Skip to main content
Log in

Comparative in situ biodegradation studies of polyhydroxybutyrate film composites

  • Original Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

Application of polyhydroxybutyrate (PHB) to plastic industry has expanded over the last decades due to its attracting features over petro-based plastic, and therefore, its waste accumulation in nature is inevitable. In the present study, a total of four bacterial strains, viz., MK3, PN12, PW1, and Lna3, were formulated into a consortium and subsequently used as biological tool for degradation of biopolymers. The consortium was tested through λ max shifts under in vitro conditions for utilization of PHB as sole carbon source. Talc-based bioformulations of consortium were used for the degradation of PHB film composites under in situ conditions. After 9 months of incubation, the recovered samples were monitored through Fourier transform infrared (FT-IR) spectroscopy and scanning electron microscopy (SEM), respectively. Analytical data, viz., changes in λ max shifts (212–219 nm), FT-IR spectra, and SEM micrographs, revealed the biodegradation potential of developed consortium against PHB film composites, i.e., higher degradation of copolymer films was found over blend films. The used consortium had enhanced the rate of natural degradation and can be further used as a natural tool to maintain and restore global environmental safety.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aburas MMA (2016) Degradation of poly (3-hydroxybuthyrate) using Aspergillus oryzae obtained from uncultivated soil. Life Sci J 13:51–56. doi:10.7537/marslsj13031607

    CAS  Google Scholar 

  • Anwar MS, Kapri A, Chaudhry V, Mishra A, Ansari MW, Shouche Y, Nautiyal CS, Zaidi MGH, Goel R (2016) Response of indigenously developed bacterial consortia in progressive degradation of polyvinyl chloride. Protoplasma 253:1023–1032. doi:10.1007/s00709-015-0855-9

    Article  CAS  Google Scholar 

  • Ardakani SS, Heydari A, Tayebi L, Cheraghi M (2011) Evolution of efficacy of new bioformulations on promotion of cotton seedlings growth characteristics. In: 2nd International conference on environmental science and technology. IACSIT press, Singapore, vol. 6, pp 361–364

  • Armentano I, Fortunati E, Burgos N, Dominici F, Luzi F, Fiori S, Jiménez A, Yoon K, Ahn J, Kang S, Kenny JM (2015) Processing and characterization of plasticized PLA/PHB blends for biodegradable multiphase systems. eXPRESS Polym Lett 9:583–596. doi:10.3144/expresspolymlett.2015.55

    Article  CAS  Google Scholar 

  • Arora NK, Khare E, Naraian R, Maheshwari DK (2008) Sawdust as a superior carrier for production of multipurpose bioinoculant using plant growth promoting rhizobial and pseudomonads strains and their impact on productivity of Trifolium repense. Curr Sci 95:90–94

    Google Scholar 

  • Arrieta MP, Lopez J, Rayon E, Jimenez A (2014) Disintegrability under composting conditions of plasticized PLA–PHB blends. Polym Degrad Stab 108:307–318. doi:10.1016/j.polymdegradstab.2014.01.034

    Article  CAS  Google Scholar 

  • Barham PJ, Barker P, Organ SJ (2006) Physical properties of poly(hydroxybutyrate) and copolymers of hydroxybutyrate and hydroxyvalerate. FEMS Microbiol Rev 9:289–298. doi:10.1111/j.1574-6968.1992.tb05850.x

    Google Scholar 

  • Bugnicourt E, Cinelli P, Lazzeri A, Alvarez V (2014) Polyhydroxyalkanoate (PHA): review of synthesis, characteristics, processing and potential applications in packaging. Express Polym Lett 8:791–808. doi:10.3144/expresspolymlett.2014.82

    Article  Google Scholar 

  • Darani KK, Bucci DZ (2015) Application of poly(hydroxyalkanoate) in food packaging: improvements by nanotechnology. Chem Biochem Eng Q 29:275–285. doi:10.15255/CABEQ.2014.2260

    Article  Google Scholar 

  • Garcia-Hidalgo J, Hormigo D, Arroyo M, Mata IDL (2013) Novel extracellular PHB depolymerase from Streptomyces ascomycinicus: PHB copolymers degradation in acidic conditions. PLoS One 8:e71699. doi:10.1371/journal.pone.0071699

    Article  CAS  Google Scholar 

  • Goel R, Sah A, Kapri A, Negi H (2011) Process for the preparation of talc based formulation of LDPE biodegrading consortia for field application. DBT, 2010, India 213/DEL/2011 (Patent)

  • Harmaen AS, Khalina A, Ali HM, Azowa IN (2016) Thermal, morphological, and biodegradability properties of bioplastic fertilizer composites made of oil palm biomass, fertilizer, and poly(hydroxybutyrate-co-valerate). Int J Polym Sci 2016:1–8. doi:10.1155/2016/3230109

    Article  Google Scholar 

  • Hawas JMEM, El-Banna TES, Belal EBA, El-Aziz AA (2016) Production of bioplastic from some selected Bacterial strains. Int J Curr Microbiol Appl Sci 5:10–22. doi:10.20546/ijcmas.2016.501.002

    Article  Google Scholar 

  • Jedra F (2014) Polyhydroxyalkanoates: various properties, various applications. KCPK, Arnhem

    Google Scholar 

  • Kai D, Loh XJ (2014) Polyhydroxyalkanoates: chemical modifications toward biomedical applications. ACS Sustain Chem Eng 2:106–119. doi:10.1021/sc400340p

    Article  CAS  Google Scholar 

  • Kapri A, Zaidi MGH, Satlewal A, Goel R (2010) SPION-accelerated biodegradation of low-density polyethylene by indigenous microbial consortium. Int Biodeterior Biodegrad 64:238–244. doi:10.1016/j.ibiod.2010.02.002

    Article  CAS  Google Scholar 

  • Loh XJ, Zhang ZX, Wu YL, Lee TS, Li J (2009) Synthesis of novel biodegradable thermoresponsive triblock copolymers based on poly[(R)-3-hydroxybutyrate] and poly(N-isopropylacrylamide) and their formation of thermoresponsive micelles. Macromolecules 42:194–202. doi:10.1021/ma8019865

    Article  CAS  Google Scholar 

  • Lopez JA, Naranjo JM, Higuita JC, Cubitto JC, Cardona CA, Villar MA (2012) Biosynthesis of PHB from a new isolated Bacillus megaterium strain: outlook on future developments with endospore forming bacteria. Biotechnol Bioprocess Eng 17:250–258. doi:10.1007/s12257-011-0448-1

    Article  CAS  Google Scholar 

  • Mousavioun P, George GA, Doherty WOS (2012) Environmental degradation of lignin/poly (hydroxybutyrate) blends. Polym Degrad Stab 97:1114–1122. doi:10.1016/j.polymdegradstab.2012.04.004

    Article  CAS  Google Scholar 

  • Negi H, Kapri A, Zaidi MGH, Satlewal A, Goel R (2009) Comparative in vitro biodegradation studies of epoxy and its silicone blend by selected microbial consortia. Int Biodeterior Biodegrad 63:553–558. doi:10.1016/j.ibiod.2009.03.001

    Article  CAS  Google Scholar 

  • Oda Y, Osaka H, Urakami T, Tonomura K (1997) Purification and properties of poly(3-hydroxybutyrate) depolymerase from the fungus Paecilomyces lilacinus D218. Curr Microbiol 34:230–232. doi:10.1007/s002849900174

    Article  CAS  Google Scholar 

  • Orts WJ, Nobes GA, Kawada J, Nguyen S, Yu GE, Ravenelle F (2008) Poly(hydroxyalkanoates): biorefinery polymers with a whole range of applications. The work of Robert H. Marchessault. Can J Chem 39:628–640. doi:10.1002/chin.200844261

    Article  Google Scholar 

  • Raghuwanshi S, Negi H, Aggarwal T, Zaidi MGH, Goel R (2015) Comparative biodegradation studies of cow dung modified epoxy with epoxy using an indigenously developed bacterial consortium. Afr J Microbiol Res 9:1558–1572. doi:10.5897/AJMR2015.7462

    Article  CAS  Google Scholar 

  • Raghuwanshi S, Agarwal T, Yadav A, Zaidi MGH, Shouche Y, Goel R (2016) Selection of poly(R)-3-hydroxybutyric acid utilising bacteria by enrichment, optimisation and compatibility testing for consortia development. Chem Ecol 32:583–587. doi:10.1080/02757540.2016.1162297

    Article  CAS  Google Scholar 

  • Santos GA, Dantas AC, Oliveira LM, Ferraz AV, Acchar W, Olivier NC (2015) Production of hydroxyapatite/polyhydroxybutyrate based composites for biomaterials applications. Mater Sci Forum 820:309–314. doi:10.4028/www.scientific.net/MSF.820.309

    Article  Google Scholar 

  • Savenkova L, Gercberga Z, Nikolaeva V, Dzene A, Bibers I, Kalnin M (2000) Mechanical properties and biodegradation characteristics of PHB-based films. Process Biochem 35:573–579. doi:10.1016/S0032-9592(99)00107-7

    Article  CAS  Google Scholar 

  • Schöber U, Thiel C, Jendrossek D (2000) Poly(3-hydroxyvalerate) depolymerase of Pseudomonas lemoignei. Appl Environ Microbiol 66:1385–1392. doi:10.1128/AEM.66.4.1385-1392.2000

    Article  Google Scholar 

  • Shah AA, Hasan F, Hameed A, Ahmed S (2007) Isolation and characterization of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) degrading bacteria and purification of PHBV depolymerase from newly isolated Bacillus sp. AF3. Int Biodeterior Biodegrad 60:109–115. doi:10.1016/j.ibiod.2007.01.004

    Article  CAS  Google Scholar 

  • Shanmugam V, Kanoujia N, Singh M, Singh S, Prasad R (2011) Biocontrol of vascular wilt and corn rot of gladiolus caused by Fusarium oxysporum f. sp. gladioli using plant growth promoting rhizobacterial mixture. Crop Prot 30:807–813. doi:10.1016/j.cropro.2011.02.033

    Article  Google Scholar 

  • Sinha K, Rathore P (2015) Study of polyhydroxybutyrate producing Bacillus sp. isolated from soil. Res J Recent Sci 4:61–69

    Article  CAS  Google Scholar 

  • Smithers Rapra (2012) http://info.smithersrapra.com/publishing/smrmr2012004/the-future-of-bioplastics-to-2017. Accessed 03 Sep 2012

  • Soni R, Kapri A, Zaidi MGH (2009) Comparative biodegradation studies of non-poronized and poronized LDPE using indigenous microbial consortium. J Polym Environ 17:233–239. doi:10.1007/s10924-009-0143-x

    Article  CAS  Google Scholar 

  • Suyama T, Tokiwa Y, Ouichanpagdee P, Kanagawa T, Kamagata Y (1998) Phylogenetic affiliation of soil bacteria that degrade aliphatic polyesters available commercially as biodegradable plastics. Appl Environ Microbiol 64:5008–5011

    CAS  Google Scholar 

  • Volova TG, Boyandin AN, Vasiliev AD, Karpov VA, Prudnikova SV, Mishukova OV, Boyarskikh UA, Filipenko ML, Rudnev VP, Xuan BB, Dung VV (2010) Biodegradation of polyhydroxyalkanoates (PHAs) in tropical coastal waters and identification of PHA-degrading bacteria. Polym Degrad Stab 95:2350–2359. doi:10.1016/j.polymdegradstab.2010.08.023

    Article  CAS  Google Scholar 

  • Volova TG, Boyandin AN, Prudnikova SV (2015) Biodegradation of polyhydroxyalkanoates in natural soils. J Sib Fed Univ Biol 8:152–167

    Article  Google Scholar 

  • Yoshie N, Oike Y, Kasuya K, Doi Y, Inoue Y (2002) Change of surface structure of poly(3-hydroxybutyrate) film upon enzymatic hydrolysis by PHB depolymerase. Biomacromolecules 3:1320–1326. doi:10.1021/bm020077a

    Article  CAS  Google Scholar 

  • Zafar U, Houlden A, Robson GD (2013) Fungal communities associated with the temperatures buried under compost at different biodegradation of polyester polyurethane. Appl Environ Microbiol 79:7313–7324. doi:10.1128/AEM.02536-13

    Article  CAS  Google Scholar 

  • Zhang M, Thomas NL (2011) Blending polylactic acid with polyhydroxybutyrate: the effect on thermal, mechanical, and biodegradation properties. Adv Polym Technol 30:67–79. doi:10.1002/adv.20235

    Article  Google Scholar 

  • Zhao K, Deng Y, Chen JC, Chen GQ (2003) Polyhydroxyalkanoate (PHA) scaffolds with good mechanical properties and biocompatibility. Biomaterials 24:1041–1045. doi:10.1016/S0142-9612(02)00426-X

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors PD and SR acknowledge the University Grants Commission and Department of Science and Technology, respectively, for providing financial support during this study. The author DCS acknowledges the Science and Engineering Research Board (SERB) young scientist scheme, during the course of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reeta Goel.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 48 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Debbarma, P., Raghuwanshi, S., Singh, J. et al. Comparative in situ biodegradation studies of polyhydroxybutyrate film composites. 3 Biotech 7, 178 (2017). https://doi.org/10.1007/s13205-017-0789-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-017-0789-3

Keywords

Navigation