Skip to main content
Log in

Mechanism of bacterial adaptation to low temperature

  • Review
  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

Survival of bacteria at low temperatures provokes scientific interest because of several reasons. Investigations in this area promise insight into one of the mysteries of life science —namely, how the machinery of life operates at extreme environments. Knowledge obtained from these studies is likely to be useful in controlling pathogenic bacteria, which survive and thrive in cold-stored food materials. The outcome of these studies may also help us to explore the possibilities of existence of life in distant frozen planets and their satellites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AFPs:

antifreeze proteins

CSPs:

cold-shock proteins

HSPs:

heat shock proteins

TH:

thermal hysteresis

VBNC:

viable but nonculturable

References

  • Alam S I, Singh L, Dube S, Reddy G S and Shivaji S2003 PsycrophilicPlanococcus maitriensis sp. nov. from Antarctica;Syst. Appl. Microbiol. 26 505–510

    Article  CAS  PubMed  Google Scholar 

  • Annous B A, Becker L A, Bayles D O, Labeda D P and Wilkinson B J 1997 Critical role of anteiso-C15∶0 fatty acid in the growthof Listeria monocytogenes at low temperatures;Appl. Environ. Microbiol. 63 3887–3894

    CAS  PubMed  PubMed Central  Google Scholar 

  • Billi D, Friedmann E I, Hofer K G, Caiola M G and Ocampo-Friedmann R 2000 Ionizing-radiation resistance in the desiccation-tolerant cyanobacteriumChroococcidiopsis;Appl. Environ. Microbiol. 66 1489–1492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bakermans C, Tsapin A I, Souza-Egipsy V, Gilichinsky D A and Nealson K H 2003 Reproduction and metabolism at —10°C of bacteria isolated from Siberian permafrost;Environ. Microbiol. 5 321–326

    Article  PubMed  Google Scholar 

  • Breezee J, Cady N and Staley J.T 2004 Subfreezing growth of the sea ice bacterium “Psychromonas ingrahamii”;Micriobial Ecol. 47 300–304

    CAS  Google Scholar 

  • Caldas T, Demont-Caulet N, Ghazi A and Richarme G 1999 Thermoprotection by glycine betaine and choline;Microbiology 145 2543–2548

    Article  CAS  PubMed  Google Scholar 

  • Chattopadhyay M K2000 Cold adaptation of Antarctic microorganisms-possible involvement of viable but nonculturable cells;Polar Biol. 23 223–224

    Article  Google Scholar 

  • Chattopadhyay M K 2002a The cryoprotective effects of glycine betaine on bacteria;Trends Microbiol. 10 311

    Article  CAS  Google Scholar 

  • Chattopadhyay M K2002b The link between bacterial radiation resistance and cold adaptation;J. Biosci. 27 71–73

    Article  CAS  PubMed  Google Scholar 

  • Chattopadhyay M K and Jagannadham M V 2001 Maintenance of membrane fluidity in Antarctic bacteria;Polar Biol. 24 386–388

    Article  Google Scholar 

  • Chattopadhyay M K, Kern R, Mistou M-Y, Dandekar A M, Uratsu S L and Richarme G 2004 The chemical chaperone proline relieves the thermosensitivity of adna K deletion mutant at 42°C;J. Bacteriol. 186 8149–8152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chattopadhyay M K, Devi K U, Gopishankar Y and Shivaji S 1995 Thermolable alkaline phosphatase fromSphingobacterium antarcticus, a psychrotrophic bacterium from Antarctica;Polar Biol. 15 215–219

    Article  Google Scholar 

  • Chintalapati S, Kiran M D and Shivaji S2004 Role of membrane lipid fatty acids in cold adaptation;Cell. Mol. Biol. 50 631–642

    CAS  PubMed  Google Scholar 

  • Chow K-C and Tung W L1998 Overexpression ofdna K/dna J andgro EL confers freeze tolerance toEscherichia coli;Biochem. Biophys. Res. Commun. 253 502–505

    Article  CAS  PubMed  Google Scholar 

  • Coker J A, Sheridan P P, Loveland-Curtze J, Gutshall K R, Auman A J and Brenchley J E 2003 Biochemical characterization of a β-galactosidase with a low temperature optimum obtained from an AntarcticArthrobacter isolate;J. Bacteriol. 185 5473–5482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • D'Amico S, Claverie P, Collins T, Georlette D, Gratia E, Hoyoux A, Meuwis M-A, Feller G and Gerday C 2002 Molecular basis of cold adaptation;Philos. Trans. R. Soc. London B Biol. Sci. 357 917–925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duman J G and Olsen T M1993 Thermal hysteresis protein activity in bacteria, fungi, and phylogenetically diverse plants;Cryobiology 30 322–328

    Article  Google Scholar 

  • Ferrer M, Chernikova T N, Yakimov M M, Golyshin P N and Timmis K N 2003 Chaperonins govern growth ofEscherichia coli at low temperatures;Nat. Biotechnol. 21 1266–1267

    Article  CAS  PubMed  Google Scholar 

  • Gerday C, Aittaleb M, Bentahir M, Chessa J-P, Claverie P, Collins T, D'Amico S, Dumont J, Garsoux G, Georlette D, Hoyoux A, Lonhienne T, Meuwis M-A and Feller G2000 Cold-adapted enzymes:from fundamentals to biotechnology;Trends Biotechnol. 18 103–107

    Article  CAS  PubMed  Google Scholar 

  • Gilbert J A, Hill P J, Dodd C E R and Laybourn-Parry J2004 Demonstration of antifreeze protein activity in Antarctic lake bacteria;Microbiology 150 171–180

    Article  CAS  PubMed  Google Scholar 

  • Gilbert J A, Davies P L and Laybourn-Parry J2005 A hyperactive Ca2+ -dependent antifreeze protein in an Antarctic bacterium;FEMS Microbiol. Lett. 245 67–72

    Article  CAS  PubMed  Google Scholar 

  • Groudieva T, Kambourova M, Yusef H, Royter M, Grote R, Trinks H and Antranikian G2004 Diversity and cold-active hydrolytic enzymes of culturable bacteria associated with Arctic sea ice, Spitzbergen;Extremophiles 8 475–488

    Article  CAS  PubMed  Google Scholar 

  • Hirsch P, Gallikowski C A, Siebert J, Peissl K, Kroppenstedt R, Schumann P, Stackebrandt E and Anderson R 2004Deinococcus frigens sp. nov.,Deinococcus saxicola sp.nov., andDeinococcus marmoris sp.nov., low temperature and draughttolerating, UV-resistant bacteria from continental Antarctica;Syst. Appl. Microbiol. 27 636–645

    Article  CAS  PubMed  Google Scholar 

  • Hossain M M and Nakamoto H 2002 Htp G plays a role in cold acclimation in Cyanobacteria;Curr. Microbiol. 44 291–296

    Article  CAS  PubMed  Google Scholar 

  • Hossain M M and Nakamoto H 2003 Role for the cyanobacterial Htp G in protection from oxidative stress;Curr. Microbiol. 46 70–76

    Article  CAS  PubMed  Google Scholar 

  • Huston A L, Methe B and Deming J W 2004 Purification, characterization, and sequencing of an extracellular coldactive aminopeptidase produced by marine psychrophileColwellia psychrerythraea strain 34H;Appl. Environ. Microbiol. 70 3321–3328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jagtap P and Ray M K1999 Studies on the cytoplasmic protein tyrosine kinase activity of the Antarctic psychrotrophic bacteriumPseudomonas syringae;FEMS Microbiol. Lett. 173 379–388

    Article  CAS  PubMed  Google Scholar 

  • Junge K, Eicken H and Deming J W2004 Bacterial activity at −2 to −20°C in Arctic wintertime sea ice;Appl. Environ. Microbiol. 70 550–557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaan T, Homuth G, Mader U, Bandow J and Schweder T2002 Genome-wide transcriptional profiling of theBacillus subtilis cold-shock response;Microbiology 148 3441–3455

    Article  CAS  PubMed  Google Scholar 

  • Kannan K, Janiyani K L, Shivaji S and Ray M K 1998 Histidine utilisation operon (hut) is upregulated at low temperature in the Antarctic psychrotrophic bacteriumPseudomonas syringae;FEMS Microbiol. Lett. 161 7–14

    Article  CAS  PubMed  Google Scholar 

  • Kawahara H, Koda N, Oshio M and Obata H 2000 A cold acclimation protein with refolding activity on frozen denatured enzymes;Biosci. Biotechnol. Biochem. 64 2668–2674

    Article  CAS  PubMed  Google Scholar 

  • Kiran M D, Annapoorni S, Suzuki I, Murata N and Shivaji S2005Cis-trans isomerase gene in psychrophilicPseudomonas syringae is constitutively expressed during growth and under conditions of temperature and solvent stress;Extremophiles 9 117–125

    Article  CAS  PubMed  Google Scholar 

  • Ko R, Smith L T and Smith G M 1994 Glycine betaine confers enhanced osmotolerance and cryotolerance onListeria monocytogenes;J. Bacteriol. 176 426–431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar G S, Jagannadham M V and Ray M K 2002 Low-temperature induced changes in composition and fluidity of lipopolysaccharides in the Antarctic psychrotrophic bacteriumPseudomonas syringae;J. Bacteriol. 184 6746–6749

    Article  CAS  PubMed  Google Scholar 

  • Lelivelt M J and Kawula, T H 1995 Hsc 66, an Hsp 70 homolog inEscherichia coli, is induced by cold shock but not by heat shock;J. Bacteriol. 177 4900–4907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu S, Graham J E, Bigelow L, Morse P D 2nd and Wilkinson B J 2002 Identificationof Listeria monocytogenes genes expressed in response to growth at low temperature;Appl. Environ. Microbiol. 68 1697–1705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Panasik N, Brenchley J E and Farber G K 2000 Distributions of structural features contributing to thermostability in mesophilic and thermophilic alpha/beta barrel glycosyl hydrolases;Biochim. Biophys. Acta 1543 189–201

    Article  CAS  PubMed  Google Scholar 

  • Pfennig P L and Flower A M2001 Bip A is required for growth ofEscherichia coli K 12 at low temperature;Mol. Genet. Genomics 266 313–317

    Article  CAS  PubMed  Google Scholar 

  • Porankiewicz, J and Clarke A K 1997 Induction of the heat shock protein Clp B affects cold acclimation in the cyanobacteriumSynechococcus sp. strain PCC 7942;J. Bacteriol. 179 5111–5117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prabahar V, Dube S, Reddy G S and Shivaji S2004Pseudonocardia antarctica sp. nov. an Actinomycetes from McMurdo Dry Valleys, Antarctica;Syst. Appl. Microbiol. 27 66–71

    Article  CAS  PubMed  Google Scholar 

  • Purusharth R I, Klein F, Sulthana S, Jager S, Jagannadham M V, Evguenieva-Hackenberg E, Ray M K and Klug G2005 Exoribonuclease R interacts with endoribonuclease E and an RNA-helicase in the psychrotrophic bacteriumPseudomonas syringae LZ 4W;J. Biol. Chem. 280 14572–14578

    Article  CAS  PubMed  Google Scholar 

  • Ray M K, Devi K U, Kumar G S and Shivaji S 1992 Extracellular protease from the Antarctic yeastCandida humicola;Appl. Environ. Microbiol. 58 1918–1923

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ray M K, Kumar G S, Janiyani K, Kannan K, Jagtap P, Basu M K and Shivaji S 1998 Adaptation to low temperature and regulation of gene expression in Antarctic psychrotrophic bacteria;J. Biosci. 23 423–435

    Article  CAS  Google Scholar 

  • Ray M K, Kumar G S and Shivaji S1994a Phosphorylation of membrane proteins in response to temperature in an AntarcticPseudomonas syringae;Microbiology 140 3217–3223

    Article  CAS  PubMed  Google Scholar 

  • Ray M K, Kumar G S and Shivaji S1994b Phosphorylation of lipopolysaccharides in the Antarctic psychrotrophPseudomonas syringae: a possible role in temperature adaptation;J. Bacteriol. 176 4243–4249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ray M K, Sitaramamma T, Gandhi S and Shivaji S 1994c Occurrence and expression ofcsp A a cold shock gene in Antarctic psychrotrophic bacteria;FEMS Microbiol. Lett. 116 55–60

    Article  CAS  PubMed  Google Scholar 

  • Reddy G S, Rajagopalan Gand Shivaji S 1994 Thermolabile ribonucleases from Antarctic psychrotrophic bacteria: Detection of the enzyme in various bacteria and purification fromPseudomonas fluorescens;FEMS Microbiol. Lett. 122 211–216

    Article  CAS  Google Scholar 

  • Reddy G S, Raghavan P U, Sarita N B, Prakash J S, Nagesh N, Delille D and Shivaji S 2003aHalomonas glaciei sp. nov. isolated from fast ice of Adelie land Antarctica;Extremophiles 7 55–61

    Article  CAS  PubMed  Google Scholar 

  • Reddy G S, Matsumoto G I and Shivaji S 2003bSporosarcina macmurdoensis sp. nov., from a cyanobacterial mat sample from a pond in the McMurdo Dry Valleys, Antarctica;Int. J. Syst. Evol. Microbiol. 53 1363–1367

    Article  CAS  PubMed  Google Scholar 

  • Reddy G S, Prakash J S, Srinivas R, Matsumoto G I and Shivaji S 2003cLeifsonia rubra sp. nov. andLeifsonia aurea sp. nov., psychrophiles from a pond in Antarctica;Int. J. Syst. Evol. Microbiol. 53 977–984

    Article  CAS  PubMed  Google Scholar 

  • Reddy G S, Matsumoto G I, Schumann P, Stackebrandt Eand Shivaji S 2004 Psychrophilic pseudomonads from Antarctica:Pseudomonas antarctica sp nov.,Pseudomonas meridiana sp. nov. andPseudomonas proteolytica sp. nov;Int. J. Syst. Evol. Microbiol. 54 713–719

    Article  CAS  PubMed  Google Scholar 

  • Regha K, Satapathy A K and Ray M K 2005 Rec D plays an essential function during growth at low temperature in the Antarctic bacteriumPseudomonas syringae Lz 4W;Genetics 170 1473–1484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rivkina E M, Friedmann E I, McKay C P and Gilichinsky D A 2000 Metabolic activity of permafrost bacteria below the freezing point;Appl. Environ. Microbiol. 66 3230–3233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shivaji S, Chaturvedi P, Reddy G S and Suresh K 2005aPedobacter himalayensis sp. nov. from the Hamta glacier located in the Himalayan mountain ranges of India;Int. J. Syst. Evol. Mocrobiol. 55 1083–1088

    Article  CAS  Google Scholar 

  • Shivaji S, Reddy G S, Suresh K, Gupta P, Chintalapati S, Schumann P, Stackebrandt E and Matsumoto GI2005bPsychrobacter vallis sp.nov. andPsychrobacter aquaticus sp.nov., from Antarctica;Int. J. Syst. Evol. Microbiol. 55 757–762

    Article  CAS  PubMed  Google Scholar 

  • Shivaji S, Reddy G S, Aduri R P, Kutty R and Ravenschlag K 2004 Bacterial diversity of a soil sample from Schirmacher Oasis, Antarctica;Cell. Mol. Biol. 50 525–536

    CAS  PubMed  Google Scholar 

  • Smirnova G V, Zakirova O N and Oktiabr'skii O N2001 Role of the antioxidant system in responseof Escherichia coli bacteria to cold stress;Mikrobiologiia 70 55–60

    CAS  PubMed  Google Scholar 

  • Subczynski W K, Markowska E, Gruszecki W I and Sielewiesiuk J1992 Effect of polar carotenoids on dimyristoylphosphatidylcholine membranes: a spin-label study;Biochim. Biophys. Acta 1105 97–108

    Article  CAS  PubMed  Google Scholar 

  • Suutari M and Laakso S1994 Microbial fatty acids and thermal adaptation;Crit. Rev. Microbiol. 20 285–328

    Article  CAS  PubMed  Google Scholar 

  • Suzuki L, Kanesaki Y, Mikami K, Kanehisa M and Murata N 2001 Cold-regulated genes under control of the cold sensor Hik 33 inSynechocystis;Mol. Microbiol. 40 235–244

    Article  CAS  PubMed  Google Scholar 

  • Tsuruta H, Tamura J, Yamagata H and Aizono Y 2004 Specification of amino acid residues essential for the catalytic reaction of cold-active protein-tyrosine phosphatase of a psychrophile,Shewanella sp.;Biosci. Biotechnol. Biochem. 68 440–443

    Article  CAS  PubMed  Google Scholar 

  • Uma S, Jadhav R S, Kumar G S, Shivaji S and Ray M K 1999 A RNA polymerase with transcriptional activity at 0°C from the Ant-arctic bacteriumPseudomonas syringae;FEBS Lett. 453 313–317

    Article  CAS  PubMed  Google Scholar 

  • Wintrode P L, Miyazaki K and Arnold F H2000 Cold-adaptation of a mesophilic subtilisin-like protease by laboratory evolution;J. Biol. Chem. 275 31635–31640

    Article  CAS  PubMed  Google Scholar 

  • Yamanaka K1999 Cold shock response inEscherichia coli;J. Mol. Microbiol. Biotechnol. 1 193–202

    CAS  PubMed  Google Scholar 

  • Yamashita Y, Nakamura N, Omiya K, Nishikawa J, Kawahara H and Obata H 2002 Identification of an antifreeze lipoprotein fromMoraxella sp. of Antarctic origin;Biosci. Biotechnol. Biochem. 66 239–247

    Article  CAS  PubMed  Google Scholar 

  • Zartler E R, Jenney F E Jr, Terrell M, Eidsness M K, Adams M W, and Prestegard J H 2001 Structural basis for thermostability in aporubredoxins fromPyrococcus furiosus andClostridium pasteurianum;Biochemistry 40 7279–7290

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chattopadhyay, M.K. Mechanism of bacterial adaptation to low temperature. J. Biosci. 31, 157–165 (2006). https://doi.org/10.1007/BF02705244

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02705244

Key words

Navigation