Skip to main content

Microorganism-Hydrophobic Compound Interactions

  • Reference work entry
Handbook of Hydrocarbon and Lipid Microbiology

Abstract:

The low solubility of hydrocarbons forces hydrocarbon-degrading microorganisms to physically interact with oil phases. This has various implications for the physicochemical characteristics of these microbes, their modes of hydrocarbon uptake, and behavioral and physiological strategies used to establish the interaction as summarized in Table 1 .

Table 1 Overview of the different microbial strategies employed to enhance the bioavailability of non-aqueous phase liquid (NAPL) hydrocarbons to micro-organisms

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Barkay T, Navon-Venezia S, Ron EZ, Rosenberg E (1999) Enhancement of solubilization and biodegradation of polyaromatic hydrocarbons by the bioemulsifier alasan. Appl Environ Microbiol 65: 2967–2702.

    Google Scholar 

  • Bastiaens L et al. (2000) Isolation of adherent polycyclic aromatic hydrocarbon (PAH) degrading bacteria using PAH sorbing carriers. Appl Environ Microbiol 66: 1834–1843.

    Article  PubMed  CAS  Google Scholar 

  • Bird RB, Stewart WE, Lightfoot EN (1960) Transport Phenomena,1st edn. New York: Wiley.

    Google Scholar 

  • Bosma TNP, Middeldorp PJM, Schraa G, Zehnder AJB (1997) Mass transfer limitation of biotransformation: Quantifying bioavailability. Environ Sci Technol 31: 248–252.

    Article  CAS  Google Scholar 

  • Brown DG (2007) Relationship between micellar and hemi-micellar processes and the bioavailability of surfactant-solubilized hydrophobic organic compounds. Environ Sci Technol 41: 1194–1199.

    Article  PubMed  CAS  Google Scholar 

  • Buffle J, Leppard GG (1995) Characterization of aquatic colloids and macromolecules. 1. Structure and behavior of colloidal material. Environ Sci Technol 29: 2169–2175.

    Article  CAS  Google Scholar 

  • Busscher HJ, Beltgritter B, van de Mei HC van der (1995) Implications of microbial adhesion to hydrocarbons for evaluating cell-surface hydrophobicity: 1. Zeta potentials of hydrocarbon droplets. Colloids Surf B Biointerfaces 5: 111–116.

    Article  CAS  Google Scholar 

  • Efroymson RA, Alexander M (1991) Biodegradation by an Arthrobacter species of hydrocarbon partitioned into an organic solvent. Appl Environ Microbiol 57: 1441–1447.

    PubMed  CAS  Google Scholar 

  • Garcia JM, Wick LY, Harms H (2001) Influence of the nonionic Surfactant Brij 35 on the bioavailability of solid and sorbed dibenzofuran. Environ Sci Technol 35: 2033–2039.

    Article  PubMed  CAS  Google Scholar 

  • Guha S, Jaffé PR (1996a) Biodegradation kinetics of phenanthrene partitioned into the micellar phase of nonionic surfactants. Environ Sci Technol 30: 605–611.

    Article  CAS  Google Scholar 

  • Guha S, Jaffé PR (1996b) Bioavailability of hydrophobic compounds partitioned into the micellar phase of nonionic surfactants. Environ Sci Technol 30: 1382–1391.

    Article  CAS  Google Scholar 

  • Guha S, Jaffé PR, Peters CA (1998) Bioavailability of mixtures of PAHs partitioned into the micellar phase of a nonionic surfactant. Environ Sci Technol 32: 2317–2324.

    Article  CAS  Google Scholar 

  • Harms H, Wick LY (2004) Mobilization of organic compounds and iron by microorganisms. In Physicochemical Kinetics and Transport at Chemical–Biological Interphases. HP Leuven, van W Koester (eds.). Chichester: Wiley, pp. 401–444.

    Chapter  Google Scholar 

  • Harms H, Zehnder AJB (1994) Influence of substrate diffusion on degradation of dibenzofuran and 3-chlorodibenzofuran by attached and suspended bacteria. Appl Environ Microbiol 60: 2736–2745.

    Google Scholar 

  • Harms H, Zehnder AJB (1995) Bioavailability of sorbed 3-chlorodibenzofuran. Appl Environ Microbiol 61: 27–33.

    PubMed  CAS  Google Scholar 

  • Head IM, Jones DM, Roling WFM (2006) Marine microorganisms make a meal of oil. Nature Rev Microbiol 4: 173–182.

    Article  CAS  Google Scholar 

  • Holman HN, Nieman K, Sorensen DL, Miller CD, Martin MC, Borch T, McKinney WR, Sims RC (2002) Catalysis of PAH biodegradation by humic acid shown in synchrotron infrared studies. Environ Sci Technol 36: 1276–1280.

    Article  PubMed  CAS  Google Scholar 

  • Johnsen AR, Wick LY, Harms H (2005) Principles of microbial PAH degradation. Environ Poll 133: 71–84.

    Article  CAS  Google Scholar 

  • Jucker BA, Harms H, Hug SJ, Zehnder AJB (1997) Adsorption of bacterial surface polymers on mineral oxides is mediated by the formation of hydrogen bonds. Colloids Surf B Biointerfaces 9: 331–343.

    Article  CAS  Google Scholar 

  • Klein B, Grossi V, Bouriat P, Goulas P, Grimaud R (2008) Cytoplasmic wax ester accumulation during biofilm-driven substrate assimilation at the alkane – water interface by Marinobacter hydrocarbonoclasticus SP17. Res Microbiol 159: 137–144.

    Article  PubMed  CAS  Google Scholar 

  • Köster W, Leeuwen HP van (2004) Physicochemical kinetics and transport at the biointerface: setting the stage. In Physicochemical kinetics and transport at biointerfaces. W Köster, HP Leeuven (eds.). van Chichester (GB): Wiley.

    Google Scholar 

  • Laor Y, Strom PF, Farmer WJ (1999) Bioavailability of phenanthrene sorbed to mineral-associated humic acid. Water Res 33: 1719–1729.

    Article  CAS  Google Scholar 

  • Levich V (1962) Physicochemical Hydrodynamics. Englewood, NJ: Prentice-Hall.

    Google Scholar 

  • Luthy RG, et al. (1997) Sequestration of hydrophobic organic contaminants by geosorbents. Environ Sci Technol 31: 3341–3347.

    Article  CAS  Google Scholar 

  • Marx RB, Aitken MD (2000) Bacterial chemotaxis enhances naphthalene degradation in a heterogenous aqueous system. Environ Sci Technol 34: 3379–3383.

    Google Scholar 

  • Maurice PA, Manecki M, Fein JB, Schaefer J (2004) Fractionation of an aquatic fulvic acid upon adsorption to the bacterium, Bacillus subtilis. Geomicrobiol J 21: 69–78.

    Article  CAS  Google Scholar 

  • Mayer P, Fernqvist MM, Christensen PS, Karlson U, Trapp S (2007) Enhanced diffusion of polycyclic aromatic hydrocarbons in artificial and natural aqueous solutions. Environ Sci Technol 41: 6148–6155.

    Article  PubMed  CAS  Google Scholar 

  • Mayer P, Karlson U, Christensen PS, Johnsen AR, Trapp S (2005) Quantifying the effect of medium composition on the diffusive mass transfer of hydrophobic organic chemicals through unstirred boundary layers. Environ Sci Technol 39: 6123–6129.

    Article  PubMed  CAS  Google Scholar 

  • Mulder H, Breure AM, Honschooten D, van Grotenhuis JT, Andel JG, van Rulkens WH (1998) Effect of biofilm formation by Pseudomonas 8909N on the bioavailability of solid naphthalene. Appl Microbiol Biotechnol 50:277–283.

    Article  CAS  Google Scholar 

  • Neu TR (1996) Significance of bacterial surface-active compounds in interaction of bacteria with interfaces. Microbiol Rev 60: 151–166.

    PubMed  CAS  Google Scholar 

  • Noordman WH, Ji W, Brusseau ML, Janssen DB (1998) Effects of rhamnolipid biosurfactants on removal of phenanthrene from soil. Environ Sci Technol 32: 1806–1812.

    Article  CAS  Google Scholar 

  • Ortega-Calvo JJ, Saiz-Jimenez C (1998) Effect of humic fractions and clay on biodegradation of phenanthrene by a Pseudomonas fluorescens strain isolated from soil. Appl Environ Microbiol 64: 3123–3126.

    PubMed  CAS  Google Scholar 

  • Rosenberg M, Rosenberg E (1981) Role of adherence in growth of Acinetobacter cacoaceticus RAG-1 on hexadecane. J Bacteriol 148: 51–57.

    PubMed  CAS  Google Scholar 

  • Schwarzenbach RP, Gschwend PM, Imboden DM (2003) Environmental Organic Chemistry, 1st edn. Hoboken (NJ): Wiley.

    Google Scholar 

  • Sikkema J, Debont JAM, Poolman B (1994) Interactions of cyclic hydrocarbons with biological-membranes. J Biol Chem 269: 8022–8028.

    PubMed  CAS  Google Scholar 

  • Sikkema J, de Bont JAM, Poolman B (1995) Mechanism of membrane toxicity of hydrocarbons. Microbiol Rev 59: 201–222.

    PubMed  CAS  Google Scholar 

  • Southam G, Whitney M, Knickerbocker C (2001) Structural characterization of the hydrocarbon degrading bacteria-oil interface: implications for bioremediation. Int Biodeter Biodegr 47: 197–201.

    Article  CAS  Google Scholar 

  • Späth R, Flemming HC, Wuertz S (1998) Sorption properties of biofilms. Wat Sci Technol 37: 207–210.

    Google Scholar 

  • Sutton R, Sposito G (2005) Molecular structure in soil humic substances: The new view. Environ Sci Technol 39: 9009–9015.

    Article  PubMed  CAS  Google Scholar 

  • Taylor MG, Simkiss K (2004) Transport of colloids and particles across biological membranes. In Physicochemical Kinetics and Transport at Chemical–Biological Interphases. HP Leeuwen, van W Koester (eds.). Chichester: Wiley, pp. 358–400.

    Google Scholar 

  • Loosdrecht MCM, van Lyklema J, Norde W, Schraa G, Zehnder AJB (1990) Influence of interfaces on microbial activity. Microb Rev 54: 75–87.

    Google Scholar 

  • Vigneault B, Percot A, Lafleur M, Campbell PGC (2000) Permeability changes in model and phytoplankton membranes in the presence of aquatic humic substances. Environ Sci Technol 3: 3907–3913.

    Article  Google Scholar 

  • Volkering F, Breure AM. Andel JG, van Rulkens WH (1995) Influence of nonionic surfactants on bioavailability and biodegradation of polycyclic aromatic hydrocarbons. Appl Environ Microbiol 61: 1699–1705.

    PubMed  CAS  Google Scholar 

  • Wick LY, Colangelo-Failla T, Harms H (2001) Kinetics of mass transfer-limited microbial growth on solid PAHs. Environ Sci Technol 35: 354–361.

    Article  PubMed  CAS  Google Scholar 

  • Wick LY, de Munain AR, Springael D, Harms H (2002) Responses of Mycobacterium sp. LB501T to the low bioavailability of solid anthracene. Appl Microbiol Biotechnol 58: 378–385.

    Article  PubMed  CAS  Google Scholar 

  • Witholt B, Desmet MJ, Kingma J, Beilen JB, van Kok M, Lageveen RG, Eggink G (1990) Bioconversions of aliphatic compounds by Pseudomonas oleovorans in multiphase bioreactors – Background and economic potential. Trends Biotechnol 8: 46–52.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Harms, H., Smith, K.E.C., Wick, L.Y. (2010). Microorganism-Hydrophobic Compound Interactions. In: Timmis, K.N. (eds) Handbook of Hydrocarbon and Lipid Microbiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77587-4_101

Download citation

Publish with us

Policies and ethics