Skip to main content

In Silico Approaches in Bioremediation Research and Advancements

  • Chapter
  • First Online:
Bioremediation of Environmental Pollutants

Abstract

Bioremediation uses microbes or plants, or their enzymes to neutralize pollutants from environments. It is a new technology that can be used in combination with other physical and chemical treatment approaches to handle the complex community of contaminants. It seems to be a sustainable approach to the management of environmental pollution and hence more work is needed in this field. In silico approaches have tremendous potential to accelerate bioremediation research and its advancements. Several computer programs and database resources are available for carrying out research to assist the bioremediation process using analysis and integration of omics datasets, i.e. genomics, transcriptomics, proteomics, metabolomics, and other molecular data. This chapter addresses the injurious effect of heavy metal emissions and processes employed for bioremediation by microorganisms and plants. Besides, it also highlights the significance of in silico techniques in enhancing the ability of microbial and plant enzymes to rapidly, degrade pollutants, emphasizes advancements made in bioremediation, and outlines future prospects and limitations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aldridge BB, Rhee KY (2014) Microbial metabolomics: innovation, application, insight. Curr Opin Microbiol 19:90–96. https://doi.org/10.1016/j.mib.2014.06.009

    Article  CAS  PubMed  Google Scholar 

  • Alexander M (1994) Biodegradation and bioremediation. Academic, San Diego, CA

    Google Scholar 

  • Andrews S (2010) FastQC: a quality control tool for high throughput sequence data. http://www.bioinformatics.babraham.ac.uk/projects/fastqc

  • Awasthi MK, Ravindran B, Sarsaiya S, Chen H, Wainaina S, Singh E (2020) Metagenomics for taxonomy profiling: tools and approaches. Bioengineered 11:356–374. https://doi.org/10.1080/21655979.2020.1736238

    Article  CAS  Google Scholar 

  • Banta G, Kahlon RS (2007) Dehalogenation of 4-chlorobenzoic acid by Pseudomonas isolates. Ind J Micorbiol 47:139–143. https://doi.org/10.1007/s12088-007-0027-5

    Article  CAS  Google Scholar 

  • Beale DJ, Karpe AV, Ahmed W, Cook S, Morrison PD, Staley C (2017) A community multi-omics approach towards the assessment of surface water quality in an urban river system. Int J Environ Res Public Health 14:E303. https://doi.org/10.3390/ijerph14030303

    Article  CAS  PubMed  Google Scholar 

  • Bhatt P, Rene ER, Kumar AJ, Kumar AJ, Zhang W, Chen S (2020) Binding interaction of allethrin with esterase: bioremediation potential and mechanism. Bioresour Technol 315:13845

    Article  Google Scholar 

  • Bhatt P, Bhatt K, Sharma A, Zhang W, Mishra S, Chen S (2021a) Biotechnological basis of microbial consortia for the removal of pesticides from the environment. Crit Rev Biotechnol 41(3):317–338

    Article  Google Scholar 

  • Bhatt P, Joshi T, Bhatt K, Zhang W, Huang Y, Chen S (2021b) Binding interaction of glyphosate oxidoreductase and C-P lyase: molecular docking and molecular dynamics simulation studies. J Hazard Mater 5:409:124927

    Google Scholar 

  • Bihari Z (2013) Current trends in bioremediation and biodegradation: next-generation sequencing. J Bioremed Biodegr 4(08):e138. https://doi.org/10.4172/2155-6199.1000e138

    Article  CAS  Google Scholar 

  • Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30(15):2114–2120

    Article  CAS  Google Scholar 

  • Buermans H, Den Dunnen J (2014) Next generation sequencing technology: advances and applications. Biochem Biophys Acta 1842:1932–1941

    CAS  PubMed  Google Scholar 

  • Callaghan AV (2013) Metabolomic investigations of anaerobic hydrocarbon-impacted environments. Curr Opin Biotechnol 24:506–515. https://doi.org/10.1016/j.copbio.2012.08.012

    Article  CAS  PubMed  Google Scholar 

  • Carbajosa G, Trigo A, Valencia A, Cases I (2009) Bionemo: molecular information on biodegradation metabolism. Nucleic Acids Res 37(Suppl 1):D598–D602

    Article  CAS  Google Scholar 

  • Caspi R, Billington R, Keseler IM, Kothari A, Krummenacker M, Midford PE, Ong WK, Paley S, Subhraveti P, Karp PD (2020) The MetaCyc database of metabolic pathways and enzymes-a 2019 update. Nucleic Acids Res 48(D1):D445–D453

    Article  CAS  Google Scholar 

  • Chandran H, Meena M, Sharma K (2020) Microbial biodiversity and bioremediation assessment through omics approaches. Front Environ Chem 1:570326. https://doi.org/10.3389/fenvc.2020.570326

    Article  Google Scholar 

  • Chauhan A, Jain RK (2010) Biodegradation: gaining insight through proteomics. Biodegradation 21(6):861–879

    Article  CAS  Google Scholar 

  • Combourieu B, Besse P, Sancelme M, Godin JP et al (2000) Common degradative pathways of morpholine, thiomorpholine and piperidine by Mycobacterium aurum MO1: evidence from 1H-nuclear magnetic resonance and ionspray mass spectrometry performed directly on the incubation medium. Appl Environ Microbiol 66:3187–3193

    Article  CAS  Google Scholar 

  • Combourieu B, Haroune N, Besse P, Sancelme M, Delort AM (2003) In: Mohan RM (ed) Research advances in microbiology, vol 3. Global research network, pp 1–22

    Google Scholar 

  • Conesa A, Götz S, García-Gómez JM, Terol J, Talón M, Robles M (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21(18):3674–3676

    Article  CAS  Google Scholar 

  • Conklin D, Haldeman B, Gao Z (2005) Gene finding for the helical cytokines. Bioinformatics 21(9):1776–1781

    Article  CAS  Google Scholar 

  • Dash B, Sahu N, Singh AK, Gupta SB, Soni R (2021) Arsenic efflux in Enterobacter cloacae RSN3 isolated from arsenic-rich soil. Folia Microbiol 66:189–196

    Article  CAS  Google Scholar 

  • Debbarma P, Raghuwanshi S, Singh J, Suyal DC, Zaidi MGH, Goel R (2017) Comparative in situ biodegradation studies of polyhydroxybutyrate film composites. 3Biotech 7(178):1–9. https://doi.org/10.1007/s13205-017-0789-3

    Article  Google Scholar 

  • Divya B, Kumar MD (2011) Plant-microbe interaction with enhanced bioremediation. Res J Biotechnol 6:72–79

    CAS  Google Scholar 

  • Dixit R, Malaviya D, Pandiyan K, Singh UB, Sahu A, Shukla R, Singh BP, Rai JP, Sharma PK, Lade H (2015) Bioremediation of heavy metals from soil and aquatic environment: an overview of principles and criteria of fundamental processes. Sustainability 7:2189–2212

    Article  Google Scholar 

  • Eiler A, Heinric F, Bertilsson S (2012) Coherent dynamics and association networks among lake bacterioplankton taxa. ISME J 6:330–342. https://doi.org/10.1038/ismej.2011.113

    Article  CAS  PubMed  Google Scholar 

  • Espinosa MJC, Blanco AC, Schmidgall T, Atanasoff-Kardjalieff AK, Kappelmeyer U, Tischler D et al (2020) Toward biorecycling: isolation of a soil bacterium that grows on a polyurethane oligomer and monomer. Front Microbiol 11:404. https://doi.org/10.3389/fmicb.2020.00404

    Article  PubMed  PubMed Central  Google Scholar 

  • Fulekar MH (2005) Bioremediation technologies for environment. Indian J Environ Prot 25:358–364

    CAS  Google Scholar 

  • Funahashi A, Morohashi M, Kitano H, Tanimura N (2003) CellDesigner: a process diagram editor for gene-regulatory and biochemical networks. Biosilico 1(5):159–162

    Article  Google Scholar 

  • Ghosal D, Ghosh S, Dutta TK, Ahn Y (2016) Current state of knowledge in microbial degradation of polycyclic aromatic hydrocarbons (PAHS): a review. Front Microbiol 7:1369

    PubMed  PubMed Central  Google Scholar 

  • Gilbert JA, Dupont CL (2011) Microbial metagenomics: beyond the genome. Annu Rev Mar Sci 3:347–371. https://doi.org/10.1146/annurev-marine-120709-142811

    Article  Google Scholar 

  • Giri K, Rai JPN, Pandey S, Mishra G, Kumar R, Suyal DC (2017a) Performance evaluation of isoproturon-degrading indigenous bacterial isolates in soil microcosm. Chem Ecol 33(9):817–825. https://doi.org/10.1080/02757540.2017.1393535

    Article  CAS  Google Scholar 

  • Giri K, Suyal DC, Mishra G, Pandey S, Kumar R, Meena DK, Rai JPN (2017b) Biodegradation of isoproturon by Bacillus pumilus K1 isolated from foothill agroecosystem of north west Himalaya. Proc Natl Acad Sci India Sect B-Biol Sci 87(3):839–848. https://doi.org/10.1007/s40011-015-0667-x

    Article  CAS  Google Scholar 

  • Goel R, Zaidi MGH, Soni R, Kusumlata SYS (2008) Implication of Arthrobacter and Enterobacter species for polycarbonate degradation. Int Biodeterior Biodegrad 61(2):167–172

    Article  CAS  Google Scholar 

  • Griffin JL (2004) Metabolic profiles to define the genome: can we hear the phenotypes? Philos Trans R Soc Lond B Biol Sci 359:857–871

    Article  CAS  Google Scholar 

  • Gupta K, Biswas R, Sarkar A (2020) Advancement of omics: prospects for bioremediation of contaminated soils. In: Shah M (ed) Microbial bioremediation & biodegradation. Springer, Singapore, pp 113–142

    Chapter  Google Scholar 

  • Gutleben J, Chaib De Mares M, van Elsas JD, Smidt H, Overmann J, Sipkema D (2018) The multi-omics promise in context: from sequence to microbial isolate. Crit Rev Microbiol 44:212–229. https://doi.org/10.1080/1040841X.2017.1332003

    Article  CAS  PubMed  Google Scholar 

  • Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, Couger MB, Eccles D, Li B, Lieber M, MacManes MD (2013) De novo transcript sequence reconstruction from RNA-seq using the trinity platform for reference generation and analysis. Nat Protoc 8(8):1494–1512

    Article  CAS  Google Scholar 

  • Han D, Gao P, Li R, Tan P, Xie J, Zhang R et al (2020) Multicenter assessment of microbial community profiling using 16S rRNA gene sequencing and shotgun metagenomic sequencing. J Adv Res. https://doi.org/10.1016/j.jare.2020.07.010

  • Hart EH, Creevey CJ, Hitch T, Kingston-Smith AH (2018) Metaproteomics of rumen microbiota indicates niche compartmentalisation and functional dominance in a limited number of metabolic pathways between abundant bacteria. Sci Rep 8:10504. https://doi.org/10.1038/s41598-018-28827-

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hill CB, Czauderna T, Klapperstück M, Roessner U, Schreiber F (2015) Metabolomics, standards, and metabolic modeling for synthetic biology in plants. Front Bioeng Biotechnol 3:167. https://doi.org/10.3389/fbioe.2015.00167

    Article  PubMed  PubMed Central  Google Scholar 

  • Hivrale AU, Pawar PK, Rane NR, Govindwar SP Application of genomics and proteomics in bioremediation. In: Toxicity and waste management using bioremediation 2016. IGI Global, pp 97–112

    Google Scholar 

  • Kamaludeen SPB, Arunkumar KR, Avudainayagam S, Ramasamy K (2003) Bioremediation of chromium contaminated environments. Ind J Exp Bio 41:972985

    Google Scholar 

  • Kapley A, Purohit HJ (2009) Diagnosis of treatment efficiency in industrial wastewater treatment plants: a case study at a refinery ETP. Environ Sci Technol 43:3789–3795. https://doi.org/10.1021/es803296r

    Article  CAS  PubMed  Google Scholar 

  • Kim HJ, Ishidou E, Kitagawa E, Momose Y, Iwahashi H (2004) A yeast DNA microarray for the evaluation of toxicity in environmental water containing burned ash. Environ Monit Assess 92:253–272. https://doi.org/10.1023/B:EMAS.0000014504.03500.41

    Article  CAS  PubMed  Google Scholar 

  • Kou S, Vincent G, Gonzalez E, Pitre FE, Labrecque M, Brereton NJB (2018) The response of a 16S ribosomal RNA gene fragment amplified community to lead, zinc, and copper pollution in a Shanghai field trial. Front Microbiol 9:366. https://doi.org/10.3389/fmicb.2018.00366

    Article  PubMed  PubMed Central  Google Scholar 

  • Kour D, Kaur T, Devi R, Yadav A, Singh M et al (2021) Beneficial microbiomes for bioremediation of diverse contaminated environments for environmental sustainability: present status and future challenges. Environ Sci Pollut Res 28:24917–24939

    Article  CAS  Google Scholar 

  • Krumsiek J, Mittelstrass K, Do KT, Stückler F, Ried J, Adamski J et al (2015) Gender-specific pathway differences in the human serum metabolome. Metabolomics 11:1815–1833. https://doi.org/10.1007/s11306-015-0829-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar M, Khanna S (2010) Diversity of 16S rRNA and dioxygenase genes detected in coal-tar-contaminated site undergoing active bioremediation. J Appl Microbiol 108:1252–1262. https://doi.org/10.1111/j.1365-2672.2009.04523.x

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Bisht BS, Joshi VD, Dhewa T (2011) Review on bioremediation of polluted environment: a management tool. Int J Environ Sci 1:1079–1093

    Google Scholar 

  • Kumar A, Pathak RK, Gupta SM, Gaur VS, Pandey D (2015) Systems biology for smart crops and agricultural innovation: filling the gaps between genotype and phenotype for complex traits linked with robust agricultural productivity and sustainability. Omics 19(10):581–601

    Article  CAS  Google Scholar 

  • Kumar P, Dash B, Suyal D C, Gupta SB, Singh AK, Chowdhury T, Soni R (2021) Characterization of arsenic-resistant Klebsiella pneumoniae RnASA11 from contaminated soil and water samples and its bioremediation potential. Curr Microbiol. https://doi.org/10.1007/s00284-021-02602-w

  • Lovley DR (2003) Cleaning up with genomics: applying molecular biology to bioremediation. Nat Rev Microbiol 1:35–44. https://doi.org/10.1038/nrmicro731

    Article  CAS  PubMed  Google Scholar 

  • Ma J, Zhai G (2012) Microbial bioremediation in omics era: opportunities and challenges. J Bioremed Biodegr 3:e120. https://doi.org/10.4172/2155-6199.1000e120

    Article  CAS  Google Scholar 

  • Malla MA, Dubey A, Yadav S, Kumar A, Hashem A, Abd Allah EF (2018) Understanding and designing the strategies for the microbe-mediated remediation of environmental contaminants using omics approaches. Front Microbiol 9:1132. https://doi.org/10.3389/fmicb.2018.01132

    Article  PubMed  PubMed Central  Google Scholar 

  • Mallick H, Franzosa EA, Mclver LJ, Banerjee S, Sirota-Madi A, Kostic AD et al (2019) Predictive metabolomic profiling of microbial communities using amplicon or metagenomic sequences. Nat Commun 10:3136. https://doi.org/10.1038/s41467-019-10927-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mani D, Kumar C (2014) Biotechnological advances in bioremediation of heavy metals contaminated ecosystems: an overview with special reference to phytoremediation. Int J Environ Sci Technol 11:843–872

    Article  CAS  Google Scholar 

  • McMahon MA, Prakash TP, Cleveland DW, Bennett CF, Rahdar M (2018) Chemically modified Cpf1-CRISPR RNAs mediate efficient genome editing in mammalian cells. Mol Ther 26:1228–1240. https://doi.org/10.1016/j.ymthe.2018.02.031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 30(16):2785–2791

    Article  CAS  Google Scholar 

  • Nierman WC, Nelson KE (2002) Genomics for applied microbiology. Adv Appl Microbiol 51:201–248. https://doi.org/10.1016/S0065-2164(02)51007-8

    Article  CAS  PubMed  Google Scholar 

  • Oliveira JS, Araújo W, Lopes Sales AI, Brito Guerra AD, Silva Araújo SCD, de Vasconcelos ATR, Agnez-Lima LF, Freitas AT (2015) BioSurfDB: knowledge and algorithms to support biosurfactants and biodegradation studies. Database 2015

    Google Scholar 

  • Pandey A, Tripathi PH, Tripathi AH, Pandey SC, Gangola S (2019) Omics technology to study bioremediation and respective enzymes. In: Bhatt P (ed) Smart bioremediation technologies: microbial enzymes. Academic, New Delhi, pp 23–43. https://doi.org/10.1016/B978-0-12-818307-6.00002-0

    Chapter  Google Scholar 

  • Pathak RK, Singh DB (2020) Systems biology approaches for food and health. In: Advances in agri-food biotechnology. Springer, Singapore, pp 409–426

    Chapter  Google Scholar 

  • Pathak RK, Baunthiyal M, Pandey N, Pandey D, Kumar A (2017a) Modeling of the jasmonate signaling pathway in Arabidopsis thaliana with respect to pathophysiology of Alternaria blight in brassica. Sci Rep 7(1):1–12

    Article  Google Scholar 

  • Pathak RK, Baunthiyal M, Shukla R, Pandey D, Taj G, Kumar A (2017b) In silico identification of mimicking molecules as defense inducers triggering jasmonic acid mediated immunity against alternaria blight disease in brassica species. Front Plant Sci 8:609

    Article  Google Scholar 

  • Pathak RK, Gupta A, Shukla R, Baunthiyal M (2018) Identification of new drug-like compounds from millets as xanthine oxidoreductase inhibitors for treatment of hyperuricemia: a molecular docking and simulation study. Comput Biol Chem 76:32–41

    Article  CAS  Google Scholar 

  • Pathak RK, Singh DB, Sagar M, Baunthiyal M, Kumar A (2020) Computational approaches in drug discovery and design. In: Computer-aided drug design. Springer, Singapore, pp 1–21

    Google Scholar 

  • Paul D, Singh R, Jain RK (2006) Chemotaxis of Ralstonia sp. SJ98 towards p-nitrophenol i soil. Environ Microbiol 8:1797–1804. https://doi.org/10.1111/j.1462-2920.2006.01064.x

    Article  CAS  PubMed  Google Scholar 

  • Prjibelski A, Antipov D, Meleshko D, Lapidus A, Korobeynikov A (2020) Using SPAdes de novo assembler. Curr Protocols Bioinform 70(1):e102

    Article  CAS  Google Scholar 

  • Reena R, Majhi MC, Arya AK, Kumar R, Kumar A (2012) BioRadBase: a database for bioremediation of radioactive waste. Afr J Biotechnol 11(35):8718–8721

    Article  CAS  Google Scholar 

  • Resource Coordinators NCBI (2012) Database resources of the national center for biotechnology information. Nucleic Acids Res 41(D1):D8–D20

    Article  Google Scholar 

  • Rodríguez A, Castrejón-Godínez ML, Salazar-Bustamante E, Gama-Martínez Y, Sánchez-Salinas E, Mussali-Galante P et al (2020) Omics approaches to pesticide biodegradation. Curr Microbiol 77:545–563. https://doi.org/10.1007/s00284-020-01916-5

    Article  CAS  PubMed  Google Scholar 

  • Rogers SL, McClure N (2003) The role of microbiological studies in bioremediation process optimization. In: Head IM, Singleton I, Milner M (eds) Bioremediation: a critical review. Horizon Scientific Press, Norfolk, pp 27–59

    Google Scholar 

  • Roume H, Heintz-Buschart A, Muller EEL, May P, Satagopam VP, Laczny CC et al (2015) Comparative integrated omics: identification of key functionalities in microbial community-wide metabolic networks. NPJ Biofilms Microb 1:15007. https://doi.org/10.1038/npjbiofilms.2015.7

    Article  CAS  Google Scholar 

  • Sakshi Haritash AK (2020) A comprehensive review of metabolic and genomic aspects of PAH-degradation. Arch Microbiol 202:2033–2058. https://doi.org/10.1007/s00203-020-01929-5

    Article  CAS  PubMed  Google Scholar 

  • Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13(11):2498–2504

    Article  CAS  Google Scholar 

  • Shrivastava R, Upreti RK, Chaturvedi UC (2003) Various cells of the immune system and intestine differ in their capacity to reduce hexavalent chromium. FEMS Immunol Med Microbio 38:65–70. https://doi.org/10.1016/S0928-8244(03)00107-X

    Article  CAS  Google Scholar 

  • Singh M, Singh D, Rai P, Suyal DC, Saurabh S, Soni R, Giri K, Yadav AN (2021) Fungi in remediation of hazardous wastes: current status and future. In: Yadav AN (ed) Recent trends in mycological research, fungal biology. Springer Nature, Cham

    Google Scholar 

  • Suyal DC, Soni R, Singh DK, Goel R (2021) Microbiome change of agricultural soil under organic farming practices. Biologia 76:1315–1325

    Article  CAS  Google Scholar 

  • Viant MR, Sommer U (2013) Mass spectrometry based environmental metabolomics: a primer and review. Metabolomics 9:144–158. https://doi.org/10.1007/s11306-012-0412-x

    Article  CAS  Google Scholar 

  • Vidali M (2001) Bioremediation. An overview. Pure Appl Chem 73:1163–1172. https://doi.org/10.1351/pac200173071163

    Article  CAS  Google Scholar 

  • Wang JH, Byun J, Pennathur S (2010) Analytical approaches to metabolomics and applications to systems biology. Semin Nephrol 30:500–511. https://doi.org/10.1016/j.semnephrol.2010.07.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zerbino DR, Birney E (2008) Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 18(5):821–829

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Verma, S., Kour, S., Pathak, R.K. (2022). In Silico Approaches in Bioremediation Research and Advancements. In: Suyal, D.C., Soni, R. (eds) Bioremediation of Environmental Pollutants. Springer, Cham. https://doi.org/10.1007/978-3-030-86169-8_9

Download citation

Publish with us

Policies and ethics