Skip to main content
Log in

Impact of formulation procedures on the effect of the biocontrol agent Serratia plymuthica HRO-C48 on Verticillium wilt in oilseed rape

  • Published:
BioControl Aims and scope Submit manuscript

Abstract

Verticillium wilt is an important disease in oilseed rape with an increasing importance worldwide. Currently, there are no methods available to suppress the pathogen. A biological protection strategy on the basis of the plant-beneficial bacterium Serratia plymuthica HRO-C48 to control Verticillium dahliae in oilseed rape was developed. Three different techniques to apply the biocontrol agent to seeds, namely pelleting, film coating and bio-priming, were evaluated considering the influence on the control activity, cell stability during storage and practical feasibility. Neither the treatment nor the inoculum density was found to influence the abundances of HRO-C48 in the rhizosphere after 30 days. Serratia treatment using bio-priming and pelleting resulted in a statistically significant biocontrol in comparison to the non-bacterized controls. Additionally, survival of HRO-C48 differed between treatments, and was the highest using bio-priming at 20°C, and pelleting at 4°C. In conclusion, the procedure of bio-priming, which was developed in line with this study, resulted in a stable and efficient formulation of S. plymuthica on rape seed. This technology opens a possibility to develop a commercial Serratia formulation to protect oilseed against V. dahliae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Barbara D, Clewes E (2003) Plant pathogenic Verticillium species: how many of them are there? Mol Plant Pathol 4:297–305

    Article  CAS  PubMed  Google Scholar 

  • Berg G, Kurze S, Dahl R (1999) Isolated rhizobacteria for treatment of phytopathogenic fungal diseases. Eur Patent Nr 98124694.5

  • Berg G (2000) Diversity of antifungal and plant-associated Serratia plymuthica strains. J Appl Microbiol 88:952–960

    Article  PubMed  CAS  Google Scholar 

  • Berg G, Fritze A, Roskot N, Smalla K (2001) Evaluation of potential biocontrol rhizobacteria from different host plants of Verticillium dahliae Kleb. J Appl Microbiol 156:75–82

    Google Scholar 

  • Bradford KJ (1995) Water relations in seed germination. In: Kigel J, Galili G (eds) Seed development and germination. Marcel Dekker Inc., New York, pp 351–396

    Google Scholar 

  • Burgues HD (1998) Formulation of microbial pesticides. Beneficial microorganisms, nematodes and seed treatments. Kluwer Academic Publisher, London

    Google Scholar 

  • Callan NW, Marthre DE, Miller JB (1990) Bio-priming seed treatment for biological control of Pythium ultimum preemergence damping-off in sh-2 sweet corn. Plant Dis 74:368–372

    Article  Google Scholar 

  • Conn KL, Lazarovits G (2000) Soil factors influencing the efficacy of liquid swine manure added to soil to kill Verticillium dahliae. Can J Plant Pathol 21:400–406

    Article  Google Scholar 

  • Costa E, Usall J, Teixido N, Garcia N, Vinas I (2000) Effect of protective agents, rehydration media and initial cell concentration on viability of Pantoea agglomerans strain CPA-2 subjected to freeze-drying. J Appl Microbiol 89:793–800

    Article  PubMed  CAS  Google Scholar 

  • Daebeler F, Amelung D, Zeise K (1988) Verticillium-welke an winterraps - auftreten und bedeutung. Nachrichtenblatt Pflanzenschutz DDR 42:71–73

    Google Scholar 

  • Debode J, Spiessens K, De Rooster L, Hofte M (2002) Verticillium wilt of cauliflower in Belgium. Meded Rijksuniv Gent Fak Landbouwkd Toegep Biol Wet 67(2):241–249

    PubMed  CAS  Google Scholar 

  • Emmert EAB, Handelsman J (1999) Biocontrol of plant disease: a (Gram+) positive perspective. FEMS Microbiol Lett 171:1–9

    Article  PubMed  CAS  Google Scholar 

  • Fahleson J, Hu Q, Dixelius C (2004) Phylogenetic analysis of Verticillium species based on nuclear and mitochondrial sequences. Arch Microbiol 181:435–442

    Article  PubMed  CAS  Google Scholar 

  • Frankowski J, Lorito M, Schmid R, Berg G, Bahl H (2001) Purification and properties of two chitinolytic enzymes of Serratia plymuthica HRO-C48. Arch Microbiol 176:421–426

    Article  PubMed  CAS  Google Scholar 

  • Fravel DR, Connik WJ, Lewis JA (1998) Formulation of microorganisms to control plant diseases. In: Burgues HD (ed) Formulation of microbial pesticides. Beneficial microorganisms, nematodes and seed treatments. Kluwer Academic Publisher, London, pp 187–202

    Google Scholar 

  • Graner G, Persson P, Meijer J, Alstrom S (2003) A study on microbial diversity in different cultivars of Brassica napus in relation to its wilt pathogen, Verticillium longisporum. FEMS Microbiol Lett 29:269–276

    Article  CAS  Google Scholar 

  • Gray D (1994) Large-scale seed priming techniques and their integration with crop protection treatments. In: Martin T (ed) Seed treatment: progress and prospects, monograph 57. British Crop Protection Council, Farnham, pp 353–362

    Google Scholar 

  • Karapapa VK, Bainbridge BW, Heale JB (1997) Morphological and molecular characterization of Verticillium longisporum comb. nov., pathogenic to oilseed rape. Mycol Res 101:1281–1294

    Article  Google Scholar 

  • Kalbe C, Marten P, Berg G (1996) Members of the genus Serratia as beneficial rhizobacteria of oilseed rape. Microbiol Res 151:4433–4400

    Google Scholar 

  • Kurze S, Dahl R, Bahl H, Berg G (2001a) Biological control of soil-borne pathogens in strawberry by Serratia plymuthica HRO-C48. Plant Dis 85:529–534

    Article  Google Scholar 

  • Kurze S, Sauerbrunn N, Bahl H, Dahl R, Berg G (2001b) Effects of antagonistic rhizobacteria on plant health, yield, and the bacterial rhizosphere community of strawberry. IOBC Bulletin 24:117–120

    Google Scholar 

  • Lumsden RD, Lewis JA, Fravel DR (1995) Formulation and delivery of biocontrol agents for use against soilborne plant pathogens. In: Hall FR, Barry JW (eds) Biorational pest control agents. Formulation and delivery, Washington, pp 166–182

    Google Scholar 

  • Martin FN (2003) Development of alternative strategies for management of soilborne pathogens currently controlled with methyl bromide. Ann Rev Phytopathol 41:325–350

    Article  CAS  Google Scholar 

  • Mercado-Blanco J, Rodríguez-Jurado D, Hervás A, Jiménez-Díaz RM (2004) Suppression of Verticillium wilt in olive planting stocks by root-associated fluorescent P. seudomonas sp. Biol Control 30:474–486

    Article  Google Scholar 

  • Messner R, Schweigkofler W, Schweigkofler M, Berg G, Prillinger H (1996) Molecular characterization of the plant pathogen Verticillium dahliae Kleb. using RAPD-PCR and sequencing of the 18S rRNA-gene. J Phytopathol 144:347–354

    Article  Google Scholar 

  • Powell KA (1993) The commercial exploitation of microorganisms in agriculture. In: Jones DG (ed) Exploitation of microorganisms. Chapman and Hall, New York, pp 441–459

    Google Scholar 

  • Rhodes DJ (1993) Formulation of biological control agents. In: Jones DG (ed) Exploitation of microorganisms. Chapman & Hall, London, pp 411–439

    Google Scholar 

  • Scherwinski K, Wolf A, Berg G (2007) Assessing the risk of biological control agents on the indigenous microbial communities: Serratia plymuthica HRO-C48 and Streptomyces sp. HRO-71 as model bacteria. Biol Control 52:87–112

    CAS  Google Scholar 

  • Souzo H (1992) Freeze-drying of microorganisms. Encyclopedia of microbiology, vol 2. Academic Press, New York

  • Stark C (1961) Das auftreten der Verticillium-tracheomykose in hamburger gartenbaukulturen. Gartenbauwiss 26:493–528

    Google Scholar 

  • Stephan D, Bisutti IL, da Silva A-P (2006) Optimisation of the freeze drying process of Pseudomonas fluorescens strain CHA0 and Pf 153. IXth Meeting of the IOBC/WPRS working group “Integrated Control of Fungal and Bacterial Plant Pathogens”, Spa, Belgium, 6-10 September 2006

  • Steventon LA, Fahleson J, Hu Q, Dixelius C (2002) Identification of the causal agent of Verticillium wilt of winter oilseed rape in Sweden as Verticillium longisporum. Mycol Res 106:570–578

    Article  CAS  Google Scholar 

  • Subbarao KV, Hubbard JC, Koike ST (1999) Evaluation of broccoli residue incorporation into field soil for Verticillium wilt control in cauliflower. Plant Dis 83:124–129

    Article  Google Scholar 

  • Termorshuizen AJ, Davis JR, Gort G, Harris DC, Huisman OC, Lazarovits G, Locke T, Melero Vara JM, Mol L, Papalomatas EJ, Platt HW, Powelson M, Rouse DI, Rowe RC, Tsor L (1998) Interlaboratory comparison of methods to quantify microsclerotia of Verticillium dahliae in soil. Appl Environ Microbiol 64:3846–3853

    PubMed  CAS  Google Scholar 

  • Tjamos EC, Rowe RC, Heale JB, Fravel DR (2000) Advances in Verticillium research and disease management. APS Press. The American Phytopathological Society, St. Paul, Minnesota

    Google Scholar 

  • Tjamos EC, Tsitsigiannis DI, Tjamos SE, Antoniou P, Katinakis P (2004) Selection and screening of endorhizosphere bacteria from solarised soils as biocontrol agents against Verticillium dahliae of solanaceous hosts. Eur J Plant Pathol 110:35–44

    Article  CAS  Google Scholar 

  • Weller DM (1988) Biological control of soilborne plant pathogens in the rhizosphere with bacteria. Annu Rev Phytopathol 26:379–407

    Article  Google Scholar 

  • Whipps JM (1997) Ecological considerations involved in commercial development of biological control agents for soil-borne diseases. In: Van Elsas JD, Trevors JT, Wellington EMH (eds) Modern soil microbiology. Marcel Dekker, Inc., New York, Basel, Hongkong, pp 525–545

    Google Scholar 

  • Whipps J (2001) Microbial interactions and biocontrol in the rhizosphere. J Exp Bot 52:487–511

    PubMed  CAS  Google Scholar 

  • Zeise K (1992) Screening for resistance to Verticillium dahliae Kleb. on oilseed rape (Brassica napus var. oleifera METZGER) under greenhouse conditions. Nachrichtenbl Deut Pflanzenschutzdienst 44:125–128

    Google Scholar 

  • Zeise K, von Tiedemann A (2001) Morphological and physiological differentiation among vegetative compatibility groups of Verticillium dahliae in relation to Verticillium longisporum. J Phytopathol 149:469–475

    Article  Google Scholar 

Download references

Acknowledgements

We thank Hella Goschke for valuable technical assistance. We are very grateful to the Norddeutsche Pflanzenzucht Hans-Georg Lembke KG (Hohenlieth, Germany) and to the German Federal Environmental Foundation for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriele Berg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Müller, H., Berg, G. Impact of formulation procedures on the effect of the biocontrol agent Serratia plymuthica HRO-C48 on Verticillium wilt in oilseed rape. BioControl 53, 905–916 (2008). https://doi.org/10.1007/s10526-007-9111-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10526-007-9111-3

Keywords

Navigation