Skip to main content

Biopriming of Seeds for Plant Disease Tolerance and Phytopathogen Management

  • Chapter
  • First Online:
Microbial Biocontrol: Sustainable Agriculture and Phytopathogen Management

Abstract

Seed germination is a critical stage of a life cycle of a plant which is influenced by many environmental factors. In agriculture, to ensure high productivity of a crop, seed germination and early crop growth management have to be kept at optimum levels. Seed priming is a simple but an effective and a low-cost technology to prepare the germinating seeds for incoming challenges. This chapter describes how beneficial microorganisms and microbial biocontrol agents can be effectively used in seed priming for disease management of crops.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad P, Abeer H, Elsayed FAA, Alqarawi AA, Riffat J, Dilfuza E, Salih G (2015) Role of Trichoderma harzianum in mitigating NaCl stress in Indian mustard (Brassica juncea L.) through antioxidative defense system. Front Plant Sci 6:868

    PubMed  PubMed Central  Google Scholar 

  • Anitha D, Vijaya T, Reddy NV (2013) Microbial endophytes and their potential for improved bioremediation and biotransformation: a review. Indo Am J Pharmaceut Res 3:6408–6417

    Google Scholar 

  • Arif M, Jan MT, Marwat KB, Khan MA (2008) Seed priming improves emergence and yield of soybean. Pak J Bot 40(3):1169–1177

    Google Scholar 

  • Basra SMA, Farooq M, Tabassum R (2005) Physiological and biochemical aspects of seed vigour enhancement treatments in fine rice (Oryza sativa L.). Seed Sci Technol 33:25–29

    Article  Google Scholar 

  • Begum MM, Sariah M, Puteh AB, Zainal Abidin MA, Rahman MA, Siddiqui Y (2010) Field performance of bio-primed seeds to suppress Colletotrichum truncatum causing damping-off and seedling stand of soybean. Biol Control 53:18–23

    Article  Google Scholar 

  • Bennett AJ, Mead A, Whipps JM (2009) Performance of carrot and onion seed primed with beneficial microorganisms in glasshouse and field trials. Biol Control 51:417–426

    Article  Google Scholar 

  • Bisen K, Keswani C, Mishra S, Saxena A, Rakshit A, Singh HB (2015) Unrealized potential of seed biopriming for versatile agriculture. In: Rakshit A, Singh HB, Sen A (eds) Nutrient use efficiency: from basics to advances, 1st edn. Springer, New Delhi, pp 193–206

    Chapter  Google Scholar 

  • Brotman Y, Landau U, Cuadros-Inostroza A, Takayuki T, Fernie AR, Chet I (2013) Trichoderma-plant root colonization: escaping early plant defense responses and activation of the antioxidant machinery for saline stress tolerance. PLoS Pathog 9:e1003221. https://doi.org/10.1371/journal.ppat.1003221

  • Burd GI, Dixon DG, Glick BR (2000) Plant growth-promoting bacteria that decrease heavy metal toxicity in plants. Can J Microbiol 46:237–245

    Article  CAS  PubMed  Google Scholar 

  • Burdman S, Turkevitch E, Okon Y (2000) Recent advances in the use of plant growth promoting rhizobacteria (PGPR) in agriculture. In: Subbarao NS, Dommergues YR (eds) Microbial interaction in agriculture and forestry. Science Publishers, Lebanon, NH, pp 229–249

    Google Scholar 

  • Callan NW, Mathre D, Miller JB (1990) Biopriming seed treatment for biological control of Pythium ultimum preemergence damping-off in sh-2 sweet corn. Plant Dis 74:368–372

    Article  Google Scholar 

  • Conrath U (2006) Systemic acquired resistance. Plant Signal Behav 1:179–184

    Article  PubMed  PubMed Central  Google Scholar 

  • De Palma M, Salzano M, Villano C (2019) Transcriptome reprogramming, epigenetic modifications and alternative splicing orchestrate the tomato root response to the beneficial fungus Trichoderma harzianum. Hortic Res 6:5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dutta S, Greenberg Mishra AK, Dileep Kumar BS (2008) Induction of systemic resistance against fusarial wilt in pigeon pea through interaction of plant growth promoting rhizobacteria and rhizobia. Soil Biol Biochem 40:452–461

    Article  CAS  Google Scholar 

  • El-Mohamedy RSR (2004) Bio-priming of okra seeds to control damping off and root rot diseases. Ann Agric Sci 49(1):339–356

    Google Scholar 

  • El-Mohamedy RSR, AbdAlla MA (2013) Bio-priming seed treatment for biological control of soil borne fungi causing root rot of green bean (Phaseolus vulgaris L.). J Agric Technol 9(3):589–599

    Google Scholar 

  • El-Mohamedy RSR, Abd-El-Baky MMH (2008) Effect of seed treatment on control of root rots disease and improvement of growth and yield of pea plants. Mid E Russ J Plant Sci Biotechnol 2(2):84–90

    Google Scholar 

  • El-Mohamedy RSR, Abd-Alla MA, Badiaa RI (2006) Soil amendment and biopriming treatments as alternative fungicides for controlling root rot diseases on cowpea plants in Nobria province. Res J Agric Biol Sci 2:391–398

    Google Scholar 

  • El-Mougy NS, Abdel-Kader MM (2008) Long term activity of biopriming seed treatment for biological to control of Faba bean root rot pathogens. Aust Plant Pathol 37:464–471

    Article  Google Scholar 

  • Farooq MA, Wahid DJ (2009) Exogenously applied polyamines increase drought tolerance of rice by improving leaf water status, photosynthesis and membrane properties. Acta Physiol Plant 31:937–945

    Article  CAS  Google Scholar 

  • Forti C, Shankar A, Singh A, Balestrazzi A, Prasad V, Macovei A (2020) Hydropriming and biopriming improve Medicago truncatula seed germination and upregulate DNA repair and antioxidant genes. Genes 11:242

    Article  CAS  PubMed Central  Google Scholar 

  • Fu J, Liu Z, Li Z, Wang Y, Yang K (2017) Alleviation of the effects of saline-alkaline stress on maize seedlings by regulation of active oxygen metabolism by Trichoderma asperellum. PLoS One 12:e0179617. https://doi.org/10.1371/journal.pone.0179617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghassemi Golezani K, Aliloo AA, Valizadeh M, Moghaddam M (2008) Effects of hydro and osmo-priming on seed germination and field emergence of lentil (Lens culinaris Medik.). Bot Hort Agro Bot Cluj 36:29–33

    Google Scholar 

  • Glick BR, Cheng Z, Czarny J, Duan J (2007) Promotion of plant growth by ACC deaminase-producing soil bacteria. Eur J Plant Pathol 119:329–339

    Article  CAS  Google Scholar 

  • Greenberg JT, Silverman FP, Liang H (2000) Uncoupling salicylic acid dependent cell death and defence-related responses from disease resistance in Arabidopsis mutant acd5. Genetics 156:341–350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haas D, Keel C, Reimann C (2002) Signal transduction in plant beneficial rhizobacteria with biocontrol properties. Antonie Van Leeuwenhoek 81:385–395

    Article  CAS  PubMed  Google Scholar 

  • Harris D, Jones M (1997) On-farm seed priming to accelerate germination in rainfed, dry-seeded rice. Int Rice Res Note 22:30

    Google Scholar 

  • Harris D, Rashid A, Hollington A, Jasi L, Riches C (2007) Prospects of improving maize yield with on farm seed priming. In: Rajbhandari NP, Ransom JK (eds) Sustainable maize production systems for Nepal. NARC and CIMMYT, Kathmandu, pp 180–185

    Google Scholar 

  • Heil M, Bostock RM (2002) Induced systemic resistance (ISR) against pathogens in the context of induced plant defences. Ann Bot 89:503–512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hermosa R, Viterbo A, Chet I, Monte E (2012) Plant-beneficial effects of Trichoderma and of its genes. Microbiology 158:17–25

    Article  CAS  PubMed  Google Scholar 

  • Heydecker W (1973) Accelerated germination by osmotic seed treatment. Nature 246:42–44

    Article  CAS  Google Scholar 

  • Jahn M, Puls A (1998) Investigations for development of a combined biological-physical method to control soilborne and seed-borne pathogens in carrot seed. J Plant Dis Prot 105:359–375

    Google Scholar 

  • Jamal E, Bochow H, Hentschel KD (1993) Bacillus subtilis and chemical seed dressing about equally effective in suitable environment. Gartenbau-Magazin 2:38–39

    Google Scholar 

  • Jensen B, Knudsen IM, Madsen M, Jensen DF (2004) Biopriming of infected carrot seed with an antagonist, clonostachys rosea, selected for control of seedborne Alternaria spp. Phytopathology 94(6):551–560. https://doi.org/10.1094/PHYTO.2004.94.6.551

    Article  PubMed  Google Scholar 

  • Kasim WA, Osman ME, Omar MN (2013) Control of drought stress in wheat using plant growth-promoting bacteria. J Plant Growth Regul 32:122–130

    Article  CAS  Google Scholar 

  • Kata LP, Bhaskaran M, Umarani R (2014) Influence of priming treatments on stress tolerance during seed germination of rice. Int J Agric Environ Biotech 7:225–232

    Article  Google Scholar 

  • Keswani C, Mishra S, Sarma B, Singh S, Singh H (2014) Unraveling the efficient applications of secondary metabolites of various Trichoderma spp. Appl Microbiol Biotechnol 98:533–544

    Article  CAS  PubMed  Google Scholar 

  • Kloepper JW, Schrothwilson MN (1978) Plant growth promoting rhizobacteria on radishes. In: Proc. 4th Int. Conf. Plant. Path. Bact. Angers, pp 879–882

    Google Scholar 

  • Legro B, Satter H (1995) Biological control of Pythium through seedcoating and seedpriming with Trichoderma. In: Proceedings of the 4th National Symposium on Stand Establishment of Horticultural Crops, Monterey, California, pp 235–237

    Google Scholar 

  • Liu L, Kloepper JW, Tuzun S (1995) Induction of systemic resistance in cucumber against Fusarium wilt by plant growth promoting rhizobacteria. Phytopathology 85:695–698

    Article  Google Scholar 

  • Lutts S, Benincasa P, Wojtyla L, Kubala S, Pace R, Lechowska K, Quinet M, Garnczarska M (2016) Seed priming: new comprehensive approaches for an old empirical technique. In: New challenges in seed biology-Basic and translational research driving seed technology, vol 2. InTech Open, Rijeka, pp 1–46

    Google Scholar 

  • Mastouri F, Bjorkman T, Harman GE (2012) Trichoderma harzianum enhances antioxidant defense of tomato seedlings and resistance to water deficit. Mol Plant-Microbe Interact 25:1264–1271

    Google Scholar 

  • Meshram S, Patel JS, Yadav SK, Kumar G, Singh DP, Singh HB (2019) Trichoderma mediate early and enhanced lignifications in chickpea during Fusarium oxysporum f. sp. ciceris infection. J Basic Microbiol 59:74–86

    Article  CAS  PubMed  Google Scholar 

  • Mirshekari B, Hokmalipour S, Sharifi RS (2012) Effect of seed biopriming with plant growth promoting rhizobacteria (PGPR) on yield and dry matter accumulation of spring barley (Hordeum vulgare L.) at various levels of nitrogen and phosphorus fertilizers. J Food Agric Environ 10:31420

    Google Scholar 

  • Moeinzadeh A, Sharif-Zadeh F, Ahmadzadeh M (2010) Biopriming of sunflower (Helianthus annuus L.) seed with Pseudomonas fluorescens for improvement of seed invigoration and seedling growth. Aust J Crop Sci 4:564

    Google Scholar 

  • Mona SA, Hashem A, Abdallah EF, Alqarawi AA, Soliman DWK, Wirth S, Egamberdieva D (2017) Increased resistance of drought by Trichoderma harzianum fungal treatment correlates with increased secondary metabolites and proline content. J Integr Agric 16(8):1751–1757

    Article  CAS  Google Scholar 

  • Müller H, Berg G (2008) Impact of formulation procedures on the effect of the biocontrol agent Serratia plymuthica HRO-C48 on Verticillium wilt in oilseed rape. BioControl 53(6):905–916

    Article  Google Scholar 

  • Nadeem SM, Zahir ZA, Naveed M, Arshad M (2007) Preliminary investigations on inducing salt tolerance in maize through inoculation with rhizobacteria containing ACC deaminase activity. Can J Microbiol 53:1141–1149

    Article  CAS  PubMed  Google Scholar 

  • Nascimento WM (2003) Muskmelon seed germination and seedling development in response to seed priming. Sci Agric 60:71–75

    Article  Google Scholar 

  • Nayaka SC, Niranjana SR, Shankar ACU, Raj SN, Reddy MS, Prakash HS, Mortensen CANP (2010) Seed biopriming with novel strain of Trichoderma harzianum for the control of toxigenic Fusarium verticillioides and fumonisins in maize. Arch Phytopathol PFL 43:264–282

    Article  Google Scholar 

  • Neelam T, Meenu S (2010) Salinity-resistant plant growth promoting rhizobacteria ameliorates sodium chloride stress on tomato plants. J Plant Interact 5:51–58

    Article  CAS  Google Scholar 

  • Patel JS, Kharwar RN, Singh HB, Upadhyay RS, Sarma BK (2017) Trichoderma asperellum (T42) and Pseudomonas fluorescens (OKC)-enhances resistance of pea against Erysiphe pisi through enhanced ROS generation and lignifications. Front Microbiol 8:306

    Google Scholar 

  • Pieterse CMJ, Van Wees CM, Hoffland E, van Pelt JA, van Loon LC (1996) Systemic resistance in Arabidopsis induced by bio-control bacteria is independent of salicylic acid accumulation and pathogenesis-related gene expression. Plant Cell 8:1125–1237

    Google Scholar 

  • Pieterse CM, Zamioudis C, Berendsen RL, Weller DM, Van Wees SC, Bakker PA (2014) Induced systemic resistance by beneficial microbes. Annu Rev Phytopathol 52:347–375

    Article  CAS  PubMed  Google Scholar 

  • Prasad SR, Kamble UR, Sripathy KV, Bhaskar KU, Singh DP (2016) Seed biopriming for biotic and abiotic stress management. In: Singh DP, Singh HB, Prabha R (eds) Microbial inoculants in sustainable agricultural productivity. Springer, New Delhi, pp 211–228

    Chapter  Google Scholar 

  • Rafi H, Dawar S (2015) Role of pellets and capsules of Acacia nilotica and Sapindus mukorossi in combination of seed bio-priming with microbial antagonists in the suppression of root infecting pathogenic fungi and promotion of crop plants. J Plant Pathol Microbiol S3:007

    Google Scholar 

  • Raj SN, Shetty NP, Shetty HS (2004) Seed bio-priming with Pseudomonas fluorescens isolates enhances growth of pearl millet plants and induces resistance against downy mildew. Int J Pest Manag 50(1):41–48

    Article  Google Scholar 

  • Rakshit A, Sunita K, Pal S, Singh A, Singh HB (2015) Biopriming mediated nutrient use efficiency of crop species. In: Rakshit A, Singh HB, Sen A (eds) Nutrient use efficiency: from basics to advances. Springer, New Delhi, pp 81–191

    Chapter  Google Scholar 

  • Ramamoorthy V, Viswanathan R, Raguchander T (2001) Induction of systemic resistance by plant growth-promoting rhizobacteria in crop plants against pests and disease. Crop Prot 20:1–11

    Article  CAS  Google Scholar 

  • Ramesh B, Singh MK (2006) Effect of seed priming with K2SO4 on germination and seedling growth in rice. Agric Sci Dig 26:261–264

    CAS  Google Scholar 

  • Rao MSL, Kulkarni SI, Lingaraju SI, Nadaf HL (2009) Bio priming of seeds: a potential tool in the integrated management of Alternaria blight of sunflower. Helia 50:107–114

    Article  Google Scholar 

  • Reddy PP (2013) Bio-priming of seeds. In: Reddy PP (ed) Recent advances in crop protection. Springer, New York, NY, pp 83–90

    Chapter  Google Scholar 

  • Rehman A, Farooq M, Naveed M, Nawaz A, Shahzad B (2018) Seed priming of Zn with endophytic bacteria improves the productivity and grain biofortification of bread wheat. Eur J Agron 94:98–107

    Article  CAS  Google Scholar 

  • Roy NK, Srivastava AK (1999) Effect of pre-soaking seed treatment on germination and amylase activity of wheat (Triticum aestivum L.) under salt stress conditions. Rachis 18:46–51

    Google Scholar 

  • Rozier C, Gerin F, Czarnes S, Legendre L (2019) Biopriming of maize germination by the plant growth-promoting rhizobacterium Azospirillum lipoferum CRT1. J Plant Physiol 237:111–119. https://doi.org/10.1016/j.jplph.2019.04.011

    Article  CAS  PubMed  Google Scholar 

  • Ruba A, Mazen S, Ralf-Udo E (2011) Effect of seed priming with Serratia plymuthica and Pseudomonas chlororaphis to control Leptosphaeria maculans in different oilseed rape cultivars. Eur J Plant Pathol 130:287–295

    Article  Google Scholar 

  • Sadeghian SY, Yavari N (2004) Effect of water deficient stress on germination and early seedling growth in sugar beet. J Agron Crop Sci 190:138–144

    Article  Google Scholar 

  • Saikia R, Singh T, Kumar R, Srivastava J, Srivastava AK, Singh K, Arora DK (2003) Role of salicylic acid in systemic resistance induced by Pseudomonas fluorescens against Fusarium oxysporum f. sp. ciceri in chickpea. Microbiol Res 158:203–213

    Article  CAS  PubMed  Google Scholar 

  • Sarkar RK (2012) Seed priming improves agronomic trait performance under flooding and non-flooding conditions in rice with QTLSUB1. Rice Sci 19:286–294

    Article  Google Scholar 

  • Sharifi RS (2011) Study of grain yield and some of physiological growth indices in maize (Zea mays L.) hybrids under seed biopriming with plant growth promoting rhizobacteria (PGPR). J Food Agric Environ 89(3):4

    Google Scholar 

  • Sharifi RS, Khavazi K (2011) Effects of seed priming with plant growth promotion rhizobacteria (PGRP) on yield and yield attribute of maize (Zea mays L.) hybrids. J Food Agric Environ 9:49600

    Google Scholar 

  • Sharifi RS, Khavazi K, Gholipouri A (2011) Effect of seed priming with plant growth promoting Rhizobacteria (PGPR) on dry matter accumulation and yield of maize (Zea mays L.) hybrids. Int Res J Biochem Bioinfl 1:76–83

    CAS  Google Scholar 

  • Sign US, Zaidi NW, Joshi D, Varshney S, Khan T (2003) Current status of trichoderma as biocontrol agent. In: Ramanujan B, Rabindra RJ (eds) Current status of biological control of plant diseases using antagonistic organisms in India. Project Directorate of Biological Control, Bangalore, pp 13–48

    Google Scholar 

  • Singh V, Upadhyay R, Sarma B, Singh H (2016) Seed bio-priming with Trichoderma asperellum effectively modulate plant growth promotion in pea. Int J Agric Environ Biotechnol 9:361

    Article  Google Scholar 

  • Singh P, Singh J, Ray S, Rajput RS, Vaishnav A, Singh RK, Singh HB (2020) Seed biopriming with antagonistic microbes and ascorbic acid induce resistance in tomato against Fusarium wilt. Microbiol Res 237:126482. https://doi.org/10.1016/j.micres.2020.126482

    Article  CAS  PubMed  Google Scholar 

  • Sukanya V, Patel RM, Suthar KP, Singh D (2018) An overview: mechanism involved in biopriming mediated plant growth promotion. Int J Pure Appl Biosci 6(5):771–783

    Article  Google Scholar 

  • Taylor AG (1997) Seed storage, germination and quality. In: Wien HC (ed) The physiology of vegetable crops. CAB International, Wallingford, pp 1–36

    Google Scholar 

  • Taylor AG, Harman GE (1990) Concept and technologies of selected seed treatments. Annu Rev Phytopathol 28:321–339

    Article  Google Scholar 

  • Van Loon LC, Bakker PAHM (2005) Induced systemic resistance as a mechanism of disease suppression by rhizobacteria. In: Siddiqui ZA (ed) PGPR: biocontrol and biofertilization. Springer, Dordrecht, pp 39–66

    Chapter  Google Scholar 

  • Varier A, Vari AK, Dadlani M (2010) The subcellular basis of seed priming. Curr Sci 99:450–456

    CAS  Google Scholar 

  • Warren JE, Bennett MA (1999) Bio-osmopriming tomato (Lycopersicon esculentum Mill.) seeds for improved stand establishment. Seed Sci Technol 27:489–499

    Google Scholar 

  • Wiebe HJ, Muhyaddin T (1987) Improvement of emergence by osmotic seed treatments in soils of high salinity. Acta Hortic 198:91–100

    Article  Google Scholar 

  • Wilson M, Lindow E (1993) Release of recombinant microorganisms. Annu Rev Microbiol 58:3380–3386

    Google Scholar 

  • Yadav SK, Dave A, Sarkar A, Singh HB, Sharma BK (2013) Co-inoculated biopriming with Trichoderma, Pseudomonas and Rhizobium improves crop growth in Cicer arietinum and Phaseolus vulgaris. Int J Agric Environ Biotech 6:255–259

    Google Scholar 

  • Yang J, Kloepper JW, Ryu CM (2009) Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci 14:1–4

    Article  CAS  PubMed  Google Scholar 

  • Yedidia I, Benhamou N, Kapulnik Y, Chet I (2000) Induction and accumulation of PR proteins activity during early stages of root colonization by the mycoparasite Trichoderma harzianum strain T-203. Plant Physiol Biochem 38:863–873

    Article  CAS  Google Scholar 

  • Zaidi S, Usmani S, Singh BR, Musarrat J (2006) Significance of Bacillus subtilis strain SJ 101 as a bioinoculant for concurrent plant growth promotion and nickel accumulation in Brassica juncea. Chemosphere 64:991–997

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nalika Priyanwada Ranathunge .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ranathunge, N.P. (2022). Biopriming of Seeds for Plant Disease Tolerance and Phytopathogen Management. In: Kumar, A. (eds) Microbial Biocontrol: Sustainable Agriculture and Phytopathogen Management. Springer, Cham. https://doi.org/10.1007/978-3-030-87512-1_15

Download citation

Publish with us

Policies and ethics