Skip to main content

Response of Foodborne Pathogens to Cold Stress

  • Chapter
  • First Online:
Stress Responses of Foodborne Pathogens
  • 626 Accesses

Abstract

Low temperature is often used in food processing. However, a series of physical and biochemical modifications can be produced by foodborne pathogens in the process of transient stress and low temperature adaptation, these changes make foodborne pathogenic bacteria continue to grow at low temperature, and even increase its pathogenicity and drug resistance, causing huge damage to food safety and human health. This chapter mainly introduces the application of low temperature in food processing, the changes of physiological and biochemical characteristics of bacteria exposed to a cold environment, and the factors affecting the development of cold resistance of foodborne pathogens, with emphasis on various cold resistance mechanisms of foodborne pathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abram DD, Potter NN (1984) Survival of Campylobacter jejuni at different temperatures in broth, beef, chicken and cod supplemented with sodium chloride. J Food Prot 47(10):795–800

    Article  PubMed  Google Scholar 

  • Adhikari A, Yemmireddy VK, Costello MJ et al (2018) Effect of storage time and temperature on the viability of E. coli O157: H7, Salmonella spp., Listeria innocua, Staphylococcus aureus, and Clostridium sporogenes vegetative cells and spores in vacuum-packed canned pasteurized milk cheese. Int J Food Microbiol 286:148–154

    Article  CAS  PubMed  Google Scholar 

  • Alderson P, Rowland M (1995) Microorganisms. In: Making use of biology. Springer, New York, pp 17–32

    Chapter  Google Scholar 

  • Aldsworth TG, Sharman RL, Dodd CE et al (1998) A competitive microflora increases the resistance of Salmonella Typhimurium to inimical processes: evidence for a suicide response. Appl Environ Microbiol 64(4):1323–1327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Al-Nabulsi AA, Osaili TM, Shaker RR et al (2015) Effects of osmotic pressure, acid, or cold stresses on antibiotic susceptibility of Listeria monocytogenes. Food Microbiol 46:154–160

    Article  CAS  PubMed  Google Scholar 

  • Alvarez-Ordóñez A, Broussolle V, Colin P et al (2015) The adaptive response of bacterial food-borne pathogens in the environment, host and food: implications for food safety. Int J Food Microbiol 213:99–109

    Article  PubMed  Google Scholar 

  • Alves Â, Magalhães R, Brandão TR et al (2020) Impact of exposure to cold and cold-osmotic stresses on virulence-associated characteristics of Listeria monocytogenes strains. Food Microbiol 87:103351

    Article  CAS  PubMed  Google Scholar 

  • Amato P, Christner BC (2009) Energy metabolism response to low-temperature and frozen conditions in Psychrobacter cryohalolentis. Appl Environ Microbiol 75(3):711–718

    Article  CAS  PubMed  Google Scholar 

  • Annous BA, Becker LA, Bayles DO et al (1997) Critical role of anteiso-C15: 0 fatty acid in the growth of Listeria monocytogenes at low temperatures. Appl Environ Microbiol 63(10):3887–3894

    Google Scholar 

  • Archer DL (2004) Freezing: an underutilized food safety technology? Int J Food Microbiol 90(2):127–138

    Article  PubMed  Google Scholar 

  • Bae W, Xia B, Inouye M et al (2000) Escherichia coli CspA-family RNA chaperones are transcription antiterminators. Proc Natl Acad Sci 97(14):7784–7789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baker GL (2016) Food safety impacts from post-harvest processing procedures of molluscan shellfish. Foods 5(2):29

    Article  PubMed Central  CAS  Google Scholar 

  • Barria C, Malecki M, Arraiano C (2013) Bacterial adaptation to cold. Microbiology 159:2437–2443

    Article  CAS  PubMed  Google Scholar 

  • Becker LA, Evans SN, Hutkins RW et al (2000) Role of σB in adaptation of Listeria monocytogenes to growth at low temperature. J Bacteriol 182(24):7083–7087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beckering CL, Steil L, Weber MH et al (2002) Genomewide transcriptional analysis of the cold shock response in Bacillus subtilis. J Bacteriol 184(22):6395–6402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Behl A, Kumar V, Shevtsov M et al (2020) Pleiotropic roles of cold shock proteins with special emphasis on unexplored cold shock protein member of Plasmodium falciparum. Malar J 19(1):1–14

    Article  CAS  Google Scholar 

  • Beranová J, Mansilla MC, Mendoza D et al (2010) Differences in cold adaptation of Bacillus subtilis under anaerobic and aerobic conditions. J Bacteriol 192(16):4164–4171

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bortolaia V, Espinosa-Gongora C, Guardabassi L (2016) Human health risks associated with antimicrobial-resistant Enterococci and Staphylococcus aureus on poultry meat. Clin Microbiol Infect 22(2):130–140

    Article  CAS  PubMed  Google Scholar 

  • Brackett RE (1994) Microbiological spoilage and pathogens in minimally processed refrigerated fruits and vegetables. In: Minimally processed refrigerated fruits & vegetables. Springer, New York, pp 269–312

    Chapter  Google Scholar 

  • Brillard J, Jéhanno I, Dargaignaratz C et al (2010) Identification of Bacillus cereus genes specifically expressed during growth at low temperatures. Appl Environ Microbiol 76(8):2562–2573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Calcott PH, MacLeod RA (1974) Survival of Escherichia coli from freeze–thaw damage: influence of nutritional status and growth rate. Can J Microbiol 20(5):683–689

    Article  CAS  PubMed  Google Scholar 

  • Cameron AD, Stoebel DM, Dorman CJ (2011) DNA supercoiling is differentially regulated by environmental factors and FIS in Escherichia coli and Salmonella enterica. Mol Microbiol 80(1):85–101

    Article  CAS  PubMed  Google Scholar 

  • Cao-Hoang DF, Marechal PA et al (2008) Rates of chilling to 0°C: implications for the survival of microorganisms and relationship with membrane fluidity modifications. Appl Microbiol Biotechnol 77(6):1379–1387

    Article  CAS  PubMed  Google Scholar 

  • Carlin F, Brillard J, Broussolle V et al (2010) Adaptation of Bacillus cereus, an ubiquitous worldwide-distributed foodborne pathogen, to a changing environment. Food Res Int 43(7):1885–1894

    Article  Google Scholar 

  • Casadei M, Manas P, Niven G et al (2002) Role of membrane fluidity in pressure resistance of Escherichia coli NCTC 8164. Appl Environ Microbiol 68(12):5965–5972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Casanueva A, Tuffin M, Cary C et al (2010) Molecular adaptations to psychrophily: the impact of ‘omic’ technologies. Trends Microbiol 18(8):374–381

    Article  CAS  PubMed  Google Scholar 

  • Cebrián G, Sagarzazu N, Aertsen A et al (2009) Role of the alternative sigma factor σB on Staphylococcus aureus resistance to stresses of relevance to food preservation. J Appl Microbiol 107(1):187–196

    Article  PubMed  CAS  Google Scholar 

  • Chan YC, Wiedmann M (2008) Physiology and genetics of Listeria monocytogenes survival and growth at cold temperatures. Crit Rev Food Sci 49(3):237–253

    Article  CAS  Google Scholar 

  • Chan KF, Tran HL, Kanenaka R et al (2001) Survival of clinical and poultry-derived isolates of Campylobacter jejuni at a low temperature (4°C). Appl Environ Microbiol 67(9):4186–4191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chan YC, Hu Y, Chaturongakul S et al (2008) Contributions of two-component regulatory systems, alternative σ factors, and negative regulators to Listeria monocytogenes cold adaptation and cold growth. J Food Prot 71(2):420–425

    Article  PubMed  PubMed Central  Google Scholar 

  • Chattopadhyay M (2006) Mechanism of bacterial adaptation to low temperature. J Biosci 31(1):157–165

    Article  CAS  PubMed  Google Scholar 

  • Chattopadhyay M, Jagannadham M (2001) Maintenance of membrane fluidity in Antarctic bacteria. Polar Biol 24(5):386–388

    Article  Google Scholar 

  • Chattopadhyay M, Jagannadham M, Vairamani M et al (1997) Carotenoid pigments of an antarctic psychrotrophic bacterium Micrococcus roseus: temperature dependent biosynthesis, structure, and interaction with synthetic membranes. Biochem Biophys Res Commun 239(1):85–90

    Article  CAS  PubMed  Google Scholar 

  • Chattopadhyay M, Raghu G, Sharma Y et al (2011) Increase in oxidative stress at low temperature in an Antarctic bacterium. Curr Microbiol 62(2):544–546

    Article  CAS  PubMed  Google Scholar 

  • Chaturongakul S, Raengpradub S, Wiedmann M et al (2008) Modulation of stress and virulence in Listeria monocytogenes. Trends Microbiol 16(8):388–396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen H, Anantheswaran RC, Knabel SJ (2002) Effect of rapid cooling on the growth and penetration of Salmonella Enteritidis into egg contents. J Food S 22(4):255–271

    Article  CAS  Google Scholar 

  • Chen YQ, Cheng JH, Sun DW (2020) Chemical, physical and physiological quality attributes of fruit and vegetables induced by cold plasma treatment: mechanisms and application advances. Crit Rev Food Sci 60(16):2676–2690

    Article  CAS  Google Scholar 

  • Cheng JH, Lv X, Pan Y et al (2020) Foodborne bacterial stress responses to exogenous reactive oxygen species (ROS) induced by cold plasma treatments. Trends Food Sci Technol 103:239–247

    Article  CAS  Google Scholar 

  • Choma C, Clavel T, Dominguez H et al (2000) Effect of temperature on growth characteristics of Bacillus cereus TZ415. Int J Food Microbiol 55(1–3):73–77

    Article  CAS  PubMed  Google Scholar 

  • Chu-Ky S, Tourdot-Marechal R, Marechal PA et al (2005) Combined cold, acid, ethanol shocks in Oenococcus oeni: effects on membrane fluidity and cell viability. Biochim Biophys Acta Biomembr 1717(2):118–124

    Article  CAS  Google Scholar 

  • Chung H, Bang W, Drake M (2006) Stress response of Escherichia coli. Compr Rev Food Sci Food Saf 5(3):52–64

    Article  CAS  Google Scholar 

  • Cifré LC, Aleman M, Mendoza D et al (2013) Exploring the biosynthesis of unsaturated fatty acids in Bacillus cereus ATCC 14579 and functional characterization of novel acyl-lipid desaturases. Appl Environ Microbiol 79(20):6271–6279

    Article  CAS  Google Scholar 

  • Cordero N, Maza F, Navea-Perez H et al (2016) Different transcriptional responses from slow and fast growth rate strains of Listeria monocytogenes adapted to low temperature. Front Microbiol 7:229

    Article  PubMed  PubMed Central  Google Scholar 

  • Cordin O, Banroques J, Tanner NK et al (2006) The DEAD-box protein family of RNA helicases. Gene 367:17–37

    Article  CAS  PubMed  Google Scholar 

  • Corsaro MM, Lanzetta R, Parrilli E et al (2001) Structural investigation on the lipooligosaccharide fraction of psychrophilic Pseudoalteromonas haloplanktis TAC 125 bacterium. Eur J Biochem 268(19):5092–5097

    Article  CAS  PubMed  Google Scholar 

  • Cybulski LE, Albanesi D, Mansilla MC et al (2002) Mechanism of membrane fluidity optimization: isothermal control of the Bacillus subtilis acyl-lipid desaturase. Mol Microbiol 45(5):1379–1388

    Article  CAS  PubMed  Google Scholar 

  • Czapski TR, Trun N (2014) Expression of csp genes in E. coli K-12 in defined rich and defined minimal media during normal growth, and after cold-shock. Gene 547(1):91–97

    Article  CAS  PubMed  Google Scholar 

  • D’Amico S, Collins T, Marx JC et al (2006) Psychrophilic microorganisms: challenges for life. EMBO Rep 7(4):385–389

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dahlsten E, Isokallio M, Somervuo P et al (2014) Transcriptomic analysis of (group I) Clostridium botulinum ATCC 3502 cold shock response. PLoS One 9(2):e89958

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Deming JW (2002) Psychrophiles and polar regions. Curr Opin Microbiol 5(3):301–309

    Article  CAS  PubMed  Google Scholar 

  • Desai AN, Anyoha A, Madoff LC et al (2019) Changing epidemiology of Listeria monocytogenes outbreaks, sporadic cases, and recalls globally: a review of ProMED reports from 1996 to 2018. Int J Infect Dis 84:48–53

    Article  PubMed  PubMed Central  Google Scholar 

  • Dieser M, Greenwood M, Foreman CM (2010) Carotenoid pigmentation in Antarctic heterotrophic bacteria as a strategy to withstand environmental stresses. Arct Antarct Alp Res 42(4):396–405

    Article  Google Scholar 

  • Diomandé SE, Chamot S, Antolinos V et al (2014) The CasKR two-component system is required for the growth of mesophilic and psychrotolerant Bacillus cereus strains at low temperatures. Appl Environ Microbiol 80(8):2493–2503

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Diomandé SE, Guinebretière MH, De Sarrau B et al (2015a) Fatty acid profiles and desaturase-encoding genes are different in thermo- and psychrotolerant strains of the Bacillus cereus Group. BMC Res Notes 8(1):1–7

    Article  CAS  Google Scholar 

  • Diomandé SE, Nguyen C, Abee T et al (2015b) Involvement of the CasK/R two-component system in optimal unsaturation of the Bacillus cereus fatty acids during low-temperature growth. Int J Food Microbiol 213:110–117

    Article  PubMed  CAS  Google Scholar 

  • Dumont F, Marechal PA, Gervais P (2004) Cell size and water permeability as determining factors for cell viability after freezing at different cooling rates. Appl Environ Microbiol 70(1):268–272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Durack J, Ross T, Bowman JP (2013) Characterisation of the transcriptomes of genetically diverse Listeria monocytogenes exposed to hyperosmotic and low temperature conditions reveal global stress-adaptation mechanisms. PLoS One 8(9):e73603

    Google Scholar 

  • Dykes G, Moorhead S (2001) Survival of three Salmonella serotypes on beef trimmings during simulated commercial freezing and frozen storage. J Food Saf 21(2):87–96

    Article  Google Scholar 

  • Eriksson S, Hurme R, Rhen M (2002) Low–temperature sensors in bacteria. Philos Trans R Soc Lond Ser B Biol Sci 357(1423):887–893

    Article  CAS  Google Scholar 

  • Ermolenko D, Makhatadze G (2002) Bacterial cold-shock proteins. Cell Mol Life Sci 59(11):1902–1913

    Article  CAS  PubMed  Google Scholar 

  • Ewert M, Deming JW (2011) Selective retention in saline ice of extracellular polysaccharides produced by the cold-adapted marine bacterium Colwellia psychrerythraea strain 34H. Ann Glaciol 52(57):111–117

    Google Scholar 

  • Farkas J (2007) Physical methods of food preservation. In: Food microbiology: fundamentals and frontiers, 3rd edn. American Society of Microbiology, Washington, pp 685–712

    Google Scholar 

  • Fonseca F, Pénicaud C, Tymczyszyn EE et al (2019) Factors influencing the membrane fluidity and the impact on production of lactic acid bacteria starters. Appl Microbiol Biotechnol 103(17):6867–6883

    Article  CAS  PubMed  Google Scholar 

  • Francez-Charlot A, Frunzke J, Reichen C et al (2009) Sigma factor mimicry involved in regulation of general stress response. Proc Natl Acad Sci 106(9):3467–3472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garba L, Ali MSM, Oslan SN et al (2016) Heterologous expression of PA8FAD9 and functional characterization of a Δ9-fatty acid desaturase from a cold-tolerant Pseudomonas sp. A8. Mol Biotechnol 58(11):718–728

    Article  CAS  PubMed  Google Scholar 

  • Gast RK, Holt PS, Guraya R (2006) Effect of refrigeration on in vitro penetration of Salmonella Enteritidis through the egg yolk membrane. J Food Prot 69(6):1426–1429

    Article  PubMed  Google Scholar 

  • Ghilarov D, Shkundina I (2012) DNA topoisomerases and their functions in a cell. Mol Biol 46(1):47–57

    Article  CAS  Google Scholar 

  • Giuliodori AM, Pietro FD, Marzi S et al (2010) The cspA mRNA is a thermosensor that modulates translation of the cold-shock protein CspA. Mol Cell 37(1):21–33

    Google Scholar 

  • Golovlev E (2003) Bacterial cold shock response at the level of DNA transcription, translation, and chromosome dynamics. Microbiologiia 72(1):1–7

    CAS  Google Scholar 

  • Graumann P, Marahiel MA (1996) Some like it cold: response of microorganisms to cold shock. Arch Microbiol 166(5):293–300

    Article  CAS  PubMed  Google Scholar 

  • Gualerzi CO, Giuliodori AM, Pon CL (2003) Transcriptional and post-transcriptional control of cold-shock genes. J Mol Biol 331(3):527–539

    Article  CAS  PubMed  Google Scholar 

  • Guldimann C, Boor KJ, Wiedmann M et al (2016) Resilience in the face of uncertainty: sigma factor B fine-tunes gene expression to support homeostasis in Gram-positive bacteria. Appl Environ Microbiol 82(15):4456–4469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hagiwara D, Sugiura M, Oshima T et al (2003) Genome-wide analyses revealing a signaling network of the RcsC-YojN-RcsB phosphorelay system in Escherichia coli. J Bacteriol 185(19):5735–5746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamad SHJP (2012) Factors affecting the growth of microorganisms in food. Wiley, Chichester, p 405

    Google Scholar 

  • Hamamoto T, Kaneda M, Horikoshi K et al (1994) Characterization of a protease from a psychrotroph, Pseudomonas fluorescens 114. Appl Environ Microbiol 60(10):3878–3880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hankins J, Denroche H, Mackie G (2010) Interactions of the RNA-binding protein Hfq with cspA mRNA, encoding the major cold shock protein. J Bacteriol 192(10):2482–2490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haque MA, Russell NJ (2004) Strains of Bacillus cereus vary in the phenotypic adaptation of their membrane lipid composition in response to low water activity, reduced temperature and growth in rice starch. Microbiology 150(5):1397–1404

    Article  CAS  PubMed  Google Scholar 

  • Hardwick SW, Luisi BF (2013) Rarely at rest: RNA helicases and their busy contributions to RNA degradation, regulation and quality control. RNA Biol 10(1):56–70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hashim NHF, Bharudin I, Nguong DLS et al (2013) Characterization of Afp1, an antifreeze protein from the psychrophilic yeast Glaciozyma antarctica PI12. Extremophiles 17(1):63–73

    Article  CAS  PubMed  Google Scholar 

  • Heath RJ, Rock CO (2002) The Claisen condensation in biology. Nat Prod Rep 19(5):581–596

    Article  CAS  PubMed  Google Scholar 

  • Hébraud M, Potier P (1999) Cold shock response and low temperature adaptation in psychrotrophic bacteria. J Mol Microbiol Biotechnol 1(2):211–219

    PubMed  Google Scholar 

  • Hecker M, Pané-Farré J, Uwe V (2007) SigB-dependent general stress response in Bacillus subtilis and related gram-positive bacteria. Annu Rev Microbiol 61:215–236

    Article  CAS  PubMed  Google Scholar 

  • Helmann JD (2002) The extracytoplasmic function (ECF) sigma factors. Adv Microb Physiol 46:47–110

    Article  CAS  PubMed  Google Scholar 

  • Hennekinne JA, Buyser ML, Dragacci S (2012) Staphylococcus aureus and its food poisoning toxins: characterization and outbreak investigation. FEMS Microbiol Rev 36(4):815–836

    Article  CAS  PubMed  Google Scholar 

  • Hoffmann T, Bremer E (2011) Protection of Bacillus subtilis against cold stress via compatible-solute acquisition. J Bacteriol 193(7):1552–1562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horn G, Hofweber R, Kremer W et al (2007) Structure and function of bacterial cold shock proteins. Cell Mol Life Sci 64(12):1457–1470

    Article  CAS  PubMed  Google Scholar 

  • Hughes KT, Mathee K (1998) The anti-sigma factors. Annu Rev Microbiol 52(1):231–286

    Article  CAS  PubMed  Google Scholar 

  • Hurme R, Rhen M (1998) Temperature sensing in bacterial gene regulation—what it all boils down to. Mol Microbiol 30(1):1–6

    Article  CAS  PubMed  Google Scholar 

  • Iost I, Dreyfus M (2006) DEAD-box RNA helicases in Escherichia coli. Nucleic Acids Res 34(15):4189–4197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jarvis NA, O’Bryan CA, Dawoud TM et al (2016) An overview of Salmonella thermal destruction during food processing and preparation. Food Control 68:280–290

    Article  Google Scholar 

  • Jay J (2000) Modern food microbiology. sixth edit. An ASPEN Publication, Gaithersburg, MA

    Book  Google Scholar 

  • Jiang YH, Cheng JH, Sun DW (2020) Effects of plasma chemistry on the interfacial performance of protein and polysaccharide in emulsion. Trends Food Sci Technol 98:129–139

    Article  CAS  Google Scholar 

  • Jin B, Jeong KW, Kim Y (2014) Structure and flexibility of the thermophilic cold-shock protein of Thermus aquaticus. Biochem Biophys Res Commun 451(3):402–407

    Article  CAS  PubMed  Google Scholar 

  • Jones PG, Inouye M (1996) RbfA, a 30S ribosomal binding factor, is a cold-shock protein whose absence triggers the cold-shock response. Mol Microbiol 21(6):1207–1218

    Article  CAS  PubMed  Google Scholar 

  • Jones PG, VanBogelen RA, Neidhardt FC (1987) Induction of proteins in response to low temperature in Escherichia coli. J Bacteriol 169(5):2092–2095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones PG, Krah R, Tafuri SR et al (1992) DNA gyrase, CS7.4, and the cold shock response in Escherichia coli. J Bacteriol 174(18):5798–5802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joshi SG, Cooper M, Yost A et al (2011) Nonthermal dielectric-barrier discharge plasma-induced inactivation involves oxidative DNA damage and membrane lipid peroxidation in Escherichia coli. Antimicrob Agents Chemother 55(3):1053–1062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Juárez-Rodríguez MM, Cortes-López H, García-Contreras R et al (2020) Tetradecanoic acids with anti-virulence properties increase the pathogenicity of Pseudomonas aeruginosa in a murine cutaneous infection model. Front Cell Infect Microbiol 10:597517

    Article  PubMed  CAS  Google Scholar 

  • Kandror O, DeLeon A, Goldberg AL (2002) Trehalose synthesis is induced upon exposure of Escherichia coli to cold and is essential for viability at low temperatures. Proc Natl Acad Sci 99(15):9727–9732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karan R, Capes MD, DasSarma P et al (2013) Cloning, overexpression, purification, and characterization of a polyextremophilic β-galactosidase from the Antarctic haloarchaeon Halorubrum lacusprofundi. BMC Biotechnol 13(1):1–11

    Article  CAS  Google Scholar 

  • Keto-Timonen R, Hietala N, Palonen E et al (2016) Cold shock proteins: a minireview with special emphasis on Csp-family of enteropathogenic Yersinia. Front Microbiol 7:1151

    Article  PubMed  PubMed Central  Google Scholar 

  • King T, Kocharunchitt C, Gobius K et al (2014) Global genome response of Escherichia coli O157:H7 Sakai during dynamic changes in growth kinetics induced by an abrupt temperature downshift. PLoS One 9(6):e99627

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • King T, Kocharunchitt C, Gobius K et al (2016) Physiological response of Escherichia coli O157:H7 Sakai to dynamic changes in temperature and water activity as experienced during carcass chilling. Mol Cell Proteomics 15(11):3331–3347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kiran M, Prakash J, Annapoorni S et al (2004) Psychrophilic Pseudomonas syringae requires trans-monounsaturated fatty acid for growth at higher temperature. Extremophiles 8(5):401–410

    Article  CAS  PubMed  Google Scholar 

  • Knudsen GM, Nielsen MB, Thomsen LE et al (2014) The role of ClpP, RpoS and CsrA in growth and filament formation of Salmonella enterica serovar Typhimurium at low temperature. BMC Microbiol 14(1):1–9

    Article  CAS  Google Scholar 

  • Kocharunchitt C, King T, Gobius K et al (2012) Integrated transcriptomic and proteomic analysis of the physiological response of Escherichia coli O157:H7 Sakai to steady-state conditions of cold and water activity stress. Mol Cell Proteomics 11(1):M111.009019

    Article  PubMed  CAS  Google Scholar 

  • Konkel ME, Tilly K (2000) Temperature-regulated expression of bacterial virulence genes. Microbes Infect 2(2):157–166

    Article  CAS  PubMed  Google Scholar 

  • Kool ET, Morales JC, Guckian KM (2000) Mimicking the structure and function of DNA: insights into DNA stability and replication. Angew Chem Int Ed 39(6):990–1009

    Article  CAS  Google Scholar 

  • Kour D, Rana KL, Kaur T et al (2019) Extremophiles for hydrolytic enzymes productions: biodiversity and potential biotechnological applications. Bioprocess Biomol 10:5451

    Google Scholar 

  • Krembs C, Eicken H, Deming JW (2011) Exopolymer alteration of physical properties of sea ice and implications for ice habitability and biogeochemistry in a warmer Arctic. Proc Natl Acad Sci 108(9):3653–3658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kropinski A, Lewis V, Berry D (1987) Effect of growth temperature on the lipids, outer membrane proteins, and lipopolysaccharides of Pseudomonas aeruginosa PAO. J Bacteriol 169(5):1960–1966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Law JWF, Mutalib NS, Chan KG et al (2015) Rapid methods for the detection of foodborne bacterial pathogens: principles, applications, advantages and limitations. Front Microbiol 5:770

    Article  PubMed  PubMed Central  Google Scholar 

  • Li J, Chikindas ML, Ludescher RD et al (2002) Temperature-and surfactant-induced membrane modifications that alter Listeria monocytogenes nisin sensitivity by different mechanisms. Appl Environ Microbiol 68(12):5904–5910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Zhou D, Hu S et al (2018) Transcriptomic analysis by RNA-seq of Escherichia coli O157: H7 response to prolonged cold stress. LWT 97:17–24

    Article  CAS  Google Scholar 

  • Lu X, Liu Q, Wu D et al (2011) Using of infrared spectroscopy to study the survival and injury of Escherichia coli O157: H7, Campylobacter jejuni and Pseudomonas aeruginosa under cold stress in low nutrient media. Food Microbiol 28(3):537–546

    Article  CAS  PubMed  Google Scholar 

  • Lund B, Baird-Parker AC, Baird-Parker TC et al (2000) Microbiological safety and quality of food, vol 1. Springer, New York

    Google Scholar 

  • Maayer DP, Anderson D, Cary C et al (2014) Some like it cold: understanding the survival strategies of psychrophiles. EMBO Rep 15(5):508–517

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Machado I, Silva LR, Giaouris ED et al (2020) Quorum sensing in food spoilage and natural-based strategies for its inhibition. Food Res Int 127:108754

    Article  CAS  PubMed  Google Scholar 

  • Mahoney JC, Gerding MJ, Jones SH et al (2010) Comparison of the pathogenic potentials of environmental and clinical Vibrio parahaemolyticus strains indicates a role for temperature regulation in virulence. Appl Environ Microbiol 76(22):7459–7465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mansilla MC, Cybulski LE, Albanesi D et al (2004) Control of membrane lipid fluidity by molecular thermosensors. J Bacteriol 186(20):6681–6688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Margesin R, Schinner F (1994) Properties of cold-adapted microorganisms and their potential role in biotechnology. J Biotechnol 33(1):1–14

    Article  CAS  Google Scholar 

  • Margesin R, Neuner G, Storey KB (2007) Cold-loving microbes, plants, and animals—fundamental and applied aspects. Naturwissenschaften 94(2):77–99

    Article  CAS  PubMed  Google Scholar 

  • Markland SM, Farkas DF, Kniel KE et al (2013) Pathogenic psychrotolerant sporeformers: an emerging challenge for low-temperature storage of minimally processed foods. Foodborne Pathog Dis 10(5):413–419

    Article  PubMed  Google Scholar 

  • Marr AG, Ingraham JL (1962) Effect of temperature on the composition of fatty acids in Escherichia coli. J Bacteriol 84(6):1260–1267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McMeechan A, Roberts M, Cogan TA et al (2007) Role of the alternative sigma factors σE and σS in survival of Salmonella enterica serovar Typhimurium during starvation, refrigeration and osmotic shock. Microbiology 153(1):263–269

    Article  CAS  PubMed  Google Scholar 

  • Mendoza DD (2014) Temperature sensing by membranes. Annu Rev Microbiol 68:101–116

    Article  PubMed  CAS  Google Scholar 

  • Methé BA, Nelson KE, Deming JW et al (2005) The psychrophilic lifestyle as revealed by the genome sequence of Colwellia psychrerythraea 34H through genomic and proteomic analyses. Proc Natl Acad Sci 102(31):10913–10918

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mirkin SM (2001) DNA topology: fundamentals. Encyclopedia of life Science. Wiley, Boca Raton, FL, p 111

    Google Scholar 

  • Nagai H, Shimamoto N (1997) Regions of the Escherichia coli primary sigma factor σ70 that are involved in interaction with RNA polymerase core enzyme. Genes Cells 2(12):725–734

    Article  CAS  PubMed  Google Scholar 

  • Nissen H, Rosnes J, Brendehaug J et al (2002) Safety evaluation of sous vide-processed ready meals. Lett Appl Microbiol 35(5):433–438

    Article  CAS  PubMed  Google Scholar 

  • Palonen E, Lindström M, Korkeala H (2010) Adaptation of enteropathogenic Yersinia to low growth temperature. Crit Rev Microbiol 36(1):54–67

    Article  CAS  PubMed  Google Scholar 

  • Pandiani F, Brillard J, Bornard I et al (2010) Differential involvement of the five RNA helicases in adaptation of Bacillus cereus ATCC 14579 to low growth temperatures. Appl Environ Microbiol 76(19):6692–6697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park I, Cho JJA (2011) The phytase from antarctic bacterial isolate, Pseudomonas sp JPK1 as a potential tool for animal agriculture to reduce manure phosphorus excretion. Afr J Agric Res 6(6):1398–1406

    Google Scholar 

  • Parsons JB, Rock CO (2011) Is bacterial fatty acid synthesis a valid target for antibacterial drug discovery? Curr Opin Microbiol 14(5):544–549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perfumo A, Elsaesser A, Littmann S et al (2014) Epifluorescence, SEM, TEM and nanoSIMS image analysis of the cold phenotype of Clostridium psychrophilum at subzero temperatures. FEMS Microbiol Ecol 90(3):869–882

    Article  CAS  PubMed  Google Scholar 

  • Phadtare S (2004) Recent developments in bacterial cold-shock response. Curr Issues Mol Biol 6(2):125–136

    CAS  PubMed  Google Scholar 

  • Phadtare S (2016) Escherichia coli cold shock gene profiles in response to overexpression or deletion of CsdA, RNase R, and PNPase and relevance to low-temperature RNA metabolism. Genes Cells 17(10):850–874

    Article  CAS  Google Scholar 

  • Phadtare S, Inouye M (2004) Genome-wide transcriptional analysis of the cold shock response in wild-type and cold-sensitive, quadruple-csp-deletion strains of Escherichia coli. J Bacteriol 186(20):7007–7014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Phadtare S, Alsina J, Inouye M (1999) Cold-shock response and cold-shock proteins. Curr Opin Microbiol 2(2):175–180

    Article  CAS  PubMed  Google Scholar 

  • Phillips L, Humphrey T, Lappin-Scott H (1998) Chilling invokes different morphologies in two Salmonella enteritidis PT4 strains. J Appl Microbiol 84(5):820–826

    Article  CAS  PubMed  Google Scholar 

  • Piette F, D’Amico S, Mazzucchelli G et al (2011) Life in the cold: a proteomic study of cold-repressed proteins in the Antarctic bacterium Pseudoalteromonas haloplanktis TAC125. Appl Environ Microbiol 77(11):3881–3883

    Article  PubMed  PubMed Central  Google Scholar 

  • Pöntinen A, Markkula A, Lindström M et al (2015) Two-component-system histidine kinases involved in growth of Listeria monocytogenes EGD-e at low temperatures. Appl Environ Microbiol 81(12):3994–4004

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pöntinen A, Lindström M, Skurnik M et al (2017) Screening of the two-component-system histidine kinases of Listeria monocytogenes EGD-e. LiaS is needed for growth under heat, acid, alkali, osmotic, ethanol and oxidative stresses. Food Microbiol 65:36–43

    Article  PubMed  CAS  Google Scholar 

  • Prakash JS, Sinetova M, Zorina A et al (2009) DNA supercoiling regulates the stress-inducible expression of genes in the cyanobacterium Synechocystis. Mol BioSyst 5(12):1904–1912

    Article  CAS  PubMed  Google Scholar 

  • Prokopov T, Tanchev S (2007) Methods of food preservation. In: Food safety. Springer, New York, pp 3–25

    Chapter  Google Scholar 

  • Puah SM, Chua KH, Tan JAMA (2016) Virulence factors and antibiotic susceptibility of Staphylococcus aureus isolates in readyto-eat foods: detection of S. aureus contamination and a high prevalence of virulence genes. Int J Environ Res Public Health 13(2):199

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Qian YF, Xie J, Yang SP et al (2013a) Study of the quality changes and myofibrillar proteins of white shrimp (Litopenaeus vannamei) under modified atmosphere packaging with varying CO2 levels. Eur Food Res Technol 236(4):629–635

    Article  CAS  Google Scholar 

  • Qian YF, Yang SP, Xie J et al (2013b) Impact of the O2 concentrations on bacterial communities and quality of modified atmosphere packaged Pacific white shrimp (Litopenaeus Vannamei). J Food Sci 78(12):M1878–M1884

    Article  CAS  PubMed  Google Scholar 

  • Qiao J, Zhu M, Lu Z et al (2020) The antibiotics resistance mechanism and pathogenicity of cold stressed Staphylococcus aureus. LWT 126:109274

    Article  CAS  Google Scholar 

  • Rawat S (2015) Food Spoilage: Microorganisms and their prevention. Asian J Plant Sci Res 5(4):47–56

    CAS  Google Scholar 

  • Ray B, Bhunia AK (2001) Fundamental food microbiology. ASM Press, Washington, DC

    Google Scholar 

  • Ray M, Kumar GS, Shivaji S (1994) Phosphorylation of membrane proteins in response to temperature in an Antarctic Pseudomonas syringae. Microbiology 140(12):3217–3223

    Article  CAS  PubMed  Google Scholar 

  • Ray S, Costa R D, Thakur S et al. 2020. Salmonella Typhimurium encoded cold shock protein E is essential for motility and biofilm formation. Microbiology 166(5):460–473.

    Google Scholar 

  • Ren J, Nettleship JE, Sainsbury S et al (2008) Structure of the cold-shock domain protein from Neisseria meningitidis reveals a strand-exchanged dimer. Acta Crystallogr Sect F Struct Biol Cryst Commun 64(4):247–251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ricke S, Kundinger M, Miller D et al (2005) Alternatives to antibiotics: chemical and physical antimicrobial interventions and foodborne pathogen response. Poult Sci 84(4):667–675

    Article  CAS  PubMed  Google Scholar 

  • Ricke SC, Dawoud TM, Kim SA et al (2018) Salmonella cold stress response: mechanisms and occurrence in foods. Adv Appl Microbiol 104:1–38

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez Ayala F, Bartolini M, Grau R (2020) The stress-responsive alternative sigma factor SigB of Bacillus subtilis and its relatives: an old friend with new functions. Front Microbiol 11:1761

    Article  PubMed  PubMed Central  Google Scholar 

  • Sadiq FA, Flint S, Li Y et al (2017) Phenotypic and genetic heterogeneity within biofilms with particular emphasis on persistence and antimicrobial tolerance. Future Microbiol 12(12):1087–1107

    Article  CAS  PubMed  Google Scholar 

  • Sahay S, Hamid B, Singh P et al (2013) Evaluation of pectinolytic activities for oenological uses from psychrotrophic yeasts. Lett Appl Microbiol 57(2):115–121

    Article  CAS  PubMed  Google Scholar 

  • Sanghera GS, Wani SH, Hussain W et al (2011) Engineering cold stress tolerance in crop plants. Curr Genomics 12(1):30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sarrau B, Clavel T, Clerté C et al (2012) Influence of anaerobiosis and low temperature on Bacillus cereus growth, metabolism, and membrane properties. Appl Environ Microbiol 78(6):1715–1723

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schmid B, Klumpp J, Raimann E et al (2009) Role of cold shock proteins in growth of Listeria monocytogenes under cold and osmotic stress conditions. Appl Environ Microbiol 75(6):1621–1627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seel W, Baust D, Sons D et al (2020) Carotenoids are used as regulators for membrane fluidity by Staphylococcus xylosus. Sci Rep 10(1):1–12

    Article  CAS  Google Scholar 

  • Shah J, Desai PT, Weimer BC (2014) Genetic mechanisms underlying the pathogenicity of cold-stressed Salmonella enterica serovar typhimurium in cultured intestinal epithelial cells. Appl Environ Microbiol 80(22):6943–6953

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shapiro RS, Cowen LE (2012) Thermal control of microbial development and virulence: molecular mechanisms of microbial temperature sensing. mBio 3:5

    Article  CAS  Google Scholar 

  • Shivaji S, Prakash JS (2010) How do bacteria sense and respond to low temperature? Arch Microbiol 192(2):85–95

    Article  CAS  PubMed  Google Scholar 

  • Sinetova MA, Los DA (2016) New insights in cyanobacterial cold stress responses: genes, sensors, and molecular triggers. Biochim Biophys Acta BBA 1860(11):2391–2403

    Article  CAS  PubMed  Google Scholar 

  • Sinha D, Chakraborty T, Sinha D et al (2020) Understanding the structure, stability, and anti-sigma factor-binding thermodynamics of an anti-anti-sigma factor from Staphylococcus aureus. J Biomol Struct Dyn 39:6539–6552

    Article  PubMed  CAS  Google Scholar 

  • Slama RB, Bekir K, Miladi H et al (2012) Adhesive ability and biofilm metabolic activity of Listeria monocytogenes strains before and after cold stress. Afr J Biotechnol 11(61):12475–12482

    Google Scholar 

  • Smadi H, Sargeant JM, Shannon HS et al (2012) Growth and inactivation of Salmonella at low refrigerated storage temperatures and thermal inactivation on raw chicken meat and laboratory media: mixed effect meta-analysis. J Epidemiol Global Health 2(4):165–179

    Article  Google Scholar 

  • Storey K, Storey J (2009) Freeze tolerance. Extremophiles 2009:184–214

    Google Scholar 

  • Struvay C, Feller G (2012) Optimization to low temperature activity in psychrophilic enzymes. Int J Mol Sci 13(9):11643–11665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sutherland C, Murakami KS (2018) An introduction to the structure and function of the catalytic core enzyme of Escherichia coli RNA polymerase. EcoSal Plus 8(1):30109846

    Article  Google Scholar 

  • Suyal DC, Soni R, Yadav AN et al (2021) Cold adapted microorganisms: survival mechanisms and applications. In: Microbiomes of extreme environments. CRC Press, Boca Raton, FL, pp 177–191

    Chapter  Google Scholar 

  • Tasara T, Stephan R (2006) Cold stress tolerance of Listeria monocytogenes: a review of molecular adaptive mechanisms and food safety implications. J Food Prot 69(6):1473–1484

    Article  CAS  PubMed  Google Scholar 

  • Taylor JL, Tuttle J, Pramukul T et al (1993) An outbreak of cholera in Maryland associated with imported commercial frozen fresh coconut milk. J Infect Dis 167(6):1330–1335

    Article  CAS  PubMed  Google Scholar 

  • Terekhova K, Gunn KH, Marko JF et al (2012) Bacterial topoisomerase I and topoisomerase III relax supercoiled DNA via distinct pathways. Nucleic Acids Res 40(20):10432–10440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thieringer HA, Jones PG, Inouye M (1998) Cold shock and adaptation. BioEssays 20(1):49–57

    Article  CAS  PubMed  Google Scholar 

  • Tomalty HE, Walker VK (2014) Perturbation of bacterial ice nucleation activity by a grass antifreeze protein. Biochem Biophys Res Commun 452(3):636–641

    Article  CAS  PubMed  Google Scholar 

  • Tuchscherr L, Bischoff M, Lattar SM et al (2015) Sigma factor SigB is crucial to mediate Staphylococcus aureus adaptation during chronic infections. PLoS Pathog 11(4):e1004870

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Utratna M, Cosgrave E, Baustian C et al (2014) Effects of growth phase and temperature on activity within a Listeria monocytogenes population: evidence for RsbV-independent activation of at refrigeration temperatures. Biomed Res Int 2014(641647):1–11

    Article  CAS  Google Scholar 

  • Van Schaik W, Abee T (2005) The role of σB in the stress response of Gram-positive bacteria–targets for food preservation and safety. Curr Opin Biotechnol 16(2):218–224

    Article  PubMed  CAS  Google Scholar 

  • Vidovic S, Korber DR (2016) Escherichia coli O157: insights into the adaptive stress physiology and the influence of stressors on epidemiology and ecology of this human pathogen. Crit Rev Microbiol 42(1):83–93

    Article  CAS  PubMed  Google Scholar 

  • Vidovic S, Mangalappalli-Illathu AK, Korber DR (2011) Prolonged cold stress response of Escherichia coli O157 and the role of rpoS. Int J Food Microbiol 146(2):163–169

    Article  CAS  PubMed  Google Scholar 

  • Vigh L, Maresca B, Harwood JL (1998) Does the membrane’s physical state control the expression of heat shock and other genes? Trends Biochem Sci 23(10):369–374

    Article  CAS  PubMed  Google Scholar 

  • Virtanen JP, Keto-Timonen R, Jaakkola K et al (2018) Changes in transcriptome of Yersinia pseudotuberculosis IP32953 grown at 3 and 28 °C detected by RNA sequencing shed light on cold adaptation. Front Cell Infect Microbiol 8:416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weber MH, Marahiel MA (2003) Bacterial cold shock responses. Sci Prog 86(1–2):9–75

    Article  CAS  PubMed  Google Scholar 

  • Wesche AM, Gurtler J, Marks BP et al (2009) Stress, sublethal injury, resuscitation, and virulence of bacterial foodborne pathogens. J Food Prot 72(5):1121–1138

    Article  CAS  PubMed  Google Scholar 

  • White-Ziegler CA, Um S, Perez NM et al (2008) Low temperature (23°C) increases expression of biofilm-, cold-shock-and RpoSdependent genes in Escherichia coli K-12. Microbiology 154(1):148–166

    Article  CAS  PubMed  Google Scholar 

  • Wollenweber HW, Schlecht S, Lüderitz O et al (1983) Fatty acid in lipopolysaccharides of Salmonella species grown at low temperature: identification and position. Eur J Biochem 130(1):167–171

    Article  CAS  PubMed  Google Scholar 

  • Woods EC, McBride SM (2017) Regulation of antimicrobial resistance by extracytoplasmic function (ECF) sigma factors. Microbes Infect 19(4–5):238–248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wouters JA, Rombouts FM, Kuipers OP et al (2000) The role of cold-shock proteins in low-temperature adaptation of food-related bacteria. Syst Appl Microbiol 23(2):165–173

    Article  CAS  PubMed  Google Scholar 

  • Wu H, Pei J, Jiang Y et al (2010) pHsh vectors, a novel expression system of Escherichia coli for the large-scale production of recombinant enzymes. Biotechnol Lett 32(6):795–801

    Article  CAS  PubMed  Google Scholar 

  • Yamanaka K, Fang L, Inouye M (1998) The CspA family in Escherichia coli: multiple gene duplication for stress adaptation. Mol Microbiol 27(2):247–255

    Article  CAS  PubMed  Google Scholar 

  • Yang L, Zhou D, Liu X et al (2009) Cold-induced gene expression profiles of Vibrio parahaemolyticus: a time-course analysis. FEMS Microbiol Lett 291(1):50–58

    Article  CAS  PubMed  Google Scholar 

  • Yang SP, Xie J, Cheng Y et al (2020) Response of Shewanella putrefaciens to low temperature regulated by membrane fluidity and fatty acid metabolism. LWT 117:108638

    Article  CAS  Google Scholar 

  • Yu T, Keto-Timonen R, Jiang X et al (2019) Insights into the phylogeny and evolution of cold shock proteins: from enteropathogenic Yersinia and Escherichia coli to eubacteria. Int J Mol Sci 20(16):4059

    Article  CAS  PubMed Central  Google Scholar 

  • Yuk H, Schneider K (2006) Adaptation of Salmonella spp. in juice stored under refrigerated and room temperature enhances acid resistance to simulated gastric fluid. Food Microbiol 23(7):694–700

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Li, J., Wang, W., Zhao, X. (2022). Response of Foodborne Pathogens to Cold Stress. In: Ding, T., Liao, X., Feng, J. (eds) Stress Responses of Foodborne Pathogens. Springer, Cham. https://doi.org/10.1007/978-3-030-90578-1_3

Download citation

Publish with us

Policies and ethics