Skip to main content

The Microbiome of Coastal Sediments

  • Chapter
  • First Online:
The Marine Microbiome

Abstract

Coastal zones are among the most productive marine environments and many are highly impacted by anthropogenic activity. Coastal zones are key regions for the transformation of land-based inputs of nutrients and pollutants and provide many essential ecosystem services for human society. Periods of tidal exposure and submergence, coupled with seasonal variation in land-based inputs, result in intertidal habitats characterized by highly variable environmental conditions that pose crucial adaptive challenges for organisms. This review focuses on the microbiome of coastal sediments consisting of protists (especially diatoms), bacteria, archaea, and fungi. The diversity, distribution, production, adaptations, and interactions between these groups are reviewed. Coastal microbiomes are characterized by high rates of biogeochemical activity. Photoautotrophic diatoms exhibit complex patterns of behavior to cope with a highly variable light climate. Multiple species–species interactions between autotrophs and heterotrophs contribute to the cycling of carbon and nitrogen. In sediments, autotrophic and heterotrophic processes are closely coupled both spatially and temporally. Bacteria and archaea control the nitrogen- and carbon cycles while taxonomic diversity is influenced by gradients of organic matter, nitrogen compounds, sulfide, and oxygen. Fungi are important components of coastal salt marsh sediment microbiomes but their role in unvegetated sediments is less well understood. This review considers the high human impact on coastal sediments and the importance of nutrient gradients and pollution pressures (hydrocarbons) in affecting diversity and species distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abed RMM (2019) Phototroph-heterotroph oil-degrading partnerships. In: McGenity T (ed) Microbial communities utilizing hydrocarbons and lipids: members, metagenomics and ecophysiology. Handbook of hydrocarbon and lipid microbiology. Springer, Cham, pp 37–50

    Google Scholar 

  • Abell GCJ, Revill AT, Smith C et al (2010) Archaeal ammonia oxidizers and nirS-type denitrifiers dominate sediment nitrifying and denitrifying populations in a subtropical macrotidal estuary. ISME J 4:286–300

    Article  CAS  PubMed  Google Scholar 

  • Acosta-González A, Martirani-von Abercron SM, Rosselló-Móra R et al (2015) The effect of oil spills on the bacterial diversity and catabolic function in coastal sediments: a case study on the prestige oil spill. Environ Sci Pollut Res Int 22:15200–15214

    Article  PubMed  CAS  Google Scholar 

  • Acuña Alvarez L, Exton DA, Suggett DJ et al (2009) Characterization of marine isoprene-degrading communities. Environ Microbiol 11:3280–3291

    Article  CAS  Google Scholar 

  • Admiraal W (1984) The ecology of estuarine sediment inhabiting diatoms. Progr Phyc Res 3:269–322

    Google Scholar 

  • Admiraal W, Peletier H, Brouwer T (1984) The seasonal succession patterns of diatom species on an intertidal mudflat: an experimental analysis. Oikos 42:30–40

    Article  Google Scholar 

  • Alongi DM (2020) Carbon balance in salt marsh and mangrove ecosystems: a global synthesis. J Mar Sci Eng 8:767. https://doi.org/10.3390/jmse8100767

    Article  Google Scholar 

  • Alzarhani AK, Clark DR, Underwood GJC et al (2019) Are drivers of root-associated fungal community structure context specific? ISME J 13:1330–1344

    Article  PubMed  PubMed Central  Google Scholar 

  • Amin SA, Green HD, Hart MC et al (2009) Photolysis of iron-siderophore chelates promotes bacterial-algal mutualism. Proc Nat Acad Sci 106:17071–17076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • An SM, Choi DH, Noh JH (2020) High-throughput sequencing analysis reveals dynamic seasonal succession of diatom assemblages in a temperate tidal flat. Estuar Coast Shelf Sci 237:106686

    Article  CAS  Google Scholar 

  • Andreoni V, Bernasconi S, Colombo M et al (2000) Detection of genes for alkane and naphthalene catabolism in Rhodococcus sp. strain 1BN. Environ Microbiol 2:572–577

    Article  CAS  PubMed  Google Scholar 

  • Ardelean II (2014) The involvement of cyanobacteria in petroleum hydrocarbons degradation: fundamentals, applications and perspectives. In: Davison D (ed) Cyanobacteria: ecological importance, biotechnological uses and risk management. Nova Science Publishers, New York, pp 41–60

    Google Scholar 

  • Arp DJ, Sayavedra-Soto LA, Hommes NG (2002) Molecular biology and biochemistry of ammonia oxidation by Nitrosomonas europaea. Arch Microbiol 178:250–255

    Article  CAS  PubMed  Google Scholar 

  • Baas JH, Baker ML, Malarkey J et al (2019) Integrating field and laboratory approaches for ripple development in mixed sand–clay–EPS. Sedimentol 66:2749–2768

    Article  Google Scholar 

  • Baker BJ, De Anda V, Seitz KW et al (2020) Diversity, ecology and evolution of archaea. Nat Microbiol 5:887–900

    Article  CAS  PubMed  Google Scholar 

  • Bani A, Borruso L, Nicholass KJM et al (2019) Site-specific microbial decomposer communities do not imply faster decomposition: results from a litter transplantation experiment. Microorganisms 7:349

    Article  CAS  PubMed Central  Google Scholar 

  • Barnett A, Méléder V, Blommaert L et al (2015) Growth form defines physiological photoprotective capacity in intertidal benthic diatoms. ISME J 9:32–45

    Article  CAS  PubMed  Google Scholar 

  • Barranguet C, Kromkamp J, Peene J (1998) Factors controlling primary production and photosynthetic characteristics of intertidal microphytobenthos. Mar Ecol Prog Ser 173:117–126

    Article  Google Scholar 

  • Bartelme RP, McLellan SL, Newton RJ (2017) Freshwater recirculating aquaculture system operations drive biofilter bacterial community shifts around a stable nitrifying consortium of ammonia-oxidizing archaea and comammox Nitrospira. Front Microbiol 8:101

    Article  PubMed  PubMed Central  Google Scholar 

  • Beaumont NJ, Jones L, Garbutt A et al (2014) The value of carbon sequestration and storage in coastal habitats. Estuar Coast Shelf Sci 137:32–40

    Article  Google Scholar 

  • Beddow J, Stolpe B, Cole PA et al (2017) Nanosilver inhibits nitrification and reduces ammonia-oxidizing bacterial but not archaeal amoA gene abundance in estuarine sediments. Environ Microbiol 19:500–510

    Article  CAS  PubMed  Google Scholar 

  • Bellinger BJ, Abdullahi AS, Gretz MR et al (2005) Biofilm polymers: relationship between carbohydrate biopolymers from estuarine mudflats and unialgal cultures of benthic diatoms. Aquat Microb Ecol 38:169–180

    Article  Google Scholar 

  • Bellinger BJ, Underwood GJC, Ziegler SE et al (2009) Significance of diatom-derived polymers in carbon flow dynamics within estuarine biofilms determined through isotopic enrichment. Aquat Microb Ecol 55:169–187

    Article  Google Scholar 

  • Beman JM, Francis CA (2006) Diversity of ammonia-oxidizing archaea and bacteria in the sediments of a hypernutrified subtropical estuary: Bahia del Tobari, Mexico. Appl Environ Microbiol 72:7767–7777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beman JM, Popp BN, Francis CA (2008) Molecular and biogeochemical evidence for ammonia oxidation by marine Crenarchaeota in the Gulf of California. ISME J 2:429–441

    Article  CAS  PubMed  Google Scholar 

  • Benyoucef I, Blandin E, Lerouxel A et al (2014) Microphytobenthos interannual variations in a north-European estuary (Loire estuary, France) detected by visible-infrared multispectral remote sensing. Estuar Coast Shelf Sci 136:43–52

    Article  Google Scholar 

  • Berg G, Rybakova D, Fischer D et al (2020) Microbiome definition re-visited: old concepts and new challenges. Microbiome 8:103

    Article  PubMed  PubMed Central  Google Scholar 

  • Bergman B, Gallon JR, Rai AN et al (1997) N2 fixation by non-heterocystous cyanobacteria. FEMS Microbiol Rev 19:139–185

    Article  CAS  Google Scholar 

  • Berman-Frank I, Lundgren P, Falkowski P (2003) Nitrogen fixation and photosynthetic oxygen evolution in cyanobacteria. Res Microbiol 154:157–164

    Article  CAS  PubMed  Google Scholar 

  • Beyer J, Trannum HC, Bakke T et al (2016) Environmental effects of the Deepwater horizon oil spill: a review. Mar Pollut Bull 110:28–51

    Article  CAS  PubMed  Google Scholar 

  • Blommaert L, Lavaud J, Vyverman W et al (2018) Behavioural versus physiological photoprotection in epipelic and epipsammic benthic diatoms. Eur J Phycol 53:146–155

    Article  Google Scholar 

  • Blommaert L, Vancaester E, Huysman MJJ et al (2020) Light regulation of LHCX genes in the benthic diatom Seminavis robusta. Front Mar Sci 7:192

    Article  Google Scholar 

  • Böer SI, Hedtkamp SIC, van Beusekom JEE et al (2009) Time- and sediment depth-related variations in bacterial diversity and community structure in subtidal sands. ISME J 3:780–791

    Article  PubMed  CAS  Google Scholar 

  • Boetius A, Ravenschlag K, Schubert CJ et al (2000) A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407:623–626

    Article  CAS  PubMed  Google Scholar 

  • Bohórquez J, McGenity TJ, Papaspyrou S et al (2017) Different types of diatom-derived extracellular polymeric substances drive changes in heterotrophic bacterial communities from intertidal sediments. Front Microbiol 8:245

    Article  PubMed  PubMed Central  Google Scholar 

  • Booty JM, Underwood GJC, Parris A et al (2020) Wading birds affect ecosystem functioning on an intertidal mudflat. Front Mar Sci 7:685

    Article  Google Scholar 

  • Bowles M, Nigro L, Teske A et al (2012) Denitrification and environmental factors influencing nitrate removal in Guaymas Basin hydrothermally altered sediments. Front Microbiol 3:377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Braker G, Conrad R (2011) Diversity, structure, and size of N2O-producing microbial communities in soils—what matters for their functioning? Adv Appl Microbiol 75:33–70

    Article  CAS  PubMed  Google Scholar 

  • Braker G, Zhou JZ, Wu LY et al (2000) Nitrite reductase genes (nirK and nirS) as functional markers to investigate diversity of denitrifying bacteria in Pacific northwest marine sediment communities. Appl Environ Microbiol 66:2096–2104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bruckner CG, Bahulikar R, Rahalkar M et al (2008) Bacteria associated with benthic diatoms from Lake Constance: phylogeny and influences on diatom growth and secretion of extracellular polymeric substances. Appl Environ Microbiol 74:7740–7749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bruckner CG, Rehm C, Grossart H-P et al (2011) Growth and release of extracellular organic compounds by benthic diatoms depend on interactions with bacteria. Environ Microbiol 13:1052–1063

    Article  CAS  PubMed  Google Scholar 

  • Buchan A, Newell SY, Butler M et al (2003) Dynamics of bacterial and fungal communities on decaying salt marsh grass. Appl Environ Microbiol 69:6676–6687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bucher VVC, Hyde KD, Pointing SB et al (2004) Production of wood decay enzymes, mass loss and lignin solubilization in wood by marine ascomycetes and their anamorphs. Fungal Divers 15:1–14

    Google Scholar 

  • Burden A, Garbutt A, Evans CD (2019) Effect of restoration on saltmarsh carbon accumulation in eastern England. Biol Lett 15:20180773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burgaud G, Woehlke S, Rédou V et al (2013) Deciphering the presence and activity of fungal communities in marine sediments using a model estuarine system. Aquat Microb Ecol 70:45–62

    Article  Google Scholar 

  • Caffrey JM, Bano N, Kalanetra K et al (2007) Ammonia oxidation and ammonia-oxidizing bacteria and archaea from estuaries with differing histories of hypoxia. ISME J 1:660–662

    Article  PubMed  Google Scholar 

  • Calado ML, Carvalho L, Barata M et al (2019) Potential roles of marine fungi in the decomposition process of standing stems and leaves of Spartina maritima. Mycologia 111:371–383

    Article  PubMed  Google Scholar 

  • Camilli R, Reddy CM, Yoerger DR et al (2010) Tracking hydrocarbon plume transport and biodegradation at Deepwater horizon. Science 330:201–204

    Article  CAS  PubMed  Google Scholar 

  • Cao H, Hong Y, Li M et al (2012) Community shift of ammonia-oxidizing bacteria along an anthropogenic pollution gradient from the Pearl River Delta to the South China Sea. Appl Microbiol Biotechnol 94:247–259

    Article  CAS  PubMed  Google Scholar 

  • Cao H, Hong Y, Li M et al (2011) Diversity and abundance of ammonia-oxidizing prokaryotes in sediments from the coastal Pearl River estuary to the South China Sea. Ant Leeuwenhoek 100:545–556

    Article  Google Scholar 

  • Capone DG (1988) Benthic nitrogen fixation. In: Blackburn TH, Sorensen J (eds) Nitrogen cycling in coastal marine sediments. John Wiley and Sons, New York, pp 85–123

    Google Scholar 

  • Chen W, Pan Y, Yu L et al (2017) Patterns and processes in marine microeukaryotic community biogeography from Xiamen coastal waters and intertidal sediments, Southeast China. Front Microbiol 8:1912

    Article  PubMed  PubMed Central  Google Scholar 

  • Chernikova TN, Bargiela R, Toshchakov SV et al (2020) Hydrocarbon-degrading bacteria Alcanivorax and Marinobacter associated with microalgae Pavlova lutheri and Nannochloropsis oculata. Front Microbiol 11:2650

    Article  Google Scholar 

  • Christianen MJA, Middelburg JJ, Holthuijsen SJ et al (2017) Benthic primary producers are key to sustain the Wadden Sea food web: stable carbon isotope analysis at landscape scale. Ecology 98:1498–1512

    Article  CAS  PubMed  Google Scholar 

  • Chronoupolou P-M, Fahy A, Coulon F et al (2013) Impact of a simulated oil spill on benthic phototrophs and nitrogen-fixing bacteria. Environ Microbiol 15:241–252

    Google Scholar 

  • Chung WK, King GM (2001) Isolation, characterization, and polyaromatic hydrocarbon degradation potential of aerobic bacteria from marine macrofaunal burrow sediments and description of Lutibacterium anuloederans gen. Nov., sp. nov., and Cycloclasticus spirillensus sp. nov. Appl Environ Microbiol 67:5585–5592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cibic T, Fazi S, Nasi F et al (2019) Natural and anthropogenic disturbances shape benthic phototrophic and heterotrophic microbial communities in the Po River Delta system. Estuar Coast Shelf Sci 222:168–182

    Article  CAS  Google Scholar 

  • Clark DR, McKew B, Dong L et al (2020) Mineralization and nitrification: archaea dominate ammonia-oxidising communities in grassland soils. Soil Biol Biochem 143:107725

    Article  CAS  Google Scholar 

  • Clark DR, Mégane Mathieu M, Mourot L et al (2017) Biogeography at the limits of life: do extremophilic microbial communities show biogeographic regionalisation? Glob Ecol Biogeogr 26:1435–1446

    Article  Google Scholar 

  • Coelho H, Vieira S, Serôdio J (2011) Endogenous versus environmental control of vertical migration by intertidal benthic microalgae. Eur J Phycol 46:271–281

    Article  Google Scholar 

  • Cohn SA, Dunbar S, Ragland R et al (2016) Analysis of light quality and assemblage composition on diatom motility and accumulation rate. Diatom Res 31:173–184

    Article  Google Scholar 

  • Connolly CT, William V, Sobczak WV, SEG F (2014) Salinity effects on phragmites decomposition dynamics among the Hudson River’s freshwater tidal wetlands. Wetlands 34:575–582

    Article  Google Scholar 

  • Consalvey M, Paterson DM, Underwood GJC (2004) The ups and downs of life in a benthic biofilm: migration of benthic diatoms. Diatom Res 19:181–202

    Article  Google Scholar 

  • Cook PLM, Veuger B, Böer S et al (2007) Effect of nutrient availability on carbon and nitrogen incorporation and flows through benthic algae and bacteria in near-shore sandy sediment. Aq Microb Ecol 49:165–180

    Article  Google Scholar 

  • Cortes-Tolalpa L, Norder J, van Elsas JD et al (2018) Halotolerant microbial consortia able to degrade highly recalcitrant plant biomass substrate. Appl Microbiol Biotechnol 102:2913–2927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coulon F, Chronopoulou PM, Fahy A et al (2012) Central role of dynamic tidal biofilms dominated by aerobic hydrocarbonoclastic bacteria and diatoms in the biodegradation of hydrocarbons in coastal mudflats. Appl Environ Microbiol 78:3638–3648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coulon F, McKew BA, Osborn AM et al (2007) Effects of temperature and biostimulation on oil-degrading microbial communities in temperate estuarine waters. Environ Microbiol 9:177–186

    Article  CAS  PubMed  Google Scholar 

  • Daggers TD, Herman PMJ, van der Wal D (2020) Seasonal and spatial variability in patchiness of microphytobenthos on intertidal flats from Sentinel-2 satellite imagery. Front Mar Sci 7:392

    Article  Google Scholar 

  • Daims H, Lucker S, Wagner M (2016) A new perspective on microbes formerly known as nitrite-oxidizing bacteria. Trends Microbiol 24:699–712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dal Bello M, Rindi L, Benedetti-Cecchi L (2017) Legacy effects and memory loss: how contingencies moderate the response of rocky intertidal biofilms to present and past extreme events. Glob Change Biol 23:3259–3268

    Article  Google Scholar 

  • Daleo P, Alberti J, Canepuccia A et al (2008) Mycorrhizal fungi determine salt-marsh plant zonation depending on nutrient supply. J Ecol 96:431–437

    Article  Google Scholar 

  • Dalsgaard T, Canfield DE, Petersen J et al (2003) N2 production by the anammox reaction in the anoxic water column of Golfo Dulce, Costa Rica. Nature 422:606–608

    Article  CAS  PubMed  Google Scholar 

  • Dang H, Li J, Chen R et al (2010) Diversity, abundance, and spatial distribution of sediment ammonia-oxidizing betaproteobacteria in response to environmental gradients and coastal eutrophication in Jiaozhou Bay, China. Appl Environ Microbiol 76:4691–4702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dang H, Wang C, Li J et al (2009) Diversity and distribution of sediment nirS-encoding bacterial assemblages in response to environmental gradients in the eutrophied Jiaozhou Bay, China. Microb Ecol 58:161–169

    Article  CAS  PubMed  Google Scholar 

  • De Jonge VN, de Boer WF, de Jong DJ et al (2012) Long-term mean annual microphytobenthos chlorophyll a variation correlates with air temperature. Mar Ecol Prog Ser 468:43–56

    Article  Google Scholar 

  • De Jonge VN, van Beusekom JEE (1995) Wind- and tide-induced resuspension of sediment microphytobenthos from the tidal flats in the ems estuary. Limnol Oceanogr 40:766–778

    Google Scholar 

  • de la Huz R, Lastra M, Junoy J et al (2005) Biological impacts of oil pollution and cleaning in the intertidal zone of exposed sandy beaches: preliminary study of the ''Prestige'' oil spill. Estuar Coast Shelf Sci 65:19–29

    Article  CAS  Google Scholar 

  • Dean JF, Middelburg JJ, Röckmann T et al (2018) Methane feedbacks to the global climate system in a warmer world. Rev Geophys 56:207–250

    Article  Google Scholar 

  • DeLong EF (1992) Archaea in coastal marine environments. Proc Natl Acad Sci 89:5685–5689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dong C, Bai X, Sheng H et al (2015) Distribution of PAHs and the PAH-degrading bacteria in the deep-sea sediments of the high-latitude Arctic Ocean. Biogeosciences 12:2163–2177

    Article  Google Scholar 

  • Dong LF, Thornton DCO, Nedwell DB et al (2000) Denitrification in the sediments of the river Colne estuary, England. Mar Ecol Prog Ser 203:109–122

    Article  CAS  Google Scholar 

  • Dong X, Greening C, Rattray JE et al (2019) Metabolic potential of uncultured bacteria and archaea associated with petroleum seepage in deep-sea sediments. Nat Commun 10:1816

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Duarte CM, Agusti S, Barbier E et al (2020) Rebuilding marine life. Nature 580:39–51

    Article  CAS  PubMed  Google Scholar 

  • Duran R, Cravo-Laureau C (2016) Role of environmental factors and microorganisms in determining the fate of polycyclic aromatic hydrocarbons in the marine environment. FEMS Microbiol Rev 40:814–830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duran R, Cuny P, Bonin P et al (2015) Microbial ecology of hydrocarbon-polluted coastal sediments. Environ Sci Pollut Res 22:15195–15199

    Article  CAS  Google Scholar 

  • Dyksterhouse SE, Gray JP, Herwig RP et al (1995) Cycloclasticus pugetii gen. nov., sp. nov., an aromatic hydrocarbon-degrading bacterium from marine sediments. Int J Syst Bacteriol 45:116–123

    Article  CAS  PubMed  Google Scholar 

  • Egger M, Riedinger N, Mogollo’n JM, et al. (2018) Global diffusive fluxes of methane in marine sediments. Nat Geosci 11:421–425

    Article  CAS  Google Scholar 

  • Erguder TH, Boon N, Wittebolle L et al (2009) Environmental factors shaping the ecological niches of ammonia-oxidizing archaea. FEMS Microbiol Rev 33:855–869

    Article  CAS  PubMed  Google Scholar 

  • Evans PN, Boyd JA, Leu AO et al (2019) An evolving view of methane metabolism in the archaea. Nat Rev Microbiol 17:219–232

    Article  CAS  PubMed  Google Scholar 

  • Evans PN, Parks DH, Chadwick GL et al (2015) Methane metabolism in the archaeal phylum Bathyarchaeota revealed by genome-centric metagenomics. Science 350:434–438

    Article  CAS  PubMed  Google Scholar 

  • Evelin H, Kapoor R, Giri B (2009) Arbuscular mycorrhizal fungi in alleviation of salt stress: a review. Ann Bot 104:1263–1280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feldewert C, Lang K, Brune A (2020) The hydrogen threshold of obligately methyl775 reducing methanogens. FEMS Microbiol Lett 17:fnaa137

    Article  CAS  Google Scholar 

  • Fernandez-Martinez J, Pujalte MJ, Garcia-Martinez J et al (2003) Description of Alcanivorax venustensis sp. nov. and reclassification of Fundibacter jadensis DSM 12178T (Bruns and Berthe-Corti 1999) as Alcanivorax jadensis comb. nov., members of the emended genus Alcanivorax. Int J Syst Evol Microbiol 53:331–338

    Article  CAS  PubMed  Google Scholar 

  • Fitter AH (2005) Darkness visible: reflections on underground ecology. J Ecol 93:231–243

    Article  Google Scholar 

  • Forster RM, Creach V, Sabbe K et al (2006) Biodiversity-ecosystem function relationship in microphytobenthic diatoms of the Westerschelde estuary. Mar Ecol Prog Ser 311:192–201

    Article  Google Scholar 

  • Francioli D, van Rijssel SQ, van Ruijven J et al (2020) Plant functional group drives the community structure of saprophytic fungi in a grassland biodiversity experiment. Plant Soil. https://doi.org/10.1007/s11104-020-04454-y

  • Francis CA, Roberts KJ, Beman JM et al (2005) Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean. Proc Natl Acad Sci 102:14683–14688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fuhrman JA, Davis AA (1997) Widespread archaea and novel bacteria from the deep sea as shown by 16S rRNA gene sequences. Mar Ecol Prog Ser 150:275–285

    Article  Google Scholar 

  • Fuhrman JA, McCallum K, Davis AA (1992) Novel major archaebacterial group from marine plankton. Nature 356:148–149

    Article  CAS  PubMed  Google Scholar 

  • Galiforni-Silva F, Wijnberg KM, Hulscher SJMH (2020) On the relation between beach-dune dynamics and shoal attachment processes: a case study in Terschelling (NL). J Mar Sci Eng 8:541

    Article  Google Scholar 

  • Gaubert-Boussarie J, Prado S, Hubas C (2020) An untargeted metabolomic approach for microphytobenthic biofilms in intertidal mudflats. Front Mar Sci 7:250

    Article  Google Scholar 

  • Gauthier MJ, Lafay B, Christen R et al (1992) Marinobacter hydrocarbonoclasticus gen. nov., sp. nov., a new, extremely halotolerant, hydrocarbon-degrading marine bacterium. Int J Syst Bacteriol 42:568–576

    Article  CAS  PubMed  Google Scholar 

  • Gerdes B, Brinkmeyer R, Dieckmann G et al (2005) Influence of crude oil on changes of bacterial communities in Arctic Sea-ice. FEMS Microbiol Ecol 53:129–139

    Article  CAS  PubMed  Google Scholar 

  • Gihring TM, Humphrys M, Mills HJ et al (2009) Identification of phytodetritus-degrading microbial communities in sublittoral Gulf of Mexico sands. Limnol Oceanogr 54:1073–1083

    Article  CAS  Google Scholar 

  • Gołębiewski M, Całkiewicz J, Creer S et al (2017) Tideless estuaries in brackish seas as possible freshwater-marine transition zones for bacteria: the case study of the Vistula river estuary. Environ Microbiol Rep 9:129–143

    Article  PubMed  CAS  Google Scholar 

  • Gong J, Shi F, Ma B et al (2015) Depth shapes α- and β-diversities of microbial eukaryotes in surficial sediments of coastal ecosystems. Environ Microbiol 17:3722–3737

    Article  CAS  PubMed  Google Scholar 

  • Gong W, Marchetti A (2019) Estimation of 18S gene copy number in marine eukaryotic plankton using a next-generation sequencing approach. Front Mar Sci 6:219

    Article  Google Scholar 

  • Goñi-Urriza M, Duran R (2018) Impact of petroleum contamination on microbial mats. In: McGenity T (ed) Microbial communities utilizing hydrocarbons and lipids: members, metagenomics and ecophysiology. Handbook of hydrocarbon and lipid microbiology. Springer, Cham, pp 19–36

    Google Scholar 

  • Gostinčar C, Grube M, de Hoog GS et al (2010) Extremotolerance in fungi: evolution on the edge. FEMS Microbiol Ecol 71:2–11

    Article  PubMed  CAS  Google Scholar 

  • Green BC, Smith DJ, Grey J et al (2012) High site fidelity and low site connectivity of temperate salt marsh fish populations: a stable isotope approach. Oecologia 168:245–255

    Article  PubMed  Google Scholar 

  • Green M, Coco G (2014) Review of wave-driven sediment resuspension and transport in estuaries. Rev Geophys 52:77–117

    Article  Google Scholar 

  • Greer CW (2010) Bacterial diversity in hydrocarbon-polluted rivers, estuaries and sediments. In: Timmis KN, McGenity TJ, van der Meer JR, de Lorenzo V (eds) Handbook of hydrocarbon and lipid microbiology. Springer, Berlin, Heidelberg, pp 2329–2338

    Chapter  Google Scholar 

  • Gregson BH, Metodieva G, Metodiev MV et al (2018) Differential protein expression during growth on medium versus long-chain alkanes in the obligate marine hydrocarbon-degrading bacterium Thalassolituus oleivorans MIL-1. Front Microbiol 9:3130

    Article  PubMed  PubMed Central  Google Scholar 

  • Gregson BH, Metodieva G, Metodiev MV et al (2019) Differential protein expression during growth on linear versus branched alkanes in the obligate marine hydrocarbon-degrading bacterium Alcanivorax borkumensis SK2T. Environ Microbiol 21:2347–2359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gregson BH, Metodieva G, Metodiev MV et al (2020) Protein expression in the obligate hydrocarbon-degrading psychrophile Oleispira Antarctica RB-8 during alkane degradation and cold tolerance. Environ Microbiol 22:1870–1883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grossart HP, Levold F, Allgaier M et al (2005) Marine diatom species harbour distinct bacterial communities. Environ Microbiol 7:860–873

    Article  CAS  PubMed  Google Scholar 

  • Gutierrez T, Green DH, Nichols PD et al (2013) Polycyclovorans algicola gen. Nov., sp. nov., an aromatic-hydrocarbon-degrading marine bacterium found associated with laboratory cultures of marine phytoplankton. Appl Environ Microbiol 79:205–214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hallam SJ, Mincer TJ, Schleper C et al (2006) Pathways of carbon assimilation and ammonia oxidation suggested by environmental genomic analyses of marine Crenarchaeota. PLoS Biol 4:e95

    Article  PubMed  PubMed Central  Google Scholar 

  • Hamels I, Sabbe K, Muylaert K et al (1998) Organisation of microbenthic communities in intertidal estuarine flats, a case study from the Molenplaat (Westerschelde estuary, the Netherlands). Eur J Protistol 34:308–320

    Article  Google Scholar 

  • Hanlon ARM, Bellinger B, Haynes K et al (2006) Dynamics of extracellular polymeric substance (EPS) production and loss in an estuarine, diatom-dominated, microalgal biofilm over a tidal emersion-immersion period. Limnol Oceanogr 51:79–93

    Article  CAS  Google Scholar 

  • Hanson RB, Gundersen K (1977) Relationship between nitrogen fixation (acetylene reduction) and the C:N ratio in a polluted coral reef system, Kaneohe Bay, Hawaii. Est Coast Mar Sci 5:437–444

    Article  CAS  Google Scholar 

  • Happey-Wood CM, Jones P (1988) Rhythms of vertical migration and motility in intertidal diatoms with particular reference to Pleurosigma angulatum. Diat Res 3:83–93

    Article  Google Scholar 

  • Harayama S, Kishira H, Kasai Y et al (1999) Petroleum biodegradation in marine environments. J Mol Microbiol Biotechnol 1:63–70

    CAS  PubMed  Google Scholar 

  • Harms H, Smith KEC, Wick LY (2010) Microorganism–hydrophobic compound interactions. In: Timmis KN, McGenity TJ, van der Meer JR, de Lorenzo V (eds) Handbook of hydrocarbon and lipid microbiology. Springer, Berlin, Heidelberg, pp 1479–1490

    Chapter  Google Scholar 

  • Haro S, Bohórquez J, Lara M et al (2019) Diel patterns of microphytobenthic primary production in intertidal sediments: circadian photosynthetic rhythm and migration. Sci Rep 9:13376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haro-Moreno JM, Rodriguez-Valera F, López-García P et al (2017) New insights into marine group III Euryarchaeota, from dark to light. ISME J 11:1102–1117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Head IM, Hiorns WD, Embley TM et al (1993) The phylogeny of autotrophic ammonia oxidizing bacteria as determined by analysis of 16S ribosomal RNA gene-sequences. J Gen Microbiol 139:1147–1153

    Article  CAS  PubMed  Google Scholar 

  • Head IM, Jones DM, Röling WFM (2006) Marine microorganisms make a meal of oil. Nat Rev Microbiol 4:173–182

    Article  CAS  PubMed  Google Scholar 

  • Heip CHR, Goosen NK, Herman PMJ et al (1995) Production and consumption of biological particles in temperate tidal estuaries. Oceanogr Mar Biol Ann Rev 33:1–149

    Google Scholar 

  • Henderson CJ, Gilby BL, Schlacher TA et al (2020) Low redundancy and complementarity shape ecosystem functioning in a low-diversity ecosystem. J Anim Ecol 89:784–794

    Article  PubMed  Google Scholar 

  • Herbert RA (1999) Nitrogen cycling in coastal marine ecosystems. FEMS Microbiol Rev 5:563–590

    Article  Google Scholar 

  • Herman PMJ, Middelburg JJ, Widdows J et al (2000) Stable isotopes as trophic tracers: combining field sampling and manipulative labelling of food resources for macrobenthos. Mar Ecol Prog Ser 204:79–92

    Article  CAS  Google Scholar 

  • Hill-Spanik KM, Smith AS, Plante CJ (2019) Recovery of benthic microalgal biomass and community structure following beach renourishment at Folly Beach, South Carolina. Estuaries Coast 42:157–172

    Article  CAS  Google Scholar 

  • Hoehler TM, Alperin MJ, Albert DB et al (1994) Field and laboratory studies of 534 methane oxidation in an anoxic marine sediment: evidence for a methanogen-sulfate 535 reducer consortium. Glob Biogeochem Cycles 8:451–463

    Article  CAS  Google Scholar 

  • Hoeksema JD, Chaudhary VB, Gehring CA et al (2010) A meta-analysis of context-dependency in plant response to inoculation with mycorrhizal fungi. Ecol Lett 13:394–407

    Article  PubMed  Google Scholar 

  • Hope JA, Paterson DM, Thrush SF (2020) The role of microphytobenthos in soft-sediment ecological networks and their contribution to the delivery of multiple ecosystem services. J Ecol 108:815–830

    Article  Google Scholar 

  • Horel A, Bernard RJ, Mortazavi B (2014) Impact of crude oil exposure on nitrogen cycling in a previously impacted Juncus roemerianus salt marsh in the northern Gulf of Mexico. Environ Sci Pollut Res Int 21:6982–6993

    Article  CAS  PubMed  Google Scholar 

  • Hörnlein C, Confurius-Guns V, Stal LJ et al (2018) Daily rhythmicity in coastal microbial mats. NPJ Biofilms Microbiomes 4:11

    Article  PubMed  PubMed Central  Google Scholar 

  • Hu H, He J (2017) Comammox—a newly discovered nitrification process in the terrestrial nitrogen cycle. J Soils Sediments 17:2709–2717

    Article  CAS  Google Scholar 

  • Imachi H, Nobu MK, Nakahara N et al (2020) Isolation of an archaeon at the prokaryote-eukaryote interface. Nature 577:519–525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • ITOPF (2019) Oil tanker spill statistics 2019. Available http://www.itopf.org/

  • Jameson E, Stephenson J, Jones H et al (2018) Deltaproteobacteria (Pelobacter) and Methanococcoides are responsible for choline-dependent methanogenesis in a coastal saltmarsh sediment. ISME J 13:277–289

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jayakumar A, O’Mullan GD, Naqvi SWA et al (2009) Denitrifying bacterial community composition changes associated with stages of denitrification in oxygen minimum zones. Microb Ecol 58:350–362

    Article  CAS  PubMed  Google Scholar 

  • Jeffries TC, Curlevski NJ, Brown MV et al (2016) Marine fungal biogeography. Environ Microbiol Rep 8:235–238

    Article  PubMed  Google Scholar 

  • Jensen MM, Kuypers MMM, Lavik G et al (2008) Rates and regulation of anaerobic ammonium oxidation and denitrification in the Black Sea. Limnol Oceanogr 53:23–36

    Article  CAS  Google Scholar 

  • Jesus B, Brotas V, Ribeiro L et al (2009) Adaptations of microphytobenthos assemblages to sediment type and tidal position. Cont Shelf Res 29:1624–1634

    Article  Google Scholar 

  • Jetten MSM, Op den Camp HJM, Kuenen JG et al (2010) Description of the order Brocadiales. In: Krieg NR, Ludwig W, Whitman WB, Hedlund BP, Paster BJ, Staley JT, Ward N, Brown D, Parte A (eds) Bergey’s manual of systematic bacteriology, vol 4. Springer, Heidelberg, pp 596–603

    Google Scholar 

  • Jiang H, Dong H, Yu B et al (2009) Diversity and abundance of ammonia-oxidizing archaea and bacteria in Qinghai Lake, northwestern China. Geomicrobiol J 26:199–211

    Article  CAS  Google Scholar 

  • Jones C, Hallin S (2010) Ecological and evolutionary factors underlying global and local assembly of denitrifier communities. ISME J 4:633–641

    Article  PubMed  Google Scholar 

  • Jönnson B, Sundbäck K, Nilsson C (1994) An upright life-form of an epipelic motile diatoms: on the behaviour of Gyrosigma balticum. Eur J Phycol 29:11–15

    Article  Google Scholar 

  • Jørgensen KS (1989) Annual pattern of denitrification and nitrate ammonification in an estuarine sediment. Appl Environ Microbiol 55:1841–1847

    Article  PubMed  PubMed Central  Google Scholar 

  • Jørgensen KS, Sorensen J (1988) Two annual maxima of nitrate reduction and denitrification in estuarine sediment (Norsminde Fjord, Denmark). Mar Ecol Prog Ser 94:267–274

    Google Scholar 

  • Juneau P, Barnett A, Méléder V et al (2015) Combined effect of high light and high salinity on the regulation of photosynthesis in three diatom species belonging to the main growth forms of intertidal flat inhabiting microphytobenthos. J Exp Mar Biol Ecol 463:95–104

    Article  CAS  Google Scholar 

  • Kamp A, Beer D, Nitsch JL et al (2011) Diatoms respire nitrate to survive dark and anoxic conditions. Proc Nat Acad Sci 108:5649–5654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaplan WA, Teal JM, Valiela I (1977) Denitrification in saltmarsh sediments: evidence for seasonal temperature selection among populations of denitrifiers. Microb Ecol 3:193–224

    Article  CAS  PubMed  Google Scholar 

  • Kartal B, Kuypers MM, Lavik G et al (2007) Anammox bacteria disguised as denitrifiers: nitrate reduction to dinitrogen gas via nitrite and ammonium. Environ Microbiol 9:635–642

    Article  CAS  PubMed  Google Scholar 

  • Kasai Y, Kishira H, Harayama S (2002) Bacteria belonging to the genus Cycloclasticus play a primary role in the degradation of aromatic hydrocarbons released in a marine environment. Appl Environ Microbiol 68:5625–5633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kasai Y, Shindo K, Harayama S et al (2003) Molecular characterization and substrate preference of a polycyclic aromatic hydrocarbon dioxygenase from Cycloclasticus sp. strain A5. Appl Environ Microbiol 69:6688–6697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim BS, Oh HM, Kang H et al (2005) Archaeal diversity in tidal flat sediment as revealed by 16S rDNA analysis. J Microbiol 43:144–151

    CAS  PubMed  Google Scholar 

  • King D, Nedwell DB (1987) The adaptation of nitrate reducing bacterial communities in estuarine sediments in response to overlying nitrate load. FEMS Microb Ecol 45:15–21

    Article  CAS  Google Scholar 

  • Kingston MB (1999) Effect of light on vertical migration and photosynthesis of Euglena proxima (Euglenophyta). J Phycol 35:245–253

    Article  Google Scholar 

  • Knittel K, Wegener G, Boetius A (2018) Anaerobic methane oxidizers. In: McGenity TJ (ed) Microbial communities utilizing hydrocarbons and lipids: members, metagenomics and ecophysiology. Springer International Publishing, Cham, pp 113–132

    Google Scholar 

  • Koch H, van Kessel MAHJ, Lücker S (2019) Complete nitrification: insights into the ecophysiology of comammox Nitrospira. Appl Microbiol Biotechnol 103:177–189

    Article  CAS  PubMed  Google Scholar 

  • Koedooder C, Stock W, Willems A et al (2019) Diatom-bacteria interactions modulate the composition and productivity of benthic diatom biofilms. Front Microbiol 10:1255

    Article  PubMed  PubMed Central  Google Scholar 

  • König S, Eisenhut M, Bräutigam A et al (2017) The influence of a cryptochrome on the gene expression profile in the diatom Phaeodactylum tricornutum under blue light and in darkness. Plant Cell Physiol 58:1914–1923

    Article  PubMed  CAS  Google Scholar 

  • Koop-Jakobsen K, Giblin AE (2010) The effect of increased nitrate loading on nitrate reduction via denitrification and DNRA in salt marsh sediments. Limnol Oceanog 55:789–802

    Article  CAS  Google Scholar 

  • Kostka JE, Prakash O, Overholt WA et al (2011) Hydrocarbon-degrading bacteria and the bacterial community response in Gulf of Mexico beach sands impacted by the Deepwater horizon oil spill. Appl Environ Microbiol 77:7962–7974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kube M, Chernikova T, Al-Ramahi Y et al (2013) Genome sequence and functional genomic analysis of the oil-degrading bacterium Oleispira Antarctica. Nat Commun 4:2156

    Article  PubMed  CAS  Google Scholar 

  • Kuehn KA, Steiner D, Gessner MO (2004) Dielmineralization patterns of standing-dead plant litter: implications for CO2 flux from wetlands. Ecology 85:2504–2518

    Article  Google Scholar 

  • Kuypers MM, Sliekers AO, Lavik G et al (2003) Anaerobic ammonium oxidation by anammox bacteria in the Black Sea. Nature 422:608–611

    Article  CAS  PubMed  Google Scholar 

  • Kuypers MMM, Marchant HK, Kartal B (2018) The microbial nitrogen cycling network. Nat Rev Microbiol 16:263–276

    Article  CAS  PubMed  Google Scholar 

  • Kwon KK, Oh JH, Yang S-H et al (2015) Alcanivorax gelatiniphagus sp. nov., a marine bacterium isolated from tidal flat sediments enriched with crude oil. Int J Syst Evol Microbiol 65:2204–2208

    Article  CAS  Google Scholar 

  • Lacerda ALDF, Proietti MC, Secchi ER et al (2020) Diverse groups of fungi are associated with plastics in the surface waters of the Western South Atlantic and the Antarctic peninsula. Mol Ecol 29:1903–1918

    Article  PubMed  Google Scholar 

  • Lai Q, Wang L, Liu Y et al (2011) Alcanivorax pacificus sp. nov., isolated from a deep-sea pyrene-degrading consortium. Int J Syst Evol Microbiol 61:1370–1374

    Article  CAS  PubMed  Google Scholar 

  • Lam P, Jensen MM, Lavik G et al (2007) Linking crenarchaeal and bacterial nitrification to anammox in the Black Sea. Proc Nat Acad Sci 104:7104–7109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lam P, Lavik G, Jensen MM et al (2009) Revising the nitrogen cycle in the Peruvian oxygen minimum zone. Proc Natl Acad Sci U S A 106:4752–4757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lassen C, Ploug H, Jørgensen BB (1992) Microalgal photosynthesis and spectral scalar irradience in coastal marine sediments of Limfjorden, Denmark. Limnol Oceanogr 37:760–772

    Article  CAS  Google Scholar 

  • Laverman AM, Cappellen PV, Van Rotterdam-Los D et al (2006) Potential rates and pathways of microbial nitrate reduction in coastal sediments. FEMS Microbiol Ecol 58:179–192

    Article  CAS  PubMed  Google Scholar 

  • Laverock B, Gilbert JA, Tait K et al (2011) Bioturbation: impact on the marine nitrogen cycle. Biochem Soc Trans 39:315–320

    Article  CAS  PubMed  Google Scholar 

  • Laviale M, Barnett A, Ezequiel J et al (2015) Response of intertidal benthic microalgal biofilms to a coupled light–temperature stress: evidence for latitudinal adaptation along the Atlantic coast of southern Europe. Environ Microbiol 17:3662–3677

    Article  CAS  PubMed  Google Scholar 

  • Lazar CS, Baker BJ, Seitz K et al (2016) Genomic evidence for distinct carbon substrate preferences and ecological niches of Bathyarchaeota in estuarine sediments. Environ Microbiol 18:1200–1211

    Article  CAS  PubMed  Google Scholar 

  • Lazar CS, Biddle JF, Meador TB et al (2014) Environmental controls on intragroup diversity of the uncultured benthic archaea of the miscellaneous Crenarchaeotal group lineage naturally enriched in anoxic sediments of the white Oak River estuary (North Carolina, USA). Environ Microbiol 17:2228–2238

    Article  CAS  Google Scholar 

  • Leahy JG, Colwell RR (1990) Microbial degradation of hydrocarbons in the environment. Microbiol Rev 54:305–315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Legge O, Johnson M, Hicks N et al (2020) Carbon on the northwest European shelf: contemporary budget and future influences. Front Mar Sci 7:143

    Article  Google Scholar 

  • Levin LA, Boesch DF, Covich A et al (2001) The function of marine critical transition zones and the importance of sediment biodiversity. Ecosystems 4:430–451

    Article  CAS  Google Scholar 

  • Li J, Nedwell DB, Beddow J et al (2015a) amoA gene abundances and nitrification potential rates suggest that benthic ammonia-oxidizing bacteria (AOB) not archaea (AOA) dominate N cycling in the Colne estuary, UK. Appl Environ Microbio 81:159–165

    Article  CAS  Google Scholar 

  • Li M, Baker BJ, Anantharaman K et al (2015b) Genomic and transcriptomic evidence for scavenging of diverse organic compounds by widespread deep-sea archaea. Nat Commun 6:8933

    Article  CAS  PubMed  Google Scholar 

  • Li M, Cao H, Hong Y et al (2011b) Spatial distribution and abundances of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) in mangrove sediments. Appl Microbiol Biotechnol 89:1243–1254

    Article  CAS  PubMed  Google Scholar 

  • Li M, Gu J (2013) Community structure and transcript responses of anammox bacteria, AOA, and AOB in mangrove sediment microcosms amended with ammonium and nitrite. Appl Microbiol Biotechnol 97:9859–9874

    Article  CAS  PubMed  Google Scholar 

  • Li M, Hong Y-G, Cao H-L et al (2011a) Mangrove trees affect the community structure and distribution of anammox bacteria at an anthropogenic-polluted mangrove in the Pearl River Delta reflected by 16S rRNA and hydrazine oxidoreductase (HZO) encoding gene analyses. Ecotoxicology 20:1780–1790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Q, Wang F, Chen Z et al (2012) Stratified active archaeal communities in the sediments of Jiulong River estuary China. Front Microbiol 3:311–314

    Article  PubMed  PubMed Central  Google Scholar 

  • Lipsewers YA, Bale NJ, Hopmans EC et al (2014) Seasonality and depth distribution of the abundance and activity of ammonia oxidizing microorganisms in marine coastal sediments (North Sea). Front Microbiol 5:472–483

    PubMed  PubMed Central  Google Scholar 

  • Lipsewers YA, Vasquez Cardenas D, Seitaj D et al (2017) Impact of seasonal hypoxia on activity and community structure of chemolithoautotrophic bacteria in a coastal sediment. Appl Environ Microbiol 83:e03517–e03516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu C, Shao Z (2005) Alcanivorax dieselolei sp. nov., a novel alkane degrading bacterium isolated from sea water and deep-sea sediment. Int J Syst Evol Microbiol 55:1181–1186

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Zheng Y, Lin H et al (2019) Proliferation of hydrocarbon-degrading microbes at the bottom of the Mariana trench. Microbiome 7:47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu J, Zhu S, Liu X et al (2020) Spatiotemporal dynamics of the archaeal community in coastal sediments: assembly process and co-occurrence relationship. ISME J 14:1463–1478

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu X, Li M, Castelle CJ et al (2018b) Insights into the ecology, evolution, and metabolism of the widespread Woesearchaeotal lineages. Microbiome 6:102

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu X, Pan J, Liu Y (2018a) Diversity and distribution of archaea in global estuarine ecosystems. Sci Total Environ 637-638:349–358

    Article  CAS  PubMed  Google Scholar 

  • Liu XD, Tiquia SM, Holguin G (2003) Molecular diversity of denitrifying genes in continental margin sediments within the oxygen deficient zone off the Pacific coast of Mexico. Appl Environ Microbiol 69:3549–3560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lloyd K, Schreiber GL, Petersen DG et al (2013) Predominant archaea in marine sediments degrade detrital proteins. Nature 496:215–220

    Article  CAS  PubMed  Google Scholar 

  • Long RA, Eveillard D, Franco SLM et al (2013) Antagonistic interactions between heterotrophic bacteria as a potential regulator of community structure of hypersaline microbial mats. FEMS Microbiol Ecol 83:74–81

    Article  CAS  PubMed  Google Scholar 

  • Lozada M, Marcos MS, Commendatore MG et al (2014) The bacterial community structure of hydrocarbon-polluted marine environments as the basis for the definition of an ecological index of hydrocarbon exposure. Microbes Environ 29:269–276

    Article  PubMed  PubMed Central  Google Scholar 

  • Luna GM, Corinaldesi C, Rastelli E et al (2013) Patterns and drivers of bacterial α- and β-diversity across vertical profiles from surface to subsurface sediments. Environ Microbiol Rep 5:731–739

    PubMed  Google Scholar 

  • Lyons JI, Alber M, Hollibaugh JT (2010) Ascomycete fungal communities associated with early decaying leaves of Spartina spp. from Central California estuaries. Oecologia 162:435–442

    Article  PubMed  Google Scholar 

  • Lyu Z, Liu Y (2018) Diversity and taxonomy of methanogens. In: AJM S, Sousa DZ (eds) Biogenesis of hydrocarbons. Handbook of hydrocarbon and lipid microbiology, 2nd edn. Springer, Cham, pp 19–77

    Google Scholar 

  • Maggi E, Rindi L, Dal Bello M et al (2017) Spatio-temporal variability in Mediterranean rocky shore microphytobenthos. Mar Ecol Prog Ser 575:17–29

    Article  CAS  Google Scholar 

  • Mann M, Serif M, Wrobel T et al (2020) The aureochrome photoreceptor PtAUREO1a is a highly effective blue light switch in diatoms. iScience. https://doi.org/10.1016/j.isci.2020.101730

  • Marchant R, Banat IM (2012) Microbial biosurfactants: challenges and opportunities for future exploitation. Trends Biotechnol 30:558–565

    Article  CAS  PubMed  Google Scholar 

  • Martens-Habbena W, Berube PM, Urakawa H et al (2009) Ammonia oxidation kinetics determine niche separation of nitrifying archaea and bacteria. Nature 461:976–979

    Article  CAS  PubMed  Google Scholar 

  • Martinez-Perez C, Mohr W, Löscher CR et al (2016) The small unicellular diazotrophic symbiont, UCYN-A, is a key player in the marine nitrogen cycle. Nat Microbiol 1:16163

    Article  CAS  PubMed  Google Scholar 

  • Mason OU, Han J, Woyke T et al (2014) Single-cell genomics reveals features of a Colwellia species that was dominant during the Deepwater horizon oil spill. Front Microbiol 5:332

    Article  PubMed  PubMed Central  Google Scholar 

  • Massana R, Gobet A, Audic S et al (2015) Protist diversity in European coastal areas. Environ Microbiol 17:4035–4049

    Article  CAS  PubMed  Google Scholar 

  • McGenity TJ (2014) Hydrocarbon biodegradation in intertidal wetland sediments. Curr Opin Biotechnol 27:46–54

    Article  CAS  PubMed  Google Scholar 

  • McGenity TJ, Folwell BD, McKew BA et al (2012) Marine crude-oil biodegradation: a central role for interspecies interactions. Aquat Biosyst 8:1–19

    Article  Google Scholar 

  • McGenity TJ, Oren A (2012) Hypersaline environments. In: Bell EM (ed) Life at extremes: environments, organisms and strategies for survival. CAB International, UK, pp 402–437

    Chapter  Google Scholar 

  • McGenity TJ, Sorokin D (2018) Methanogens and methanogenesis in hypersaline environments. In: AJM S, Sousa DZ (eds) Biogenesis of hydrocarbons. Handbook of hydrocarbon and lipid microbiology, 2nd edn. Springer, Cham, pp 283–309

    Google Scholar 

  • McGlynn SE (2017) Energy metabolism during anaerobic methane oxidation in ANME archaea. Microbes Environ 32:5–13

    Article  PubMed  PubMed Central  Google Scholar 

  • McKew BA, Coulon F, Osborn AM et al (2007) Determining the identity and roles of oil-metabolizing marine bacteria from the Thames estuary, UK. Environ Microbiol 9:165–176

    Article  CAS  PubMed  Google Scholar 

  • McKew BA, Dumbrell A, Taylor JD et al (2013) Differences between aerobic and anaerobic degradation of microphytobenthic biofilm-derived organic matter within intertidal sediments. FEMS Microbiol Ecol 84:495–509

    Article  CAS  PubMed  Google Scholar 

  • McKew BA, Taylor JD, McGenity TJ et al (2011) Resistance and resilience of benthic biofilm communities from a temperate saltmarsh to desiccation and rewetting. ISME J 5:30–41

    Article  PubMed  Google Scholar 

  • McLachlan DH, Brownlee C, Taylor AR et al (2009) Light inducted motile responses of the estuarine benthic diatoms Navicula perminuta and Cylindrotheca closterium (Bacillariophyceae). J Phycol 45:592–599

    Article  PubMed  Google Scholar 

  • McLachlan DH, Underwood GJC, Taylor AR et al (2012) Calcium release from intracellular stores is necessary for the photophobic motility response in the benthic diatom Navicula perminuta. J Phycol 48:675–681

    Article  CAS  PubMed  Google Scholar 

  • McTavish H, Fuchs JA, Hooper AB (1993) Sequence of the gene coding for ammonia monooxygenase in Nitrosomonas europaea. J Bacteriol 175:2436–2444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meckenstock RU, Mouttaki H (2011) Anaerobic degradation of non-substituted aromatic hydrocarbons. Curr Opin Biotechnol 22:406–414

    Article  CAS  PubMed  Google Scholar 

  • Megharaj M, Singleton I, McClure NC et al (2000) Influence of petroleum hydrocarbon contamination on microalgae and microbial activities in a long-term contaminated soil. Arch Environ Contam Toxicol 38:439–445

    Article  CAS  PubMed  Google Scholar 

  • Méléder V, Savelli R, Barnett A et al (2020) Mapping the intertidal microphytobenthos gross primary production part I: coupling multispectral remote sensing and physical modeling. Front Mar Sci 7:520

    Article  Google Scholar 

  • Meng J, Xu J, Qin D et al (2014) Genetic and functional properties of uncultivated MCG archaea assessed by metagenome and gene expression analyses. ISME J 8:650–659

    Article  CAS  PubMed  Google Scholar 

  • Messina E, Denaro R, Crisafi F et al (2016) Genome sequence of obligate marine polycyclic aromatic hydrocarbons-degrading bacterium Cycloclasticus sp. 78-ME, isolated from petroleum deposits of the sunken tanker Amoco Milford Haven, Mediterranean Sea. Mar Genomics 25:11–13

    Article  PubMed  Google Scholar 

  • Middelburg JJ, Barranguet C, Boschker HTS et al (2000) The fate of intertidal microphytobenthos carbon: An in situ 13C-labelling study. Limnol Oceanogr 45:1224–1334

    Article  CAS  Google Scholar 

  • Miyatake T, Moerdijk-Poortvliet TCW, Stal LJ et al (2014) Tracing carbon flow from microphytobenthos to major bacterial groups in an intertidal marine sediment by using an in situ 13C pulse-chase method. Limnol Oceanogr 59:1275–1287

    Article  CAS  Google Scholar 

  • Moerdijk-Poortvliet TCW, Beauchard O, Stal LJ et al (2018b) Production and consumption of extracellular polymeric substances in an intertidal diatom mat. Mar Ecol Prog Ser 592:77–95

    Article  CAS  Google Scholar 

  • Moerdijk-Poortvliet TCW, van Breugel P, Sabbe K et al (2018a) Seasonal changes in the biochemical fate of carbon fixed by benthic diatoms in intertidal sediments. Limnol Oceanogr 63:550–569

    Article  CAS  Google Scholar 

  • Mohamed D, Martiny J (2011) Patterns of fungal diversity and composition along a salinity gradient. ISME J 5:379–388

    Article  PubMed  Google Scholar 

  • Mommer L, Cotton TEA, Raaijmakers JM et al (2018) Lost in diversity: the interactions between soil-borne fungi, biodiversity and plant productivity. New Phytol 218:542–553

    Article  PubMed  PubMed Central  Google Scholar 

  • Monson DH, Doak DF, Ballachey BE et al (2000) Long-term impacts of the Exxon Valdez oil spill on sea otters, assessed through age-dependent mortality patterns. Proc Natl Acad Sci 97:6562–6567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moreira-Coello V, Mouriño-Carballido B, Marañón E et al (2019) Temporal variability of diazotroph community composition in the upwelling region off NW Iberia. Sci Rep 9:3737

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Moriarty DJW, O'Donohue MJ (1993) Nitrogen fixation in seagrass communities during summer in the Gulf of Carpentaria, Australia. Aust J Mar Freshw Res 44:117–125

    Article  CAS  Google Scholar 

  • Mouget J-L, Perkins R, Consalvey M et al (2008) Migration or photoacclimation to prevent high irradiance and UV-B damage in marine microphytobenthic communities. Aq Microb Ecol 52:223–232

    Article  Google Scholar 

  • Mueller P, Granse D, Nolte S et al (2017) Top-down control of carbon sequestration: grazing affects microbial structure and function in salt marsh soils. Ecol Appl 27:1435–1450

    Article  PubMed  Google Scholar 

  • Munson MA, Nedwell DB, Embley TM (1997) Phylogenetic diversity of archaea in sediment samples from a coastal salt marsh. Appl Environ Microbiol 63:4729–4733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Myllykangas JP, Rissanen AJ, Hietanen S et al (2020) Influence of electron acceptor availability and microbial community structure on sedimentary methane oxidation in a boreal estuary. Biogeochemistry 148:291–309

    Article  Google Scholar 

  • National Research Council (NRC) (2003) Oil in the sea III: inputs, fates, and effects. National Academy Press, Washington, DC

    Google Scholar 

  • Nedwell D, Aziz S (1980) Heterotrophic nitrogen fixation in an intertidal salt marsh sediment. Est Coast Mar Sci 10:699–702

    Article  CAS  Google Scholar 

  • Nedwell DB, Embley TM, Purdy KJ (2004) Sulphate reduction, methanogenesis and phylogenetics of the sulphate reducing bacterial communities along an estuarine gradient. Aq Microb Ecol 37:209–217

    Article  Google Scholar 

  • Nedwell DB, Underwood GJC, McGenity TJ et al (2016) The Colne estuary: a long-term microbial ecology observatory. Adv Ecol Res 55:227–281

    Article  Google Scholar 

  • Newell SY (1996) Established and potential impacts of eukaryotic mycelial decomposers in marine/terrestrial ecotones. J Exp Mar Biol Ecol 200:187–206

    Article  Google Scholar 

  • Newton R, Huse SM, Morrison HG et al (2013) Shifts in the microbial community composition of Gulf Coast beaches following beach oiling. PLoS One 8:e74265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nogales B, Bosch R (2019) Microbial communities in hydrocarbon-polluted harbors and marinas. In: McGenity T (ed) Microbial communities utilizing hydrocarbons and lipids: members, metagenomics and ecophysiology. Handbook of hydrocarbon and lipid microbiology. Springer, Cham, pp 63–80

    Google Scholar 

  • Nogales B, Timmis KN, Nedwell DB et al (2002) Detection and diversity of expressed denitrification genes in estuarine sediments after reverse transcription-PCR amplification from mRNA. Appl Environ Microbiol 68:5017–5025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Notman GM, McGill RAR, Hawkins SJ et al (2016) Macroalgae contribute to the diet of Patella vulgata from contrasting conditions of latitude and wave exposure in the UK. Mar Ecol Prog Ser 549:113–123

    Article  CAS  Google Scholar 

  • Oakes JM, Eyre BD, Middelburg JJ (2012) Transformation and fate of microphytobenthos carbon in subtropical shallow subtidal sands: a 13C-labeling study. Limnol Oceanogr 57:1846–1856

    Article  CAS  Google Scholar 

  • Oakes JM, Eyre BD, Middelburg JJ et al (2010) Composition, production, and loss of carbohydrates in subtropical shallow subtidal sandy sediments: rapid processing and long-term retention revealed by 13C-labeling. Limnol Oceanogr 55:2126–2138

    Article  CAS  Google Scholar 

  • Oppenheim DR (1991) Seasonal changes in epipelic diatoms along an intertidal shore, Berrow flats, Somerset. J Mar Biol Assoc UK 71:579–596

    Article  Google Scholar 

  • Oremland R, Marsh L, Polcin S (1982) Methane production and simultaneous sulphate reduction in anoxic, salt marsh sediments. Nature 296:143–145

    Article  CAS  Google Scholar 

  • Orsi WD, Vuillemin A, Rodriguez P et al (2019) Metabolic activity analyses demonstrate that Lokiarchaeon exhibits homoacetogenesis in sulfidic marine sediments. Nat Microbiol 5:248–255

    Article  PubMed  CAS  Google Scholar 

  • Oshiki M, Shimokawa M, Fujii N et al (2011) Physiological characteristics of the anaerobic ammonium-oxidizing bacterium ‘Candidatus Brocadia sinica’. Microbiology 157:1706–1713

    Article  CAS  PubMed  Google Scholar 

  • Osterholz H, Kirchman DL, Niggemann J et al (2018) Diversity of bacterial communities and dissolved organic matter in a temperate estuary. FEMS Microbiol Ecol 94:fiy119

    Article  CAS  Google Scholar 

  • Overy DP, Rämä T, Oosterhuis R et al (2019) The neglected marine fungi, sensu stricto, and their isolation for natural products discovery. Mar Drugs 17:42

    Article  CAS  PubMed Central  Google Scholar 

  • Oxborough K, Hanlon ARM, Underwood GJC et al (2000) In vivo estimation of the photosystem II photochemical efficiency of individual microphytobenthic cells using high-resolution imaging of chlorophyll a fluorescence. Limnol Oceanogr 45:1420–1425

    Article  Google Scholar 

  • Pace NR (1997) A molecular view of microbial diversity and the biosphere. Science 276:734–740

    Article  CAS  PubMed  Google Scholar 

  • Païssé S, Coulon F, Goñi-Urriza M et al (2008) Structure of bacterial communities along a hydrocarbon contamination gradient in a coastal sediment. FEMS Microbiol Ecol 66:295–305

    Article  PubMed  CAS  Google Scholar 

  • Pajares S, Ramos R (2019) Processes and microorganisms involved in the marine nitrogen cycle: knowledge and gaps. Front Mar Sci 6:739

    Article  Google Scholar 

  • Palomo A, Pedersen AG, Fowler SJ et al (2018) Comparative genomics sheds light on niche differentiation and the evolutionary history of comammox Nitrospira. ISME J 12:1779–1793

    Article  PubMed  PubMed Central  Google Scholar 

  • Papaspyrou S, Smith CJ, Dong LF et al (2014) Nitrate reduction functional genes and nitrate reduction potentials persist in deeper estuarine sediments why? PLoS One 9:e94111

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Park J, Kwon B-O, Kim M et al (2014) Microphytobenthos of Korean tidal flats: a review and analysis on floral distribution and tidal dynamics. Ocean Coast Manag 102:471–482

    Article  Google Scholar 

  • Passarelli C, Cui X, Valsami-Jones E et al (2020) Environmental context determines the impact of titanium oxide and silver nanoparticles on the functioning of intertidal microalgal biofilms. Environ Sci Nano 7:3020–3035

    Article  CAS  Google Scholar 

  • Peletier H (1996) Long-term changes in intertidal estuarine diatom assemblages related to reduced input of organic waste. Mar Ecol Prog Ser 137:265–271

    Article  Google Scholar 

  • Penton CR, Devol AH, Tiedje JM (2006) Molecular evidence for the broad distribution of anaerobic ammonium-oxidizing bacteria in freshwater and marine sediments. Appl Environ Microbiol 72:6829–6832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pérez-Burillo J, Trobajo R, Vasselon V et al (2020) Evaluation and sensitivity analysis of diatom DNA metabarcoding for WFD bioassessment of Mediterranean rivers. Sci Total Environ 727:138445

    Article  PubMed  CAS  Google Scholar 

  • Perkins EJ (1960) The diurnal rhythm of the littoral diatoms of the river Eden estuary, fife. J Ecol 48:725–728

    Article  Google Scholar 

  • Perkins RG, Lavaud J, Serôdio J et al (2010) Vertical cell movement is a primary response of intertidal benthic biofilms to increasing light dose. Mar Ecol Prog Ser 416:93–103

    Article  CAS  Google Scholar 

  • Perkins RG, Oxborough K, Hanlon ARM et al (2002) Can chlorophyll fluorescence be used to estimate the rate of photosynthetic electron transport within microphytobenthic biofilms? Mar Ecol Prog Ser 228:47–56

    Article  CAS  Google Scholar 

  • Perkins RG, Underwood GJC, Brotas V et al (2001) Responses of microphytobenthos to light: primary production and carbohydrate allocation over an emersion period. Mar Ecol Prog Ser 223:101–112

    Article  Google Scholar 

  • Pester M, Rattei T, Flechl S et al (2011) amoA-based consensus phylogeny of ammonia-oxidizing archaea and deep sequencing of amoA genes from soils of four different geographic regions. Environ Microbiol 14:525–539

    Article  PubMed  CAS  Google Scholar 

  • Phillips CJ, Smith Z, Embley TM et al (1999) Phylogenetic differences between particle-associated and planktonic ammonia-oxidizing bacteria of the beta-subdivision of the class Proteobacteria in the northwestern Mediterranean Sea. Appl Environ Microbiol 65:779–786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piatt JF, Ford RG (1996) How many seabirds were killed by the Exxon Valdez oil spill? Am Fish Soc Symp 18:712–719

    CAS  Google Scholar 

  • Piña-Ochoa E, Høgslund S, Geslin E et al (2010) Widespread occurrence of nitrate storage and denitrification among foraminifera and Gromiida. Proc Natl Acad Sci 107:1148–1153

    Article  PubMed  Google Scholar 

  • Pinckney JL (2018) A mini-review of the contribution of benthic microalgae to the ecology of the continental shelf in the South Atlantic bight. Estuaries Coast 41:2070–2078

    Article  CAS  Google Scholar 

  • Pitcher A, Wuchter C, Siedenberg K et al (2011) Crenarchaeol tracks winter blooms of ammonia-oxidizing Thaumarchaeota in the coastal North Sea. Limnol Oceanogr 56:2308–2318

    Article  CAS  Google Scholar 

  • Pjevac P, Schauberger C, Poghosyan L et al (2017) AmoA-targeted polymerase chain reaction primers for the specific detection and quantification of comammox Nitrospira in the environment. Front Microbiol 8:11

    Article  Google Scholar 

  • Plante C, Fleer V, Jones ML (2016) Neutral processes and species sorting in benthic microalgal community assembly: effects of tidal resuspension. J Phycol 52:827–839

    Article  CAS  PubMed  Google Scholar 

  • Plante CJ, Hill-Spanik K, Cook M et al (2021) Environmental and spatial influences on biogeography and community structure of saltmarsh benthic. Estuaries Coast 44:147–161

    Article  CAS  Google Scholar 

  • Poole NJ, Price PC (1972) Fungi colonizing wood submerged in the Medway estuary. T Brit Mycoll Soc 59:2

    Google Scholar 

  • Porubsky WP, Weston NB, Joye SB (2009) Benthic metabolism and the fate of dissolved inorganic nitrogen in intertidal sediments. Estuar Coast Shelf Sci 83:392–402

    Article  CAS  Google Scholar 

  • Preisler A, de Beer D, Lichtschlag A et al (2007) Biological and chemical sulfide oxidation in a Beggiatoa inhabited marine sediment. ISME J 1:341–353

    Article  CAS  PubMed  Google Scholar 

  • Prince RC, Amande TJ, McGenity TJ (2018) Prokaryotic hydrocarbon degraders. In: McGenity TJ (ed) Taxonomy, genomics and ecophysiology of hydrocarbon-degrading microbes. Springer Nature, Cham, pp 1–41

    Google Scholar 

  • Prins A, Deleris P, Hubas C, Jesus B (2020) Effect of light intensity and light quality on diatom behavioral and physiological photoprotection. Front Mar Sci 7:203

    Article  Google Scholar 

  • Prokopenko MG, Sigman DM, Berelson WM et al (2011) Denitrification in anoxic sediments supported by biological nitrate transport. Geochim Cosmochim Acta 75:7180–7199

    Article  CAS  Google Scholar 

  • Purdy KJ, Cresswell-Maynard TD, Nedwell DB et al (2004) Isolation of haloarchaea that grow at low salinities. Environ Microbiol 6:591–595

    Article  CAS  PubMed  Google Scholar 

  • Qian G, Wang J, Kan J et al (2018) Diversity and distribution of anammox bacteria in water column and sediments of the eastern Indian Ocean. Int Biodeterior Biodegr 133:52–62

    Article  CAS  Google Scholar 

  • Quan ZX, Rhee SK, Zuo JE et al (2008) Diversity of ammonium-oxidizing bacteria in a granular sludge anaerobic ammonium-oxidizing (anammox) reactor. Environ Microbiol 10:3130–3139

    Article  CAS  PubMed  Google Scholar 

  • Rabus R, Boll M, Heider J et al (2016) Anaerobic microbial degradation of hydrocarbons: from enzymatic reactions to the environment. J Mol Microbiol Biotechnol 26:5–28

    CAS  PubMed  Google Scholar 

  • Radajewski S, Webster G, Reay DS et al (2002) Identification of active methylotroph populations in an acidic forest soil by stable isotope probing. Microbiology 148:2331–2342

    Article  CAS  PubMed  Google Scholar 

  • Radwan SS, Khanafer MM, Al-Awadhi HA (2019) Ability of the so-called obligate hydrocarbonoclastic bacteria to utilize nonhydrocarbon substrates thus enhancing their activities despite their misleading name. BMC Microbiol 19:41

    Article  PubMed  PubMed Central  Google Scholar 

  • Raymond J, Siefert JL, Staples CR et al (2004) The natural history of nitrogen fixation. Mol Biol Evol 21:541–554

    Article  CAS  PubMed  Google Scholar 

  • Reddy CM, Eglinton TI, Hounshell A et al (2002) The West Falmouth oil spill after thirty years: the persistence of petroleum hydrocarbons in marsh sediments. Environ Sci Technol 36:4754–4760

    Article  CAS  PubMed  Google Scholar 

  • Redzuan NS, Underwood GJC (2021) The importance of weather and tides on the resuspension and deposition of microphytobenthos (MPB) on intertidal mudflats. Estuar Coastal Shelf Sci 251:107190

    Article  Google Scholar 

  • Redzuan NS, Underwood GJC (2020) Movement of microphytobenthos and sediment between mudflats and salt marsh during spring tides. Front Mar Sci 7:496

    Article  Google Scholar 

  • Ribeiro L, Brotas V, Hernández-Fariñas T et al (2020) Assessing alternative microscopy-based approaches to species abundance description of intertidal diatom communities. Front Mar Sci 7:36

    Article  Google Scholar 

  • Ribeiro L, Brotas V, Mascarell G et al (2003) Taxonomic survey of the microphytobenthic communities of two Tagus estuary mudflats. Acta Oecol 24:S117–S123

    Article  Google Scholar 

  • Ribeiro L, Brotas V, Rincé Y et al (2013) Structure and diversity of intertidal benthic diatom assemblages in contrasting shores: a case study from the Tagus estuary. J Phycol 49:258–270

    Article  PubMed  Google Scholar 

  • Risgaard-Petersen N (2003) Coupled nitrification-denitrification in autotrophic and heterotrophic estuarine sediments: on the influence of benthic microalgae. Limnol Oceanogr 48:93–105

    Article  CAS  Google Scholar 

  • Risgaard-Petersen N, Langezaal A, Ingvardsen S et al (2006) Evidence for complete denitrification in a benthic foraminifer. Nature 443:93–96

    Article  CAS  PubMed  Google Scholar 

  • Rishworth GM, Dodd C, Perissinotto R et al (2020) Modern supratidal microbialites fed by groundwater: functional drivers, value and trajectories. Earth Sci Rev 210:103364

    Article  Google Scholar 

  • Rivera-Monroy VH, Lenaker P, Twilley RR et al (2010) Denitrification in coastal Louisiana: a spatial assessment and research needs. J Sea Res 63:157–172

    Article  CAS  Google Scholar 

  • Rodriguez-R LM, Overholt WA, Hagan C et al (2015) Microbial community successional patterns in beach sands impacted by the Deepwater horizon oil spill. ISME J 9:1928–1940

    Article  PubMed  PubMed Central  Google Scholar 

  • Rojas-Jimenez K, Rieck A, Wurzbacher C et al (2019) A salinity threshold separating fungal communities in the Baltic Sea. Front Microbiol 10:680

    Article  PubMed  PubMed Central  Google Scholar 

  • Round FE (1979) Occurrence and rhythmic behaviour of Tropidoneis lepidoptera in the epipelon of Barnstable Harbor, Massachusetts, USA. Mar Biol 54:215–217

    Article  Google Scholar 

  • Round FE, Palmer JD (1966) Persistent, vertical-migration rhythms in benthic microflora. II. Field and laboratory studies on diatoms from the banks of the river Avon. J Mar Biol Assoc UK 46:191–214

    Article  Google Scholar 

  • Rovira L, Trobajoa R, Satob S et al (2015) Genetic and physiological diversity in the diatom Nitzschia inconspicua. J Eukaryot Microbiol 62:815–832

    Article  PubMed  Google Scholar 

  • Rubin-Blum M, Antony CP, Borowski C et al (2017) Short-chain alkanes fuel mussel and sponge Cycloclasticus symbionts from deep-sea gas and oil seeps. Nat Microbiol 2:17093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sabbe K (1993) Short-term fluctuations in benthic diatom numbers on an intertidal sandflat in the Westerschelde estuary (Zeeland, the Netherlands). Hydrobiol 269(270):275–284

    Article  Google Scholar 

  • Sahan E, Muyzer G (2008) Diversity and spatio-temporal distribution of ammonia-oxidizing archaea and bacteria in sediments of the Westerschelde estuary. FEMS Microbiol Ecol 64:175–186

    Article  CAS  PubMed  Google Scholar 

  • Sahan E, Sabbe K, Creach V et al (2007) Community structure and seasonal dynamics of diatom biofilms and associated grazers in intertidal mudflats. Aq Microb Ecol 47:253–266

    Article  CAS  Google Scholar 

  • Sanni GO, Coulon F, McGenity TJ (2015) Dynamics and distribution of bacterial and archaeal communities in oil-contaminated temperate coastal mudflat mesocosms. Environ Sci Pollut Res Int 22:15230–15247

    Article  CAS  PubMed  Google Scholar 

  • Savelli R, Dupuy C, Barille L et al (2018) On biotic and abiotic drivers of the microphytobenthos seasonal cycle in a temperate intertidal mudflat: a modelling study. Biogeosciences 15:7243–7271

    Article  CAS  Google Scholar 

  • Savelli R, Méléder V, Cugier P et al (2020) Mapping the intertidal microphytobenthos gross primary production, part II: merging remote sensing and physical-biological coupled modeling. Front Mar Sci 7:521

    Article  Google Scholar 

  • Savelli R, Bertin X, Orvain F et al (2019) Impact of chronic and massive resuspension mechanisms on the microphytobenthos dynamics in a temperate intertidal mudflat. J Geophys Res 124:3752–3777

    Article  Google Scholar 

  • Scarlett K, Denman S, Clark DR et al (2021) Relationships between nitrogen cycling microbial community abundance and composition reveal the indirect effect of soil pH on oak decline. ISME J 15:623–635

    Article  CAS  PubMed  Google Scholar 

  • Schmid M, Walsh K, Webb R et al (2003) Candidatus “Scalindua brodae”, sp. nov., Candidatus “Scalindua wagneri”, sp. nov., two new species of anaerobic ammonium oxidizing bacteria. Syst Appl Microbiol 26:529–538

    Article  CAS  PubMed  Google Scholar 

  • Schneiker S, Dos Santos VAPM, Bartels D et al (2006) Genome sequence of the ubiquitous hydrocarbon-degrading marine bacterium Alcanivorax borkumensis. Nat Biotechnol 24:997–1004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seitz KW, Lazar CS, Hinrichs K-U et al (2016) Genomic reconstruction of a novel, deeply branched sediment archaeal phylum with pathways for acetogenesis and sulfur reduction. ISME J 10:1696–1705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seitzinger SP (1988) Denitrification in fresh-water and coastal marine ecosystems-ecological and geochemical significance. Limnol Oceanogr 33:702–724

    CAS  Google Scholar 

  • Serôdio J, Marques da Silva J, Catarino F (1997) Nondestructive tracing of migratory rhythms of intertidal benthic microalgae using in vivo chlorophyll a fluorescence. J Phycol 33:542–553

    Article  Google Scholar 

  • Seyler LM, McGuinness LM, Kerkhof LJ (2014) Crenarchaeal heterotrophy in salt marsh sediments. ISME J 8:1534–1543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi Y, Jiang YY, Wang SY et al (2020) Biogeographic distribution of comammox bacteria in diverse terrestrial habitats. Sci Total Environ 717:137257

    Article  CAS  PubMed  Google Scholar 

  • Sikkema J, de Bont JAM, Poolman B (1995) Mechanisms of membrane toxicity of hydrocarbons. Microbiol Rev 59:201–222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith CJ, Nedwell DB, Dong LF et al (2007) Diversity and abundance of nitrate reductase genes (narG and napA), nitrite reductase genes (nirS and nrfA), and their transcripts in estuarine sediments. Appl Environ Microbiol 73:3612–3622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith DJ, Underwood GJC (1998) Exopolymer production by intertidal epipelic diatoms. Limnol Oceanogr 43:1578–1591

    Article  CAS  Google Scholar 

  • Smith JM, Cascotti KL, Chavez FP et al (2014a) Differential contributions of archaeal ammonia oxidizer ecotypes to nitrification in coastal surface waters. ISME J 8:1704–1714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith JM, Chavez FP, Francis CA (2014b) Ammonium uptake by phytoplankton regulates nitrification in the sunlit ocean. PLoS One 9:e108173

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic Press, San Diego, CA, USA

    Google Scholar 

  • Sonthiphand P, Hall MW, Neufeld JD (2014) Biogeography of anaerobic ammonia-oxidizing (anammox) bacteria. Front Microbiol 5:399

    Article  PubMed  PubMed Central  Google Scholar 

  • Sorokin DY, Makarova K, Abbas B et al (2017) Discovery of extremely halophilic methyl-reducing euryarchaea provides insight into the evolutionary origin of methanogenesis. Nat Microbiol 2:17081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sorokin DY, Merkel AY, Abbas B et al (2018) Methanonatronarchaeum thermophilum gen. nov., sp. nov. and ‘Candidatus Methanohalarchaeum thermophilum’, extremely halo(natrono)philic methyl-reducing methanogens from hypersaline lakes comprising a new euryarchaeal class Methanonatronarchaeia classis nov. Int J Syst Evol Microbiol 68:2199–2208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spang A, Saw JH, Jørgensen SL et al (2015) Complex archaea that bridge the gap between prokaryotes and eukaryotes. Nature 521:173–179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spilmont N, Seuront L, Meziane T et al (2011) There’s more to the picture than meets the eye: sampling microphytobenthos in a heterogeneous environment. Estuar Coast Shelf Sci 95:470–476

    Article  CAS  Google Scholar 

  • Staats N, Stal LJ, Mur LR (2000) Exopolysaccharide production by the epipelic diatom Cylindrotheca closterium: effects of nutrient conditions. J Exp Mar Biol Ecol 249:3–27

    Article  Google Scholar 

  • Stal LJ (2016) Coastal sediments: transition from land to sea. In: Stal LJ, Cretoiu MS (eds) The marine microbiome. Springer International Publishing, Switzerland, pp 283–304

    Chapter  Google Scholar 

  • Stal LJ, Bolhuis H, Cretoiu MS (2019) Phototrophic marine benthic microbiomes: the ecophysiology of these biological entities. Environ Microbiol 21:1529–1551

    Article  PubMed  Google Scholar 

  • Steele DJ, Franklin DJ, Underwood GJC (2014) Protection of cells from salinity stress by extracellular polymeric substances in diatom biofilms. Biofouling 30:987–998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stehr G, Biittcher B, Dittberner P et al (1995) The ammonia-oxidizing nitrifying population of the river Elbe estuary. FEMS Microbiol Ecol 17:177–186

    Article  CAS  Google Scholar 

  • Stein LY, Arp DJ, Berube PM et al (2007) Whole-genome analysis of the ammonia-oxidizing bacterium, Nitrosomonas eutropha C91: implications for niche adaptation. Environ Microbiol 9:2993–3007

    Article  CAS  PubMed  Google Scholar 

  • Stock W, Blommaert L, De Troch M et al (2019) Host specificity in diatom–bacteria interactions alleviates antagonistic effects. FEMS Microbiol Ecol 95:fiz171

    Article  CAS  PubMed  Google Scholar 

  • Stoecker K, Bendinger B, Schoning B et al (2006) Cohn’s Crenothrix is a filamentous methane oxidizer with an unusual methane monooxy- genase. Proc Natl Acad Sci 103:2363–2367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strous M, Fuerst JA, Kramer EH et al (1999) Missing lithotroph identified as new planctomycete. Nature 400:446–449

    Article  CAS  PubMed  Google Scholar 

  • Strous M, Pelletier E, Mangenot S et al (2006) Deciphering the evolution and metabolism of an anammox bacterium from a community genome. Nature 440:790–794

    Article  PubMed  Google Scholar 

  • Sullivan MJ (1999) Applied diatom studies in estuarine and shallow coastal environments. In: Stoermer EF, Smol JP (eds) The diatoms: applications for the environmental and earth sciences. Cambridge University Press, Cambridge, pp 334–351

    Chapter  Google Scholar 

  • Sun Z, Li G, Wang C et al (2014) Community dynamics of prokaryotic and eukaryotic microbes in an estuary reservoir. Sci Rep 4:6966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tal Y, Watts JE, Schreier HJ (2005) Anaerobic ammonia-oxidizing bacteria and related activity in Baltimore inner harbor sediment. Appl Environ Microbiol 71:1816–1821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor JD, McKew BA, Kuhl A et al (2013) Microphytobenthic extracellular polymeric substances (EPS) in intertidal sediments fuel both generalist and specialist EPS-degrading bacteria. Limnol Oceanogr 58:1463–1480

    Article  CAS  Google Scholar 

  • Teramoto M, Ohuchi M, Hatmanti A et al (2011) Oleibacter marinus gen. nov., sp. nov., a novel bacterium that degrades petroleum aliphatic hydrocarbons in the tropical marine environment. Int J Syst Evol Microbiol 61:375–380

    Article  CAS  PubMed  Google Scholar 

  • Terrisse F, Cravo-Laureau C, Noël C et al (2017) Variation of oxygenation conditions on a hydrocarbonoclastic microbial community reveals Alcanivorax and Cycloclasticus ecotypes. Front Microbiol 8:1549

    Article  PubMed  PubMed Central  Google Scholar 

  • Thamdrup B, Dalsgaard T (2002) Production of N2 through anaerobic ammonium oxidation coupled to nitrate reduction in marine sediments. Appl Environ Microbiol 68:1312–1318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thauer RK, Kaster A-K, Seedorf H et al (2008) Methanogenic archaea: ecologically relevant differences in energy conservation. Nat Rev Microbiol 6:579–591

    Article  CAS  PubMed  Google Scholar 

  • Thomas GE, Cameron TC, Campo P et al (2020) Bacterial community legacy effects following the Agia Zoni II oil-spill, Greece. Front Microbiol 11:1706

    Article  PubMed  PubMed Central  Google Scholar 

  • Thornton DCO, Dong LF, Underwood GJC et al (2002) Factors affecting microphytobenthic biomass, species composition and production in the Colne estuary (UK). Aq Microb Ecol 27:285–300

    Article  Google Scholar 

  • Thornton DCO, Underwood GJC, Nedwell DB (1999) Effect of illumination and emersion period on the exchange of ammonium across the estuarine sediment-water interface. Mar Ecol Prog Ser 184:11–20

    Article  CAS  Google Scholar 

  • Treusch AH, Leininger S, Kletzin A et al (2005) Novel genes for nitrite reductase and Amo-related proteins indicate a role of uncultivated mesophilic crenarchaeota in nitrogen cycling. Environ Microbiol 7:1985–1995

    Article  CAS  PubMed  Google Scholar 

  • Trimmer M, Engström P (2011) Distribution, activity, and ecology of anammox bacteria in aquatic environments. In: Ward BB, Arp DJ, Klotz MG (eds) Nitrification. ASM Press, Washington, DC, pp 201–235

    Google Scholar 

  • Trimmer M, Nicholls J, Deflandre B (2003) Anaerobic ammonium oxidation measured in sediments along the Thames estuary, United Kingdom. Appl Environ Microbiol 69:6447–6454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trimmer M, Nicholls JC, Morley N et al (2005) Biphasic behavior of anammox regulated by nitrite and nitrate in an estuarine sediment. Appl Environ Microbiol 71:1923–1930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsui CKM, Hyde KD (2004) Biodiversity of fungi on submerged wood in a stream and estuary in the tai Ho Bay, Hong Kong. Fungal Divers 15:205–220

    Google Scholar 

  • Underwood GJC (1994) Seasonal and spatial variation in epipelic diatom assemblages in the Severn estuary. Diatom Res 9:451–472

    Article  Google Scholar 

  • Underwood GJC (2002) Adaptations of tropical marine microphytobenthic assemblages along a gradient of light and nutrient availability in Suva lagoon, Fiji. Eur J Phycol 37:449–462

    Article  Google Scholar 

  • Underwood GJC (2005) Microalgal (microphytobenthic) biofilms in shallow coastal waters: how important are species? Proc Calif Acad Sci 56:162–169

    Google Scholar 

  • Underwood GJC, Barnett M (2006) What determines species composition in microphytobenthic biofilms? In: Kromkamp J (ed) Functioning of microphytobenthos in estuaries. Proceedings of the Microphytobenthos symposium, Amsterdam, the Netherlands, august 2003. Royal Netherlands Academy of Arts and Sciences, Amsterdam, pp 121–138

    Google Scholar 

  • Underwood GJC, Kromkamp J (1999) Primary production by phytoplankton and microphytobenthos in estuaries. Adv Ecol Res 29:93–153

    Article  CAS  Google Scholar 

  • Underwood GJC, Michel C, Meisterhans G et al (2019) Organic matter from Arctic Sea ice loss alters bacterial community structure and function. Nat Clim Chang 9:170–176

    Article  Google Scholar 

  • Underwood GJC, Paterson DM (2003) The importance of extracellular carbohydrate production by marine epipelic diatoms. Adv Bot Res 40:184–240

    Google Scholar 

  • Underwood GJC, Perkins RG, Consalvey M et al (2005) Patterns in microphytobenthic primary productivity: species-specific variation in migratory rhythms and photosynthetic efficiency in mixed-species biofilms. Limnol Oceanogr 50:755–767

    Article  Google Scholar 

  • Underwood GJC, Phillips J, Saunders K (1998) Distribution of estuarine benthic diatom species along salinity and nutrient gradients. Eur J Phycol 33:173–183

    Article  Google Scholar 

  • Underwood GJC, Provot L (2000) Determining the environmental preferences of four estuarine epipelic diatom taxa – growth across a range of salinity, nitrate and ammonium conditions. Eur J Phycol 35:173–182

    Article  Google Scholar 

  • Urakawa H, Rajan S, Feeney ME et al (2019) Ecological response of nitrification to oil spills and its impact on the nitrogen cycle. Environ Microbiol 21:18–33

    Article  CAS  PubMed  Google Scholar 

  • Van Bleijswijk J, Muyzer G (2004) Genetic diversity of oxygenic phototrophs in microbial mats exposed to different levels of oil pollution. Ophelia 58:157–164

    Article  Google Scholar 

  • van der Heijden MGA (2002) Arbuscular mycorrhizal fungi as a determinant of plant diversity: in search for underlying mechanisms and general principles. In: van der Heijden MGA, Sanders IR (eds) Mycorrhizal ecology. Springer-Verlag, Berlin, Germany, pp 243–266

    Chapter  Google Scholar 

  • van der Wal D, Wielemaker-van den Dool A, Herman PMJ (2010) Spatial synchrony in intertidal benthic algal biomass in temperate coastal and estuarine ecosystems. Ecosystems 13:338–351

    Article  CAS  Google Scholar 

  • Van Kessel MAHJ, Speth DR, Albertsen M et al (2015) Complete nitrification by a single microorganism. Nature 528:555–559

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Van Niekerk L, Adams JB, Bate GC et al (2013) Country-wide assessment of estuary health: an approach for integrating pressures and ecosystem response in a data limited environment. Estuar Coast Shelf Sci 130:239–251

    Article  Google Scholar 

  • Van Niekerk L, Adams JB, Lamberth SJ, et al. (eds) (2019) South African national biodiversity assessment 2018: technical report. Volume 3: Estuarine Realm. CSIR report number CSIR/SPLA/EM/EXP/2019/0062/A. South African National Biodiversity Institute, Pretoria. Report Number: http://hdl.handle.net/20.500.12143/6373

  • Vanelslander B, De Wever A, Van Oostende N et al (2009) Complementarity effects drive positive diversity effects on biomass production in experimental benthic diatom biofilms. J Ecol 97:1075–1082

    Article  Google Scholar 

  • Vanelslander B, Paul C, Grueneberg J et al (2012) Daily bursts of biogenic cyanogen bromide (BrCN) control biofilm formation around a marine benthic diatom. Proc Nat Acad Sci 109:2412–2417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vanwonterghem I, Evans PN, Parks DH et al (2016) Methylotrophic methanogenesis discovered in the archaeal phylum Verstraetearchaeota. Nat Microbiol 1:16170

    Article  CAS  PubMed  Google Scholar 

  • Venter JC, Remington K, Heidelberg JF et al (2004) Environmental genome shotgun sequencing of the Sargasso Sea. Science 304:66–74

    Article  CAS  PubMed  Google Scholar 

  • Vetriani C, Reysenbach A-L, Dore J (1998) Recovery and phylogenetic analysis of archaeal rRNA sequences from continental shelf sediments. FEMS Microbiol Lett 161:83–88

    Article  CAS  PubMed  Google Scholar 

  • Waltham NJ, Elliott M, Lee SY et al (2020) UN decade on ecosystem restoration 2021-2030 – what chance for success in restoring coastal ecosystems? Front Mar Sci 7:71. https://doi.org/10.3389/Fmars.2020.00071

    Article  Google Scholar 

  • Wang W, Shao Z (2013) Enzymes and genes involved in aerobic alkane degradation. Front Microbiol 4:116

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang W, Shao Z (2014) The long-chain alkane metabolism network of Alcanivorax dieselolei. Nat Commun 5:5755

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Tao J, Liu H et al (2020) Contrasting bacterial and archaeal distributions reflecting different geochemical processes in a sediment core from the Pearl River estuary. AMB Expr 10:16

    Article  CAS  Google Scholar 

  • Wang W, Wang L, Shao Z (2018) Polycyclic aromatic hydrocarbon (PAH) degradation pathways of the obligate marine PAH degrader Cycloclasticus sp. strain P1. Appl Environ Microbiol 84:e01261–e01218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Feng Y, Ma X et al (2013) Seasonal dynamics of ammonia/ammonium-oxidizing prokaryotes in oxic and anoxic wetland sediments of subtropical coastal mangrove. Appl Microbiol Biotechnol 97:7919–7934

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Lau PC, Button DK (1996) A marine oligobacterium harboring genes known to be part of aromatic hydrocarbon degradation pathways of soil pseudomonads. Appl Environ Microbiol 62:2169–2173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang YQ, Sen K, He YD et al (2019) Impact of environmental gradients on the abundance and diversity of planktonic fungi across coastal habitats of contrasting trophic status. Sci Total Environ 683:822–833

    Article  CAS  PubMed  Google Scholar 

  • Wankel SD, Mosier AC, Hansel CM et al (2010) Spatial variability in nitrification rates and ammonia-oxidizing microbial communities in the agriculturally impacted Elkhorn Slough estuary, California. Appl Environ Microbiol 77:269–280

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Waring J, Baker NR, Underwood GJC (2007) Responses of estuarine intertidal microphytobenthic algal assemblages to enhanced UV-B radiation. Glob Chang Biol 13:1398–1413

    Article  Google Scholar 

  • Waring J, Klenell M, Bechtold U et al (2010) Light-induced responses of oxygen photoreduction, reactive oxygen species production and scavenging in two diatom species. J Phycol 46:1206–1217

    Article  Google Scholar 

  • Webster G, O'Sullivan LA, Meng Y et al (2015) Archaeal community diversity and abundance changes along a natural salinity gradient in estuarine sediments. FEMS Microbiol Ecol 91:1–18

    Article  PubMed  CAS  Google Scholar 

  • Webster G, Rinna J, Roussel EG et al (2010) Prokaryotic functional diversity in different biogeochemical depth zones in tidal sediments of the Severn estuary, UK, revealed by stable-isotope probing. FEMS Microbiol Ecol 72:179–197

    Article  CAS  PubMed  Google Scholar 

  • Weerman EJ, Van Belzen J, Rietkerk M et al (2012) Changes in diatom patch-size distribution and degradation in a spatially self-organized intertidal mudflat ecosystem. Ecology 93:608–618

    Article  CAS  PubMed  Google Scholar 

  • Weisman WE (1998) Analysis of petroleum hydrocarbons in environmental media. Amherst Scientific Publishers, Massachusetts

    Google Scholar 

  • Wen X, Yang S, Horn F et al (2017) Global biogeographic analysis of methanogenic archaea identifies community-shaping environmental factors of natural environments. Front Microbiol 8:1339

    Article  PubMed  PubMed Central  Google Scholar 

  • Whitby C, Saunders JR, Pickup RW et al (2001) A comparison of ammonia-oxidiser populations in eutrophic and oligotrophic basins of a large freshwater lake. Ant Leeuwenhoek 79:179–201

    Article  CAS  Google Scholar 

  • Whitby C, Saunders JR, Pickup RW et al (1999) Phylogenetic differentiation of two closely related Nitrosomonas spp. that inhabit different sediment environments in an oligotrophic freshwater lake. Appl Environ Microbiol 65:4855–4862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whiting GJ, Gandy EL, Yoch DC (1986) Tight coupling of root-associated nitrogen fixation and plant photosynthesis in the salt marsh grass Spartina alterniflora and carbon dioxide enhancement of nitrogenase activity. Appl Environ Microbiol 52:108–113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whyte LG, Bourbonniere L, Greer CW (1997) Biodegradation of petroleum hydrocarbons by psychrotrophic pseudomonas strains possessing both alkane (alk) and naphthalene (nah) catabolic pathways. Appl Environ Microbiol 63:3719–3723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Widdel F, Musat F (2010) Energetic and other quantitative aspects of microbial hydrocarbon utilization. In: Timmis KN, McGenity TJ, van der Meer JR, de Lorenzo V (eds) Handbook of hydrocarbon and lipid microbiology. Springer, Berlin Heidelberg, pp 731–763

    Google Scholar 

  • Williams TA, Cox CJ, Foster PG et al (2020) Phylogenomics provides robust support for a two-domains tree of life. Nature Ecol Evol 4:138–147

    Article  Google Scholar 

  • Wilms R, Sass H, Köpke B et al (2006) Specific bacterial, archaeal, and eukaryotic communities in tidal-flat sediments along a vertical profile of several meters. Appl Environ Microbiol 72:2756–2764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilms R, Sass H, Köpke B et al (2007) Methane and sulfate profiles within the sub-surface of a tidal flat are reflected by the distribution of sulfate-reducing bacteria and methanogenic archaea. FEMS Microbiol Ecol 59:611–621

    Article  CAS  PubMed  Google Scholar 

  • Witkowski A, Lange-Bertalot H, Metzeltin D (2000) Diatom flora of marine coasts. Iconographia diatomologica, vol 7. Koeltz Scientific Books, Königstein, Germany

    Google Scholar 

  • Woebken D, Lam P, Kuypers MM et al (2009) A microdiversity study of anammox bacteria reveals a novel Candidatus Scalindua phylotype in marine oxygen minimum zones. Environ Microbiol 10:3106–3119

    Article  CAS  Google Scholar 

  • Wuchter C, Abbas B, Coolen MJ et al (2006) Archaeal nitrification in the ocean. Proc Natl Acad Sci 103:12317–12322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xia F, Wang JG, Zhu T et al (2018) Ubiquity and diversity of complete ammonia oxidizers (Comammox). Appl Environ Microbiol 84:e01390–e01318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yakimov MM, Giuliano L, Denaro R et al (2004) Thalassolituus oleivorans gen. nov., sp. nov., a novel marine bacterium that obligately utilizes hydrocarbons. Int J Syst Evol Microbiol 54:141–148

    Article  CAS  PubMed  Google Scholar 

  • Yakimov MM, Giuliano L, Gentile G et al (2003) Oleispira antarctica gen. nov., sp. nov., a novel hydrocarbonoclastic marine bacterium isolated from Antarctic coastal sea water. Int J Syst Evol Microbiol 53:779–785

    Article  CAS  PubMed  Google Scholar 

  • Yakimov MM, Golyshin PN, Lang S et al (1998) Alcanivorax borkumensis gen. Nov., sp. nov., a new, hydrocarbon-degrading and surfactant producing marine bacterium. Int J Syst Bacteriol 48:339–348

    Article  CAS  PubMed  Google Scholar 

  • Yakimov MM, Timmis KN, Golyshin PN (2007) Obligate oil-degrading marine bacteria. Curr Opin Biotechnol 3:257–266

    Article  CAS  Google Scholar 

  • Yang S, Li M, Lai Q et al (2018) Alcanivorax mobilis sp. nov., a new hydrocarbon-degrading bacterium isolated from deep-sea sediment. Int J Syst Evol Microbiol 68:1639–1643

    Article  CAS  PubMed  Google Scholar 

  • Yao Z, Du S, Liang C et al (2019) Bacterial community assembly in a typical estuarine marsh with multiple environmental gradients. Appl Environ Microbiol 85:e02602–e02618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yi J, Lo LSH, Cheng J (2020) Dynamics of microbial community structure and ecological functions in estuarine intertidal sediments. Front Mar Sci 7:585970

    Article  Google Scholar 

  • Yu T, Wu W, Liang W et al (2018) Growth of sedimentary Bathyarchaeota on lignin as an energy source. Proc Natl Acad Sci 115:6022–6027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zadjelovic V, Chhun A, Quareshy M et al (2020) Beyond oil degradation: enzymatic potential of Alcanivorax to degrade natural and synthetic polyesters. Environ Microbiol 22:1356–1369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zedelius J, Rabus R, Grundmann O et al (2011) Alkane degradation under anoxic conditions by a nitrate reducing bacterium with possible involvement of the electron acceptor in substrate activation. Environ Microbiol Rep 3:125–135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang C-J, Pan J, Liu Y et al (2020) Genomic and transcriptomic insights into methanogenesis potential of novel methanogens from mangrove sediments. Microbiome 8:94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang P, Neher DA, Li B et al (2018) The impacts of above- and belowground plant input on soil microbiota: invasive Spartina alterniflora versus native Phragmites australis. Ecosystems 21:469–481

    Article  CAS  Google Scholar 

  • Zhang X, Agogué H, Dupuy C et al (2013) Relative abundance of ammonia oxidizers, denitrifiers, and Anammox bacteria in sediments of hypernutrified estuarine tidal flats and in relation to environmental conditions. Clean-Soil Air Water 42:815–823

    Article  CAS  Google Scholar 

  • Zhang Y, Xie X, Jiao N et al (2014) Diversity and distribution of amoA-type nitrifying and nirS-type denitrifying microbial communities in the Yangtze River estuary. Biogeosciences 11:2131–2145

    Article  Google Scholar 

  • Zhao Y, Chen W, Wen D (2020) The effects of crude oil on microbial nitrogen cycling in coastal sediments. Environ Int 139:105724

    Article  CAS  PubMed  Google Scholar 

  • Zheng P, Wang C, Zhang X et al (2019) Community structure and abundance of archaea in a Zostera marina meadow: a comparison between seagrass-colonized and bare sediment sites. Archaea 2019:5108012

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhou Z, Liu Y, Lloyd KG et al (2019) Genomic and transcriptomic insights into the ecology and metabolism of benthic archaeal cosmopolitan, Thermoprofundales (MBG-D archaea). ISME J 13:885–901

    Article  CAS  PubMed  Google Scholar 

  • Zhou Z, Pan J, Wang F et al (2018) Bathyarchaeota: globally distributed metabolic generalists in anoxic environments. FEMS Microbiol Rev 42:639–655

    Article  CAS  PubMed  Google Scholar 

  • Zhu Z, van Belzen J, Zhu Q et al (2020) Vegetation recovery on neighboring tidal flats forms an Achilles’ heel of saltmarsh resilience to sea level rise. Limnol Oceanogr 65:51–62

    Article  Google Scholar 

  • Zou D, Liu H, Li M (2020a) Community, distribution, and ecological roles of estuarine archaea. Front Microbiol 11:2060

    Article  PubMed  PubMed Central  Google Scholar 

  • Zou D, Pan J, Liu Z et al (2020b) The distribution of Bathyarchaeota in surface sediments of the Pearl River estuary along salinity gradient. Front Microbiol 11:285

    Article  PubMed  PubMed Central  Google Scholar 

  • Zumft WG (1997) Cell biology and molecular basis of cell biology and molecular basis of denitrification. Microbiol Mol Biol Rev 61:533–610

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the many Ph.D., postdoctoral researchers, and technical staff who have contributed to the research of the Ecology and Environmental Microbiology group at the University of Essex, and whose work is cited in this chapter. The following funding bodies and awards are gratefully acknowledged: U.K. Natural Environment Research Council (NERC) Coastal Biodiversity and Ecosystem Services programme (NE/J01561X/1); NERC EPStromNet (NE/V00834X/1); NERC SSB programme, module Blue Carbon, (NE/K001914/1); NERC Quantifying a marine ecosystem’s response to a catastrophic oil spill. (NE/R016569/1); NERC PRINCE-A new dynamic for Phosphorus in RIverbed Nitrogen Cycling (NE/P011624/1); European Union’s Horizon 2020 research and innovation programme, grant agreement No 702217; Defra funding “Ascertaining Predisposing Factors that Affect Oak Health in the U.K. and Advancements toward Management for Resilient Oak Populations”; Eastern ARC Academic Research Consortium; The Royal Society, Understanding microalgal biofilm contributions to sediment “blue carbon” in contrasting salt marsh habitats in the U.S. and Europe (IES\R1\201260).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Graham J. C. Underwood .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Underwood, G.J.C., Dumbrell, A.J., McGenity, T.J., McKew, B.A., Whitby, C. (2022). The Microbiome of Coastal Sediments. In: Stal, L.J., Cretoiu, M.S. (eds) The Marine Microbiome. The Microbiomes of Humans, Animals, Plants, and the Environment, vol 3. Springer, Cham. https://doi.org/10.1007/978-3-030-90383-1_12

Download citation

Publish with us

Policies and ethics