci 8(04):309–324

    Article  CAS  Google Scholar 

  • Niu L, Li H, Song Z, Dong B, Cao H, Liu T, Du T, Yang W, Amin R, Wang L, Yang Q, Meng D, Fu Y (2021) The functional analysis of ABCG transporters in the adaptation of pigeonpea (Cajanus cajan) to abiotic stresses. Peer J 9. https://doi.org/10.7717/peerj.10688

  • Nuffiel Council on Bioethics (1999) The use of geneticallymodified crops in developing countries: a follow up discussion paper. London, UK. www.nuffieldbioethics.org/gmcrops

  • Obala J, Saxena RK, Singh V, Sameer Kumar CV, Saxena KB, Tongoona P, Sibiya J, Varshney RK (2019) Development of sequence-based markers for seed protein content in pigeonpea. Mol Gen Genom 294:57–68

    Article  CAS  Google Scholar 

  • Odeny DA, Jayashree B, Ferguson M, Hoisington D, Cry LJ, Gebhardt C (2007a) Development, characterization and utilization of microsatellite markers in pigeonpea. Plant Breed 126:130–136

    Article  CAS  Google Scholar 

  • Odeny DA, Jayshree B, Ferguson M, Hoisington D, Crauch J et al (2007b) Development of microsatellite markers in Pigeonpea. Plant Breed 126:130–137

    Article  CAS  Google Scholar 

  • Odeny DA, Jayashree B, Gebhardt C, Crouch (2009) New microsatellite markers for pigeonpea (Cajanus cajan (L.) millsp.) BMC Res Notes 2(1):1–5

    Google Scholar 

  • Omanga PA, Summerfield RJ, Qi A (1995) Flowering of pigeonpea (Cajanus cajan) in Kenya: responses of early-maturing genotypes to location and date of sowing. Field Crops Res 41(1):25–34

    Article  Google Scholar 

  • Pazhamala LT, Purohit, S, Saxena RK, Garg V, Krishnamurthy L, Verdier J, Varshney RK (2017) Gene expression atlas of pigeonpea and its application to gain insights into genes associated with pollen fertility implicated in seed formation. J Experiment Bot 68(8):2037–2054

    Google Scholar 

  • Panguluri SK, Janaiah K, Govil JN, Kumar PA, Sharma PC (2005) AFLP fingerprinting in pigeonpea (Cajanus cajan L. Millsp.) and its wild relatives. Genet Resour Crop Evol 53:523–531. https://doi.org/10.1007/s10722-004-2031-5

    Article  Google Scholar 

  • Panguluri SK, Janaiah K, Govil JN, Kumar PA, Sharma PC (2006a) AFLP fingerprinting in pigeonpea (Cajanus cajan (L.) Millsp.) and its wild relatives. Genet Resour Crop Evol 53:523–531

    Article  Google Scholar 

  • Panguluri SK, Janaiah K, Govil JN, Kumar PA, Sharma PC (2006b) RFLP fingerprinting in Pigeonpea and its wild relatives. Genet Resour Crop Evol 53:523–531

    Article  Google Scholar 

  • Pazhamala L, Saxena RK, Singh VK, Sameer kumar CV, Kumar V, Sinha P, Patel K, Obala J, Kaoneka SR, Tongoona P, Shimelis HA, Gangarao NVPR, Odeny D, Rathore A, Dharmaraj PS, Yamini KN, Varshney RK, (2015) Genomics-assisted breeding for boosting crop improvement in pigeonpea (Cajanus cajan). Front Plant Sci 6:50. https://doi.org/10.3389/fpls.2015.00050

    Article  PubMed  PubMed Central  Google Scholar 

  • Perera AM, Pooni HS, Saxena KB (2001) Components of genetic variation in short duration pigeonpea crosses under waterlogged conditions. J Genet Breed 55:21–38

    Google Scholar 

  • Pineros MA, Kochian LV (2001) A patch-clamp study on the physiology of aluminum toxicity and aluminum tolerance in maize. Identification and characterization of Al+3 induced anion channels. Plant Physiol 125:292–305. https://doi.org/10.1104/pp.125.1.292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pocketbook FS (2018) World food and agriculture. FAO Rome Italy

    Google Scholar 

  • Pooniya V, Choudhary AK, Dass A, Bana RS, Rana KS, Rana DS, Tyagi VK, Puniya MM (2015) Improved crop management practices for sustainable pulse production: An Indian perspective. Indian J Agri Sci 85(6):747–758

    Google Scholar 

  • Prasad V, Satyavathi VV, Sanjaya, Valli KM, Khandelwal A, Shaila MS, Lakshmi Sita G (2004) Expression of biologically active hemagglutinin-neuraminidase protein of Peste des petits ruminants virus in transgenic pigeonpea [Cajanus cajan L., Millsp.]. Plant Sci 166:199–205

    Google Scholar 

  • Prasanna PAL, Rao LVS, Prasad ASH, Waris A, Meera SN, Nirmala B, Kumar SA, Syamaladevi DP (2019) Intellectual property rights protection for plant varieties in India: status, emerging issues, and challenges. Agric Econ Res Rev 32(2):259–270. https://doi.org/10.5958/0974-0279.2019.00037.5

    Article  Google Scholar 

  • Priyanka B, Sekhar K, Reddy VD, Rao KV (2010a) Expression of pigeonpea hybrid-proline-rich protein encoding gene (CcHyPRP) in yeast and Arabidopsis affords multiple abiotic stress tolerance. Plant Biotechnol J 8(1):76–87

    Article  CAS  PubMed  Google Scholar 

  • Priyanka B, Sekhar K, Sunitha T, Reddy VD, Rao KV (2010b) Characterization of expressed sequence tags (ESTs) of pigeonpea (Cajanus cajan L.) and functional validation of selected genes for abiotic stress tolerance in Arabidopsis thaliana. Mol Genet Genom 283:273–287

    Article  CAS  Google Scholar 

  • Promila K, Kumar S (1982) Effect of salinity on flowering and yield characters in pigeonpea. Ind J Plant Physiol 25:252–257

    Google Scholar 

  • Pundir RPS, Singh RB (1986) Karyotype analysis of Cajanus, Atylosia and Rhynchosia species. Theor Appl Genet 72:307–313

    Article  CAS  PubMed  Google Scholar 

  • Pundir RPS, Singh RB (1987) Possibility of genetic improvement in pigeonpea utilizing the wild genetic resources. Euphytica 36:33–37

    Article  Google Scholar 

  • Pundir RPS, Singh RB (1985) Cytogenetics of F1 hybrids between Cajanus and Atylosia species and its phylogenetic implications. Theor Appl Genet 71:216–220

    Article  CAS  PubMed  Google Scholar 

  • Radadiya N, Parekh VB, Dobariya B, Mahatma L, Mahatma MK (2016) Abiotic stresses alter expression of S-Adenosylmethionine synthetase gene, polyamines and antioxidant activity in pigeon pea (Cajanus cajan L.). Legume Res Intl 39(6)

    Google Scholar 

  • Raghu BN, Gowda B, Vasudevan SN, Macha SI, Hiregoudar SG, Hosmani AK (2017) Effect of nano based seed treatment insecticides on seed quality in pigeonpea. J Appl Nat Sci 9(2):1226–1235

    Article  Google Scholar 

  • Rajesh PN, Coyne C, Meksem K, Sharma KD, Gupta V, Muehlbauer FJ (2004) Construction of a HindIII bacterial artificial chromosome library and its use in identification of clones associated with disease resistance in chickpea. Theor Appl Genet 108(4):663–669

    Article  CAS  PubMed  Google Scholar 

  • Raju BB, Rai PK (2017) Studies on effect of polymer seed coating, nanoparticles and hydro priming on seedling characters of Pigeonpea (Cajanus cajan L.) seed. J Pharmacog Phytochem 6(4):140–145

    Google Scholar 

  • Ramu SV, Rohini S, Keshavareddy G, Neelima MG, Shanmugam NB, Kumar ARV, Sarangi SK, Ananda Kumar P, Udayakumar M (2012) Expression of a synthetic cry1AcF gene in transgenic pigeonpea confers resistance to Helicoverpa armigera. J Appl Entomol 136:675–687

    Article  CAS  Google Scholar 

  • Rana DS, Dass A, Rajanna GA, Kaur RA (2016) Biotic and abiotic stress management in pulses. Ind J Agron 61:S238–S248

    Google Scholar 

  • Rao IM, Venkataratnam N, Sheldrake AR, Rao IM (1981) Field screening of pigeonpea for tolerance to soil salinity. Int Chickpea Pigeonpea Newsl 1:23

    Google Scholar 

  • Rao KS, Sreevathsa R, Sharma PD, Keshamma E, Udaya KM (2008) In planta transformation of pigeon pea: a method to overcome recalcitrancy of the crop to regeneration in vitro. Physiol Mol Biol Plant 14:321–328

    Article  CAS  Google Scholar 

  • Rao NK, Reddy LJ, Bramel PJ (2003) Potential of wild species for genetic enhancement of some semi-arid food crops. Genet Resour Crop Evol 50:707–721

    Article  Google Scholar 

  • Ratnaparkhe MB, Gupta VS, VenMurthy MR, Ranjekar PK (1995) Genetic fingerprinting of pigeonpea (Cajanus cajan (L.) Millsp) and its wild relatives using RAPD markers. Theor Appl Genet 91:893–898. https://doi.org/10.1007/BF00223897

    Article  CAS  PubMed  Google Scholar 

  • Reddy LJ (1990) Pigeonpea: morphology. In: Nene YL, Hall SD, Shiela VK (eds) The Pigeonpea. CAB International, Wallingford, Oxon, UK, pp 44–87

    Google Scholar 

  • Reddy LJ, Green JM, Sharma D (1981) Genetics of Cajanus cajan (L.) Millsp x Atylosia spp. In: Workshop on Pigeonpeas, vol 2. International Crops Research Institute for the Semi-Arid Tropics, Patancheru, Andhra Pradesh, India, pp 39–50

    Google Scholar 

  • Reddy LJ, Saxena KB, Jain KC, Singh U, Green JM, Sharma D, Faris DG, Rao AN, Kumar RV, Nene YL (1997) Registration of high protein elite germplasm ICPL 87162. Crop Sci 37:94

    Article  Google Scholar 

  • Reddy LJ, Upadhyaya HD, Gowda CLL, Singh S (2005) Development of core collection in pigeonpea [Cajanus cajan (L.) Millspaugh] using geographic and qualitative morphological descriptors. Genet Resour Crop Evol 52:1049–1056. https://doi.org/10.1007/s10722-004-6152-7

    Article  Google Scholar 

  • Reddy PJ (2001) Screening of pigeonpea genotypes for drought tolerance under black cotton soils of Krishna Godavari zone. Ann Plant Physiol 15:104–106

    Google Scholar 

  • Reddy SJ, Virmani, SM (1981) Pigeonpea and its climatic environment. In Proceedings of the international workshop on pigeonpeas, vol 1. ICRISAT AP, India, 259–270

    Google Scholar 

  • Remanandan P, Sastry DVSSR, Mengesha MH (1988) Pigeonpea germplasm catalogue: evaluation and analysis. International Crops Research Institute for the Semi-Arid Tropics, Patancheru, Andhra Pradesh, India, 90 pp.

    Google Scholar 

  • Ribaut JM (2008) International programs and the use of modern biotechnologies for crop improvement. In: Moore P, Ming R (eds) Genomics trop crop plants. Springer, New York, NY, USA, pp 21–63

    Chapter  Google Scholar 

  • Romi O, Jhansi RK, Anuradha CH, Jamaloddim M, Swathi (2015) Genetic diversity study of pigeonpea (Cajanus cajan (L.) Millsp.) genotypes using SSR markers. Elec J Plant Breed 6(1):74–80

    Google Scholar 

  • Roorkiwal M, Sawargaonkar SL, Chitikineni A, Thudi M, Saxena RK, Upadhyaya HD, Vales MI, Riera-Lizarazu O, Varshney RK (2013) Single nucleotide polymorphism genotyping for breeding and genetics applications in chickpea and pigeonpea using the BeadXpress platform. Plant Genome 6:1–10

    Article  CAS  Google Scholar 

  • Saifi S, Passricha N, Tuteja N, Swain D (2018) Prediction of cis-regulatory elements for a detailed insight of RuvB family genes from Oryza sativa. ORYZA - Intl J Rice 54. https://doi.org/10.5958/2249-5266.2017.00019.4

  • Sandhu JS, Gupta SK, Singh S, Dua RP (2007) Genetic variability for cold tolerance in pigeonpea. J SAT Agric Res 5:1–3

    Google Scholar 

  • Sardana V, Sharma P, Sheoran P (2009) Growth and production of pulse. In:Soils, plant growth and crop production, vol III. WH Verheye, EOLSS Publishers /UNESCO, London, pp 378–416

    Google Scholar 

  • Sarode SB, Singh MN, Singh UP (2007) Genetics of water logging tolerance in pigeonpea [Cajanus cajan (L.) Millsp.]. Ind J Genet 67:264–265

    Google Scholar 

  • Satyavathi VV, Prasad V, Khandelwal A, Shaila MS, Lakshmi Sita G (2003) Expression of hemagglutinin protein of Rinder pest virus in transgenic pigeon pea (Cajanus cajan (L.) Millsp.) plants. Plant Cell Rep 21:651–658

    Google Scholar 

  • Saxena KB (1999) Pigeonpea in Sri Lanka. International Crops research Institute for the Semi Arid Tropics, Patancheru, AP, India, p 84

    Google Scholar 

  • Saxena KB (2000) Pigeonpea. In: Gupta SK (ed) Plant breeding—theory and techniques. Agrobios, Jodhpur, India, pp 82–112

    Google Scholar 

  • Saxena KB (2008) Genetic improvement of pigeonpea - A review. Tropical Plant Biol 1:159–178. https://doi.org/10.1007/s12042-008-9014-1

    Article  Google Scholar 

  • Saxena KB, Bohra A, Choudhary AK, Sultana R, Sharma M, Pazhamala LT, Saxena RK (2021a) The alternative breeding approaches for improving yield gains and stress response in pigeonpea (Cajanus cajan). Plant Breed 140:74–86. https://doi.org/10.1111/pbr.12863

    Article  CAS  Google Scholar 

  • Saxena RK, Hake A, Bohra A et al (2021b) A diagnostic marker kit for Fusarium wilt and sterility mosaic diseases resistance in pigeonpea. Theor Appl Genet 134:367–379

    Article  CAS  PubMed  Google Scholar 

  • Saxena KB, Kumar RV (2003) Development of a cytoplasmic nuclear male-sterility system in pigeonpea using C. scarabaeoides (L.) Thouars. Ind J Genet 63(3):225–229

    Google Scholar 

  • Saxena KB, Kumar RV, Reddy LJ, Arora A (2003) Pigeonpea. In: Singhal NC (ed) Hybrid seed production in field crops: principles and practices. Kalyani Publishers, Ludhiana, India, pp 163–181

    Google Scholar 

  • Saxena KB, Sultana R, Mathur PB, Saxena RK, Chauhan YS, Kumar RV, Singh IP, Raje RS, Tikle AN (2016a) Accomplishments and challenges of pigeonpea breeding research in India. Indian J Genet 76(4):467–482. https://doi.org/10.5958/09756906.2016.00065.1

    Article  Google Scholar 

  • Saxena RK, Saxena KB, Kumar CVS, Singh NP, Varshney RK (2016b) Strategies for pigeonpea improvement. Legume Perspect 11

    Google Scholar 

  • Saxena KB, Wallis ES, Byth DE, (1983a) A new gene for male sterility in pigeonpea (Cajanus cajan (L). Millsp.). Heredity 51(1):419–421

    Google Scholar 

  • Saxena NP, Natarajan M, Reddy MS (1983b) Chickpea, pigeonpea, and groundnut. In: Smith WH, Banta SJ (eds) Potential productivity of field crops under different environments. IRRI, Los Banos, Philippines, pp 281–305

    Google Scholar 

  • Saxena R, Prathima C, Saxena K, Hoisington D, Singh N, Varshney R (2010a) Novel SSR markers for polymorphism detection in pigeonpea (Cajanus spp.). Plant Breed 129:142–148

    Article  CAS  Google Scholar 

  • Saxena RK, Saxena K, Varshney RK (2010b) Application of SSR markers for molecular characterization of hybrid parents and purity assessment of ICPH 2438 hybrid of pigeonpea [Cajanus cajan (L.) Millspaugh]. Mol Breed 26:371–380

    Article  CAS  Google Scholar 

  • Saxena RK, Cui X, Thakur V, Walter B, Close TJ, Varshney RK (2011) Single feature polymorphisms (SFPs) for drought tolerance in pigeonpea (Cajanus spp.). Funct Integr Genom 11:651–657

    Article  CAS  Google Scholar 

  • Saxena RK, Molla J, Yadav P, et al. (2020a) High resolution mapping of restoration of fertility (Rf) by combining large population and high density genetic map in pigeonpea [Cajanus cajan (L.) Millsp]. BMC Genomics 21, 460

    Google Scholar 

  • Saxena RK, Hake A, Hingane AJ, Kumar CVS, Bohra A, Sonnappa M, Rathore A, Kumar AV, Mishra A, Tikle AN, Sudhakar C, Rajamani S, Patil DK, Singh IP, Singh NP, Varshney RK (2020b) Translational Pigeonpea Genomics Consortium for Accelerating Genetic Gains in Pigeonpea (Cajanus cajan L.). Agronomy 10(9):1289

    Google Scholar 

  • Saxena RK, Kale S, Mir RR, Mallikarjuna N, Yadav P, Das RR, Molla J, Sonnappa M, Ghanta A, Narasimhan Y et al (2020c) Genotyping-by-sequencing and multilocation evaluation of two interspecific backcross populations identify QTLs for yield-related traits in pigeonpea. Theor Appl Genet 133:737–749

    Article  CAS  PubMed  Google Scholar 

  • Saxena RK, Kale SM, Kumar V, Parupalli S, Joshi S, Singh VK, Garg V, Das RR, Sharma M, Yamini KN, Ghanta A, Rathore A, Sameer Kumar CV, Saxena KB, Varshney RK (2017a) Genotyping-by-sequencing of three mapping populations for identification of candidate genomic regions for resistance to sterility mosaic disease in pigeonpea. Sci Rep 7:1813

    Article  PubMed  PubMed Central  Google Scholar 

  • Saxena RK, Obala J, Sinjushin A, Sameer-Kumar CV, Saxena KB, Varshney RK (2017b) Characterization and mapping of Dt1 locus which co-segregates with CcTFL1 for growth habit in pigeonpea. Theor Appl Genet 130:1773–1784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saxena RK, Singh VK, Kale SM, Tathineni R, Parupalli S, Kumar V, Garg V, Das RR, Sharma M, Yamini KN, Muniswamy S, Ghanta A, Rathore A, Sameer Kumar CV, Saxena KB, Kavi Kishor PB, Varshney RK (2017c) Construction of genotyping-by-sequencing based high-density genetic maps and QTL mapping for fusarium wilt resistance in pigeonpea. Sci Rep 7:1911

    Article  PubMed  PubMed Central  Google Scholar 

  • Saxena RK, Patel K, Sameer Kumar CV, Tyagi K, Saxena KB, Varshney RK (2018a) Molecular mapping and inheritance of restoration of fertility (Rf) in A4 hybrid system in pigeonpea (Cajanus cajan (L.) Millsp.). Theor Appl Genet 131:1605–1614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saxena RK, Rathore A, Bohra A, Yadav P, Das RR, Khan AW, Singh VK, Chitikineni A, Singh IP, Sameer Kumar CV, Saxena KB, Varshney RK (2018b) Development and application of high density Axiom Cajanus SNP Array with 56 K SNPs to understand the genome architecture of released cultivars and founder genotypes for redefining future pigeonpea breeding programs. Plant Genome 11:3

    Article  CAS  Google Scholar 

  • Saxena RK, Penmetsa RV, Upadhyaya HD, Kumar A, Carrasquilla- Garcia N, Schlueter JA, Farmer A, Whaley AM, Sarma BK, May GD, Cook DR, Varshney RK (2012) Large-scale development of cost-effective single-nucleotide polymorphism marker assays for genetic mapping in pigeonpea and comparative mapping in legumes. DNA Res 19:449–461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saxena RK, Von Wettberg E, Upadhyaya HD, Sanchez V, Songok S, Saxena K, Varshney RK (2014) Genetic diversity and demographic history of Cajanus spp. illustrated from genome-wide SNPs. PLoS One 9(2):e88568

    Google Scholar 

  • Schindele A, Dorn A, Puchta H (2020) CRISPR/Cas brings plant biology and breeding into the fast lane. Curr Opin Biotechnol 61:7–14

    Article  CAS  PubMed  Google Scholar 

  • Schlueter JA, Lin JY, Schlueter SD, Vasylenko SIF, Deshpande S, Yi J, O’Bleness M, Roe BA, Nelson RT, Scheffler BE, Jackson SA, Shoemaker RC (2007) Gene duplication and paleopolyploidy in soybean and the implications for whole genome sequencing. BMC Genomics 8:330

    Article  PubMed  PubMed Central  Google Scholar 

  • Sekhar K, Priyanka B, Reddy VD, Rao KV (2010) Isolation and characterization of a pigeonpea cyclophilin (CcCYP) gene, and its over-expression in Arabidopsis confers multiple abiotic stress tolerance. Plant Cell Environ 33(8):1324–1338

    CAS  PubMed  Google Scholar 

  • Sekhar K, Priyanka B, Reddy VD, Rao KV (2011) Metallothionein 1 (CcMT1) of pigeonpea (Cajanus cajan L.) confers enhanced tolerance to copper and cadmium in Escherichia coli and Arabidopsis thaliana. Environ Exp Bot 72(2):131–139

    Google Scholar 

  • Setter T, Belford B (1990) Waterlogging: how it reduces plant growth and how plants can overcome its effects. J Depart Agric, West Austral, Ser 4 31(2):51–55

    Google Scholar 

  • Sharma KK, Lavanya K, Anjaiah A (2006) Agrobacterium tumefaciens-mediated production of transgenic pigeonpea (Cajanus cajan L. Millsp.) expressing the synthetic Bt Cry1AB gene. In Vitro Cell Dev Biol-Plant 42:165–173

    Article  CAS  Google Scholar 

  • Sharma KK, Lavanya M (2002) Recent developments in transgenics for abiotic stress in legumes of the semi-arid tropics. JIRCAS—Working—Report (23):61–73. In: Paper presented in a joint symposium and workshop on Genetic engineering of crop plants for abiotic stress, Bangkok, Thailand, 3–7 September 2001

    Google Scholar 

  • Sharma S, Paul PJ, Kumar CV, Rao PJ, Prasanthi L, Muniswamy S et al (2019) Evaluation and identification of promising introgression lines derived from wild Cajanus species for broadening the genetic base of cultivated pigeonpea (Cajanus cajan (L.) Millsp.). Front Plant Sci 10:1269

    Google Scholar 

  • Sharma S, Upadhyaya HD (2016a) Pre-breeding to expand primary genepool through introgression of genes from wild Cajanus species for pigeonpea improvement. Legume Perspect 11; ICRISAT, Patancheru, India

    Google Scholar 

  • Sharma S, Upadhyaya HD (2016b) Interspecific hybridization to introduce useful genetic variability for pigeonpea improvement. Ind J Genet 76:496–503

    Article  Google Scholar 

  • Shultz JL, Kazi S, Bashir R, Afzal JA, Lightfoot DA (2007a) The development of BAC-end sequence-based microsatellite markers and placement in the physical and genetic maps of soybean. Theor Appl Genet 114(6):1081–1090

    Article  CAS  PubMed  Google Scholar 

  • Shultz JL, Samreen K, Rabia B, Jawaad AA (2007b) Lightfoot DA: The development of BAC-end sequence-based microsatellite markers and placement in the physical and genetic maps of soybean. Theor Appl Genet 114:1081–1090

    Article  CAS  PubMed  Google Scholar 

  • Silim SN, Coe R, Omanga PA, Gwata ET (2006) The response of pigeonpea genotypes of different duration types to variation in temperature and photoperiod under field conditions in Kenya. J Food Agri Environ 4:209–214

    Google Scholar 

  • Singh BB, Singh DP, Singh NP (1997) Genetic variability in pigeonpea germplasm for cold tolerance. Ind J Genet 57:425–430

    Google Scholar 

  • Singh D, Choudhary AK (2009) Screening of pigeonpea genotypes for tolerance to aluminium toxicity. In: “Abstract” of the International conference on grain legumes: quality improvement, value addition and trade organized by ISPRD at IIPR, Kanpur during Feb 14–16

    Google Scholar 

  • Singh IP (2014) Project coordinator’s report. Presented to Annual Group Meet of AICRP on Pigeonpea (ICAR), 23–25 (May 2014) College of Agriculture. Pune, India, p 34

    Google Scholar 

  • Singh MN, Singh RS (2010) Inheritance of pod setting under low temperature in pigeonpea. Indian J Genet 70:277–280

    Google Scholar 

  • Singh NK, Gupta DK, Jayaswal PK, Mahato AK, Dutta S, Singh S, Bhutani S, Dogra V, Singh BP, Kumawat G, Pal JK, Pandit A, Singh A, Rawal H, Kumar A, Prashat RG, Khare A, Yadav R, Raje RS, Singh MN, Datta S, Fakrudin B, Wanjari KB, Kansal R, Dash PK, Jain PK, Bhattacharya R, Gaikwad K, Mohapatra T, Srinivasan R, Sharma TR (2011) The first draft of the pigeonpea genome sequence. J Plant Biochem Biotechnol 21:98–112. https://doi.org/10.1007/s13562-011-0088-8

    Article  PubMed  PubMed Central  Google Scholar 

  • Singh R, Sharma S, Kharb P, Saifi S, Tuteja N (2020) OsRuvB transgene induces salt tolerance in pigeon pea. J Plant Interact 15(1):17–26

    Article  CAS  Google Scholar 

  • Singh S, Singh KN, Kant R, Mehfooz S, Dutta S (2008) Assessment of genetic diversity among pigeonpea genotypes using SSR markers. Indian J Genet 68:255–260

    CAS  Google Scholar 

  • Singh U, Jambunathan R, Gurtu S (1981) Seed protein fractions and amino acid composition of some wild species of pigeonpea. J Food Sci Technol 18:83–85

    CAS  Google Scholar 

  • Singh VK, Khan AW, Saxena RK, Kumar V, Kale SM, Sinha P, Chitikineni A, Pazhamala LT, Garg V, Sharma M, Sameerkumar CV, Parupalli S, Suryanarayana V, Patil S, Muniswamy S, Ghanta A, Yamini KN, Dharmaraj PS, Varshney RK (2015) Next generation sequencing for identification of candidate genes for fusarium wilt and sterility mosaic disease in pigeonpea (Cajanus cajan). Plant Biotechnol J 14:1183–1194. https://doi.org/10.1111/pbi.12470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh VK, Khan AW, Saxena RK, Sinha P, Kale SM, Parupalli S, Kumar V, Chitikineni A, Vechalapu S, Sameer Kumar CV, Sharma M, Ghanta A, Yamini KN, Muniswamy S, Varshney RK (2017) Indel-seq: a fast-forward genetics approach for identification of trait-associated putative candidate genomic regions and its application in pigeonpea (Cajanus cajan). Plant Biotechnol J 15:906–914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh YP, Tomar SPS, Singh S (2020) Impact of biotic stress management technologies on yield, economics and energy indices of pigeonpea (Cajanus cajan) grown in Central India. Legume Res 43(1):61–67

    Google Scholar 

  • Sinha M, Shamim MD, Priya S, Singh KN (2013) DNA fingerprinting of pigeonpea (Cajanus cajan (L.) Millsp) genotypes by RAPD marker for the breeding of new varieties. Ind J Agric Biochem 26:195–198

    CAS  Google Scholar 

  • Sinha P, Singh VK, Suryanarayana V, Krishnamurthy L, Saxena RK, Varshney RK (2015a) Evaluation and validation of housekeeping genes as reference for gene expression studies in pigeonpea (Cajanus cajan) under drought stress conditions. PLoS One 10:e0122847

    Google Scholar 

  • Sinha P, Saxena KB, Saxena RK, Singh VK, Suryanarayana V, Kumar SCV, Mohan AVSK, Khan AW, Varshney RK (2015b) Association of nad7a gene with cytoplasmic male sterility in pigeonpea (Cajanus cajan). Plant Genome. 8:1–12. https://doi.org/10.3835/plantgenome2014.11.0084

    Article  CAS  Google Scholar 

  • Sinha P, Saxena RK, Singh VK, Varshney RK (2015c) Selection and validation of housekeeping genes as reference for gene expression studies in pigeonpea (Cajanus cajan) under heat and salt stress conditions. Front Plant Sci 6:1071

    Article  PubMed  PubMed Central  Google Scholar 

  • Sinha P, Pazhamala LT, Singh VK, Saxena RK, Krishnamurthy L, Azam S, Khan AW and Varshney RK (2016) Identification and validation of selected universal stress protein domain containing drought-responsive genes in pigeonpea (Cajanus cajan L.). Front Plant Sci 6:1065

    Google Scholar 

  • Singh VK, Khan AW, Saxena RK, Kumar V, Kale SM, Sinha P, Chitikineni A, Pazhamala LT, Garg V, Sharma M, Sameer Kumar CV (2016a) Next‐generation sequencing for identification of candidate genes for Fusarium wilt and sterility mosaic disease in pigeonpea (C ajanus cajan). Plant Biotechnol J 14(5):1183–1194

    Google Scholar 

  • Singh VK, Khan AW, Saxena RK, Kumar V, Kale SM, Sinha P, Chitikineni A, Pazhamala LT, Garg V, Sharma M, Sameerkumar CV, Parupalli S, Suryanarayana V, Patil S, Muniswamy S, Ghanta A, Yamini KN, Dharmaraj PS, Varshney RK (2016b) Next generation sequencing for identification of candidate genes for fusarium wilt and sterility mosaic disease in pigeonpea (Cajanus cajan). Plant Biotechnol J 14:1183–1194. https://doi.org/10.1111/pbi.12470

  • Singh NK, Gupta DK, Jayaswal PK, Mahato AK, Dutta S, Singh S, Bhutani S, Dogra V, Singh BP, Kumawat G, Pal JK (2012a) The first draft of the pigeonpea genome sequence. J Plant Biochemist Biotechnol 21(1):98–112

    Google Scholar 

  • Singh NK, Gupta DK, Jayaswal PK, Mahato AK, Dutta S et al (2012b) The first draft of the pigeonpea genome sequence. J Plant Biochem Biotechnol 21:98. https://doi.org/10.1007/s13562-011-0088-8

  • Sivaramakrishnan S, Seetha K, Rao AN, Singh L (1997) RFLP analysis of cytoplasmic male sterile lines in pigeonpea (Cajanus cajanL. Millsp.). Euphytica 126:293–299

    Google Scholar 

  • Sivaramakrishnan S, Seetha K, Reddy LJ (2002) Diversity in selected wild and cultivated species of pigeonpea using RFLP of mt DNA. Euphytica 125:21–28. https://doi.org/10.1023/A:1015759318497

    Article  CAS  Google Scholar 

  • Smartt J (1990) Grain legumes: evaluation and genetic resources. Cambridge University Press, Cambridge, UK, p 379

    Book  Google Scholar 

  • Smolders H (2006) (ed) Enhancing farmers’ role in crop development: framework information for participatory plant breeding in farmer field schools. PEDIGREA publication. Centre for Genetic Resources, The Netherlands, 60 pp.

    Google Scholar 

  • Songok S, Ferguson M, Muigai AW, Silim S (2010) Genetic diversity in pigeonpea [Cajanus cajan (L.) Millsp.] landraces as revealed by simple sequence repeat markers. Afr J Biotechnol 9:3231–3241

    CAS  Google Scholar 

  • Spence JA, Williams SJA (1972) Use of photoperiod response to change plant design. Crop Sci 12:121–122

    Article  Google Scholar 

  • Sri ND, Mohan MM, Mahesh K, Raghu K, Rao SSR (2016a) Amelioration of aluminium toxicity in pigeon pea [Cajanus cajan (L.) Millsp.] plant by 24-epibrassinolide. Amer J Plant Sci 7(12):1618–1628

    Google Scholar 

  • Sri ND, Mohan MM, Mahesh K, Raghu K. and Rao SSR (2016b) Amelioration of aluminium toxicity in pigeon pea [Cajanus cajan (L.) Millsp.] plant by 24-epibrassinolide. Amer J Plant Sci 7(12):1618–1628

    Google Scholar 

  • Srivastava N, Vadez V, Upadhyaya HD, Saxena KB (2006) Screening for intra and inter specific variability for salinity tolerance in pigeonpea (Cajanus cajan L. Millsp.) and its related wild species. E-J SAT Agric Res Crop Improv 2(1):1

    Google Scholar 

  • Subbarao GV, Chauhan YS, Johansen C (2000) Patterns of osmotic adjustment in pigeonpea—its importance as a mechanism of drought resistance. Eur J Agron 12:239–249

    Article  Google Scholar 

  • Subbarao GV, Johansen C, Jana MK, Rao JVDKK (1991) Comparative salinity responses among pigeonpea genotypes and their wild relatives. Crop Sci 31:415–418

    Article  Google Scholar 

  • Subbarao GV, Johansen C, Rao JVDKK, Jana MK (1990) Salinity tolerance in F1 hybrids of pigeonpea and a tolerant wild relative. Crop Sci 30:785–788

    Article  CAS  Google Scholar 

  • Sultana R, Choudhary AK, Pal AK, Saxena KB, Prasad BD, Singh RG (2014) A biotic stresses in major pulses: current status and strategies. In: Gaur RK, Sharma P (eds) Approaches to plant stress and their management. Springer, New Delhi, India, pp 173–190

    Chapter  Google Scholar 

  • Sultana R, Vales M, Saxena K, Rathore A, Rao S, Rao S, Kumar R (2013a) Waterlogging tolerance in pigeonpea (Cajanus cajan (L.) Millsp.): genotypic variability and identification of tolerant genotypes. J Agric Sci 151(5):659–671 (https://doi.org/10.1017/S0021859612000755).

  • Sultana R, Vales MI, Saxena KB, Rathore A, Rao SK, Myer M, Kumar RV (2013b) Water-logging tolerances in pigeonpea [Cajanus cajan (L.) Millsp]: genotypic variability and identification of tolerant genotypes. J Agric Sci 151:659–671

    Article  Google Scholar 

  • Sunitha M, Srinath T, Reddy VD, Rao KV (2017) Expression of cold and drought regulatory protein (Cc CDR) of pigeonpea imparts enhanced tolerance to major abiotic stresses in transgenic rice plants. Planta 245(6):1137–1148

    Article  CAS  PubMed  Google Scholar 

  • Surabhi VK, Rame Gowda, Nethra N (2021) Influence of seed treatment with nanoparticles on seed quality and storability of pigeonpea cv. BRG-2. Intl J Chem Stud 9(1):3645–3651. https://doi.org/10.22271/chemi.2021.v9.i1ay.11799

  • Surekha C, Beena MR, Arundhati A, Singh PK, Tuli R, Dutta-Gupta A, Kirti PB (2005) Agrobacterium-mediated genetic transformation of pigeon pea (Cajanus cajan (L.) Millsp.) usingembryonal segments and development of transgenic plants for resistance against Spodoptera. Plant Sci 169:1074–1080

    Article  CAS  Google Scholar 

  • Suresh S, Malathi D (2013) Gene pyramiding for biotic stress tolerance in crop plants. Wkly Sci Res J, 1–14

    Google Scholar 

  • Takele A, McDavid CR (1995) The response of pigeonpea cultivars to short durations of waterlogging. Afr Crop Sci J 3(1)

    Google Scholar 

  • Tamaki S, Matsuo S, Wong HL et al. (2007) Hd3a protein is a mobile flowering signal in rice. Science 80(316):1033–1036. https://doi.org/10.1126/scien ce.11417 53

  • Tamirisia S, Vudem DR, Khareedu VR (2014) Overexpression of pigeon pea stress-induced cold and drought regulatory gene (CcCDR) confers drought, salt, and cold tolerance in Arabidopsis. J Exp Bot 65: 4769–4781. https://doi.org/10.1093/jxb/eru224

  • Tanksley SD, McCouch SR (1997) Seed banks and molecular maps: unlocking genetic potential from the wild. Science 277:1063–1066

    Article  CAS  PubMed  Google Scholar 

  • Tanksley SD, Nelson JC (1996) Advanced backcross QTL analysis: a method for the simultaneous discovery and transfer of valuable QTL from un adapted germplasm into elite breeding lines. Theor Appl Genet 92:191–203

    Article  CAS  PubMed  Google Scholar 

  • Taoka K, Ohki I, Tsuji H et al. (2011) 14–3–3 proteins act as intracellular receptors for rice Hd3a florigen. Nature 476:332–335. https ://doi.org/https://doi.org/10.1038/natur e1027 2

  • Temnykh S, De Clerck G, Lukashova A, Lipovich L, Cartinhour S, Mc Couch S (2001) Computational and experimental analysis of microsatellites in rice (Oryza sativa L.): frequency, length variation, transposon associations, and genetic marker potential. Genome Res 11(8):1441–1452

    Google Scholar 

  • Thu TT, Dewaele E, Trung LQ, Claeys M, Jacobs M, Angenon G (2007) Increasing lysine levels in pigeonpea (Cajanus cajan (L.) Millsp.) seeds through genetic engineering. Plant Cell Tiss Org Cult 91:35–143

    Article  Google Scholar 

  • Thudi M, Gaur PM, Krishnamurthy L, Mir RR, Kudapa H, Fikre A, Kimurto P, Tripathi S, Soren KR, Mulwa R, Bharadwaj C, Datta S, Chaturvedi SK, Varshney RK (2014) Genomics-assisted breeding for drought tolerance: a dream comes true in chickpea! Funct Plant Biol 41:1178–1190

    Article  CAS  PubMed  Google Scholar 

  • Tian J, Wang C, Xia J, Wu L, Xu G, Wu W, Li D, Qin W, Han X, Chen Q, Jin W, Tian F (2019) Teosinte ligule allele narrows plant architecture and enhances highdensity maize yields. Science 365:658–664

    Article  CAS  Google Scholar 

  • Tikka SBS, Parmar LD, Chauhan RM (1997) First record of cytoplasmic-genic male-sterility system in pigeonpea and its related wild species. J Plant Physiol 137:64–71

    Google Scholar 

  • Torabian S, Zahedi M, Khoshgoftar AH (2016) Effects of foliar spray of two kinds of zinc oxide on the growth and ion concentration of sunflower cultivars under salt stress. J Plant Nutr 39(2):172–180

    Article  CAS  Google Scholar 

  • Tribhuvan KU, Das A, Srivastava H, Kumar K, Durgesh K, Mithra SA, Gaikwad K (2020) Identification and characterization of PEBP family genes reveal CcFT8 a probable candidate for photoperiod insensitivity in C. cajan. 3 Biotechnol 10(5):1–12

    Google Scholar 

  • Turnbull LV, Whiteman PC, Byth DE (1981) The influence of temperature and photoperiod on floral development of early flowering pigeonpea. In: International workshop on Pigeonpea, vol 2, 15–19 December 1980, Patancheru, AP, India, pp 217–222

    Google Scholar 

  • Tuteja N, Tuteja R (2004) Prokaryotic and eukaryotic DNA helicases: essential molecular motor proteins for cellular machinery. Eur J Biochem 271:1835–1848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tuteja R, Saxena RK, Davila J, Shah T, Chen W, Xiao YL, Fan G, Saxena KB, Alverson AJ, Spillane C, Town C, Varshney RK (2013) Cytoplasmic male sterility-associated chimeric open reading frames identified by mitochondrial genome sequencing of four Cajanus genotypes. DNA Res 20:485–495. https://doi.org/10.1093/dnares/dst025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Upadhyaya HD, Bhattacharjee R, Varshney RK, Hoisington DA, Reddy KN, Singh S (2008) Assessment of genetic diversity in pigeonpea using SSR markers. In: Annual joint meeting of ASA/CSSA, Houston, USA, 5–9 October 2008 (Abstracts No. 657–3)

    Google Scholar 

  • Upadhyaya HD, Reddy KN, Gowda CLL, Singh S (2007) Phenotypic diversity in the pigeonpea (Cajanus cajan) core collection. Genet Resour Crop Evol 54(6):1167–1184

    Article  Google Scholar 

  • Upadhyaya HD, Reddy KN, Sharma S, Varshney RK, Bhattachajee R et al (2011a) Pigeonpea composite collection and identification of germplasm for use in crop improvement programme. ICRISAT Newslett 123–126

    Google Scholar 

  • Upadhyaya HD, Reddy KN, Sharma S, Varshney RK, Bhattacharjee R, Singh S, Gowda CLL (2011b) Pigeonpea composite collection and identification of germplasm for use in crop improvement programmes. Plant Genet Resour 9:97–108

    Article  CAS  Google Scholar 

  • Upadhyaya HD, Reddy LJ, Gowda CLL, Reddy KN, Singh S (2006) Development of a mini core subset for enhanced and diversified utilization of pigeonpea germplasm resources. Crop Sci 46:2127–2132

    Article  Google Scholar 

  • Upadhyaya HD, Sastry DVS, Vetriventhan M, Pattanashetti SK, Reddy KN, Singh S (2016) Mini core collection: means to enhance utilization of germplasm. ICRISAT, Open Access repository

    Google Scholar 

  • Upadhyaya HD, Yadav D, Dronavalli N, Gowda CLL, Singh S (2010) Mini core germplasm collection for infusing genetic diversity in plant breeding programs. Elec J Plant Breed 1(4):1294

    Google Scholar 

  • Upadhyaya HD, Sharma S, Reddy KN, Saxena R, Varshney RK, Gowda CLL (2013) Pigeonpea. Genetic and Genomic Resources of Grain Legume Improvement. https://doi.org/10.1016/B978-0-12-397935-3.00008-6

    Article  Google Scholar 

  • Urrea-Gomej R, Ceballos H, Pandey S, Bahia-Filho AFC, Leon LA (1996) A greenhouse screening technique for acid soil tolerance in maize. Agron J 88:806–812

    Article  Google Scholar 

  • Vales MI, Srivastava RK, Sultana R, Singh S, Singh I, Singh G, Saxena KB (2012) Breeding for earliness in pigeonpea: Development of new determinate and non determinate lines. Crop Sci 52(6):2507–2516. https://doi.org/10.2135/cropsci2012.04.0251

    Article  Google Scholar 

  • Van der Maesen LJG (1990) Pigeonpea: origin, history, evolution, and taxonomy. In: Nene YL, Hill SH, Sheila VK (eds) The pigeonpea. CAB International, Wellingford, UK, pp 15–46

    Google Scholar 

  • Varshney RK, Sinha P, Singh VK, Kumar A, Zhang Q, Bennetzen JL (2020) 5Gs for crop genetic improvement. Curr Opin Plant Biol 56:190–196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Varshney RK (2016) Exciting journey of 10 years from genomes to fields and markets: some success stories of genomics-assisted breeding in chickpea, pigeonpea and groundnut. Plant Sci 242:98–107

    Article  CAS  PubMed  Google Scholar 

  • Varshney RK, Chen W, Li Y, Bharti AK, Saxena RK, Schlueter JA, Donoghue MTA, Azam S, Fan G, Whaley AM, Farmer AD, Sheridan J, Iwata A, Tuteja R, Penmetsa RV, Wu W, Upadhyaya HD, Yang SP, Shah T, Saxena KB, Michael T, McCombie WR, Yang B, Zhang G, Yang H, Wang J, Spillane C, Cook DR, May GD, Xu X, Jackson SA (2012a) Draft genome sequence of pigeonpea (Cajanus cajan), an orphan legume crop of resource-poor farmers. Nat Biotechnol 30:83–89

    Article  CAS  Google Scholar 

  • Varshney RK, Kudapa H, Roorkiwal M, Thudi M, Pandey MK, Saxena RK, Chamarthi SK, Mohan SM, Mallikarjuna N, Upadhyaya H, Gaur PM, Krishnamurthy L, Saxena KB, Nigam SN, Pande S (2012b) Advances in genetics and molecular breeding of three legume crops of semi-arid tropics using next-generation sequencing and high-throughput genotyping technologies. J Biosci 37(5):811–820

    Article  CAS  PubMed  Google Scholar 

  • Varshney RK, Graner A, Sorrells ME (2005) Genic microsatellite markers in plants: features and applications. Trends Biotechnol 23:48–55

    Article  CAS  PubMed  Google Scholar 

  • Varshney RK, Nayak SN, May GD, Jackson SA (2009) Next generation sequencing technologies and their implications for crop genetics and breeding. Trends Biotechnol 27:522–530

    Article  CAS  PubMed  Google Scholar 

  • Varshney RK, Penmetsa RV, Dutta S et al. (2010a) Pigeonpea Genomics Initiative (PGI): an international effort to improve crop productivity of pigeonpea (Cajanus cajan L.). Mol Breed 26(3):393–408

    Google Scholar 

  • Varshney RK, Thudi M, May GD, Jackson SA (2010b) Legume genomics and breeding. Plant Breed Rev 33:257–304

    Google Scholar 

  • Varshney RK, Hoisington DA, Nayak SN, Graner A (2010c) Molecular plant breeding: methodology and achievements. In: Methods in molecular biology: plant genomics, pp 283–304

    Google Scholar 

  • Varshney RK, Penmetsa RV, Dutta S, Kulwal PL, Saxena RK, Datta S, Sharma TR, Rosen B, Carrasquilla-Garcia N, Farmer AD, Dubey A (2010d) Pigeonpea genomics initiative (PGI): an international effort to improve crop productivity of pigeonpea (Cajanus cajan L.). Mol Breed 26(3):393–408

    Google Scholar 

  • Varshney RK, Saxena RK, Upadhyaya HD, Khan AW, Yu Y, Kim C, Rathore A, Kim D, Kim J, An S, Kumar V, Anuradha G, Yamini KN, Zhang W, Muniswamy S, Kim JS, Penmetsa RV, von Wettberg E, Datta SK (2017) Whole-genome resequencing of 292 pigeonpea accessions identifies genomic regions associated with domestication and agronomic traits. Nat Genet 49:1082–1088

    Google Scholar 

  • Varshney RK, Thudi M, Nayak SN, Gaur PM, Kashiwagi J, Krishnamurthy L, Jaganathanb D, Koppolu J, Bohra A, Tripathi S, Rathore A, Jukanti AK, Jayalakshmi V, Vemula A, Singh S, Yasin M, Sheshshayee MS, Viswanatha KP (2013a) Genetic dissectionof drought tolerance in chickpea (Cicer arietinum L.). Theor Appl Genet. https://doi.org/10.1007/s00122-013-2230-6

  • Varshney RK, Gaur PM, Chamarthi SK, Krishnamurthy L, Tripathi S, Kashiwagi J, Samineni S, Singh VK, Thudi M, Jaganathan D (2013b) Fast-track introgression of “QTL hotspot” for root traits and other drought tolerance traits in JG11, an elite and leading variety of chickpea. The Plant Genome 6(3), DOI: https://doi.org/10.3835/plantgenome2013.07.0022.

  • Varshney RK, Mohan SM, Gaur PM, Gangarao NVPR, Pandey MP, Bohra A, Sawargaonkar SL et al (2013c) Achievements and prospects of genomicsassisted breeding in three legume crops of the semi-arid tropics. Biotechnol Adv 31:1120–1134

    Article  PubMed  Google Scholar 

  • Venkata SKC, Rama P, Saxena RK, Saxena K, Upadhyaya HD, Siambi M et al (2019) Pigeonpea improvement: An amalgam of breeding and genomic research. Plant Breed 138:445–454. https://doi.org/10.1111/pbr.12656

    Article  Google Scholar 

  • Vincent NA, Deshpande SB, Moses Richard SA, Jones AC, Said SE, Santie DV (2016) SSR genetic diversity assessment of popular pigeonpea varieties in Malawi reveals unique fingerprints. Elec J Biotechnol 21:65–71

    Article  Google Scholar 

  • Vitorello VA, Capaldi FRC, Stefanuto VA (2005) Recent advances in aluminum toxicity and resistance in higher plants. Braz J Plant Physiol 17:129–143

    Article  CAS  Google Scholar 

  • Wahid A, Gelani S, Ashraf M, Foolad MR (2007) Heat tolerance in plants: an overview. Environ Exper Bot 61(3):199–223

    Article  Google Scholar 

  • Wallis ES, Byth DE, Saxena KB (1981) Flowering responses of thirty-seven early maturing lines of pigeonpea. In: International Workshop on Pigeonpeas, vol 2, 15–19 Dec. 1980. ICRISAT, Patancheru, AP, India, pp 143–150

    Google Scholar 

  • Wang CW, Chen WC, Lin LJ, Lee CT, Tseng TH, Leu WM (2011) OIP30, a RuvB-like DNA helicase 2, is a potential substrate for the pollen-predominant OsCPK25/26 in rice. Plant Cell Physiol 52:1641–1656

    Article  CAS  PubMed  Google Scholar 

  • Wang GL, Holsten TE, Song WY, Wang HP, Ronald PC (1995) Construction of a rice bacterial artificial chromosome library and identification of clones linked to the Xa-21 disease resistance locus. Plant J 7(3):525–533

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Gao X, Yang JJ, Liu ZR (2013) Interaction between p68 RNA helicase and Ca2+-calmodulin promotes cell migration and metastasis. Nat Commun 4:1354

    Article  PubMed  Google Scholar 

  • Wang P, Heitman J (2005) The cyclophilins. Genome Biol 6(7):1–6

    Article  Google Scholar 

  • Wanjari KB, Patel MC (2003) Fertility restorers isolated from germplasm for cytoplasmic male sterility in pigeonpea. PKV Res J 27:111–113

    Google Scholar 

  • Wanjari KB, Raje RS, Durgesh K, Prashat GR, Joshi R (2016) Pigeonpea improvement through conventional breeding. Indian J Genet 76(4):483–495

    Article  Google Scholar 

  • Wasike S, Okori P, Rubaihayo PR (2005) Genetic variability and relatedness of the Asian and African pigeonpea as revealed by AFLP. Afr J Biotechnol 4:1228–1233

    CAS  Google Scholar 

  • Winter P, Benko-Iseppon AM, H¨uttel B, et al. (2000) A linkage map of the chickpea (Cicer arietinum L.) genome based on recombinant inbred lines from a C. arietinum x C. reticulatum cross: localization of resistance genes for Fusarium wilt races 4 and 5. Theor Appl Genet 101(7): 1155–1163.

    Google Scholar 

  • Wyman SK, Jansen RK, Boore JL (2004) Automatic annotation of organellar genomes with DOGMA. Bioinformatics 20:3252–3255. https://doi.org/10.1093/bioinformatics/bth352

    Article  CAS  Google Scholar 

  • Yadav K, Yadav SK, Yadav A, Pandey VP, Dwivedi UN (2014) Comparative analysis of genetic diversity among cultivated pigeonpea (Cajanus cajan (L) Millsp.) and its wild relatives (C. albicans and C. lineatus) using randomly amplified polymorphic DNA (RAPD) and inter simple sequence repeat (ISSR) fingerprinting. Amer J Plant Sci 5(11):1665

    Google Scholar 

  • Yadav RC (2017) Cropping practice and makeup shortfall of pulse production with reduced emission of green house gas-nitrous oxide. Arch Chem Res 1:2

    Google Scholar 

  • Yadav P, Saxena KB, Hingane A, Kumar C, Kandalkar VS, Varshney RK, Saxena RK (2019) An Axiom Cajanus SNP Array based high density genetic map and QTL mapping for high-selfing flower and seed quality traits in pigeonpea. BMC Genomics 20:235

    Article  PubMed  PubMed Central  Google Scholar 

  • Yadav PBS, Padmaja V (2002) Interspecific hybridization and evolutionary relationships of Cajanus cajan (L.) Millspaugh and four of the wild species. Cytologia 67:67–73

    Article  Google Scholar 

  • Yang S, Pang W, Ash G, Harper J, Carling J, Wenzl P, Huttner E, Zong X, Kilian A (2006) Low level of genetic diversity in cultivated pigeonpea compared to its wild relatives is revealed by diversity arrays technology. Theoret Appl Genet 113:585–595

    Article  CAS  Google Scholar 

  • Yang SY, Saxena RK, Kulwal PL, Ash GJ, Dubey A, Harpe JDI, Upadhyaya HD, Gothalwal R, Kilian A, Varshney RK (2011) The first genetic map of pigeonpea based on diversity arrays technology (DArT) markers. J Genet 90:103–109

    Article  PubMed  Google Scholar 

  • Yong Z, Mata V, Rodrigues AE (2002) Adsorption of carbon dioxide at high temperature—a review. Sep Purif Technol 26(2–3):195–205

    Article  CAS  Google Scholar 

  • Zavinon F, Adoukonou SH, Keilwagen J (2020) Genetic diversity and population structure in Beninese pigeonpea [Cajanus cajan (L.) Huth] landraces collection revealed by SSR and genome wide SNP markers. Genet Resour Crop Evol 67:191–208

    Article  Google Scholar 

  • Zhang CS, Lu Q, Verma DPS (1995) Removal of feedback inhibition of delta(1)-pyrroline-5-carboxylate synthetase, a bifunctional enzyme catalyzing the first 2 steps of proline biosynthesis in plants. J Biol Chem 270:20491–20496

    Article  CAS  PubMed  Google Scholar 

  • Zhang HB, Choi S, Woo SS, Li Z, Wing RA (1996) Construction and characterization of two rice Bacterial Artificial Chromosome libraries from the parents of a permanent recombinant inbred mapping population. Mol Breed 2(1):11–24

    Article  CAS  Google Scholar 

  • Zhang Y, Massel K, Godwin ID, Gao C (2018) Applications and potential of genome editing in crop improvement. Genome Biol 19(1):1–1. https://doi.org/10.1186/s13059-019-1622-6

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Nandini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nandini, B. et al. (2022). Genomic Design for Abiotic Stress Resistance in Pigeonpea. In: Kole, C. (eds) Genomic Designing for Abiotic Stress Resistant Pulse Crops. Springer, Cham. https://doi.org/10.1007/978-3-030-91039-6_6

Download citation

Publish with us

Policies and ethics