Skip to main content
Log in

Biodegradation of Isoproturon by Bacillus pumilus K1 Isolated from Foothill Agroecosystem of North West Himalaya

  • Research Article
  • Published:
Proceedings of the National Academy of Sciences, India Section B: Biological Sciences Aims and scope Submit manuscript

Abstract

Isoproturon (IPU) degrading bacterium was isolated from herbicide treated soils. Morphological, biochemical and 16S rRNA sequencing revealed that the strain belonged to the phylogeny of the Bacillus sp. (99 % sequence similarity with Bacillus pumilus FM 201790.1) hence designated as B. pumilus K1. Biodegradation study was carried out using 200 mg L−1 IPU as sole source of carbon at three pH levels i.e. 6.5, 7.0 and 7.5 and three temperatures i.e. 25, 30 and 35 °C. In the first 5–10 days IPU biodegradation was slow, which was later accelerated. The IPU degrading potential of B. pumilus K1 was strongly influenced by pH and temperature with maximum degradation at pH 7.0 and 30 °C followed by pH 7.5 and 35 °C at the end of 20 days. However, at pH 6.5 and 25 °C least IPU degradation was observed. The optimum conditions for isoproturon degradation by this bacterial isolate were pH 7.0 and 30 °C temperature. Addition of supplementary carbon source enhanced 4.07 % IPU degradation. 4-Isopropylaniline was detected as IPU degradation by-product in the medium. The study clearly exhibited that B. pumilus K1 was able to metabolize IPU effectively and thus could be employed for development of field scale bioremediation technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Sorensen SR, Ronen Z, Aamand J (2001) Isolation from agricultural soil and characterization of a Sphingomonas sp. able to mineralize the phenylurea herbicide isoproturon. Appl Environ Microbiol 67(12):5403–5409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Mansour M, Feicht EA, Behechti A, Schramm KW, Kettrup A (1999) Determination photostability of selected agrochemicals in water and soil. Chemosphere 39(4):575–585

    Article  CAS  PubMed  Google Scholar 

  3. Widenfalk A, Bertilsson S, Sundh I, Goedkoop W (2008) Effects of pesticides on community composition and activity of sediment microbes—responses at various levels of microbial community organization. Environ Pollut 152(3):576–584

    Article  CAS  PubMed  Google Scholar 

  4. Vallotton N, Eggen RIL, Chevre N (2009) Effect of sequential isoproturon pulse exposure on Scenedesmus vacuolatus. Arch Environ Contam Toxicol 56(3):442–449

    Article  CAS  PubMed  Google Scholar 

  5. Behera BC, Bhunya SP (1990) Genotoxic effect of isoproturon (herbicide) as revealed by three mammalian in vivo mutagenic bioassays. Indian J Exp Biol 28(9):862–867

    CAS  PubMed  Google Scholar 

  6. Hoshiya T, Hasegawa R, Hakoi K, Cui L, Ogiso T, Cabral R, Ito N (1993) Enhancement by non-mutagenic pesticides of GST-P positive hepatic foci development initiated with diethylnitrosamine in the rat. Cancer Lett 72(1–2):59–64

    Article  CAS  PubMed  Google Scholar 

  7. Spliid NH, Koppen B (1998) Occurrence of pesticides in Danish shallow ground water. Chemosphere 37(7):1307–1316

    Article  CAS  PubMed  Google Scholar 

  8. Muller K, Bach M, Hartmann H, Spiteller M, Frede HG (2002) Point- and nonpoint-source pesticide contamination in the Zwester Ohm catchment, Germany. J Environ Qual 31(1):309–318

    Article  CAS  PubMed  Google Scholar 

  9. Hussain S, Devers-Lamrani M, El Azhari N, Martin-Laurent F (2011) Isolation and characterization of an isoproturon mineralizing Sphingomonas sp. strain SH from a French agricultural soil. Biodegradation 22:1637–1650

    Article  Google Scholar 

  10. Pieuchot M, PerrinGanier C, Portal JM, Schiavon M (1996) Study on the mineralization and degradation of isoproturon in three soils. Chemosphere 33(3):467–478

    Article  CAS  Google Scholar 

  11. Bending GD, Lincoln SD, Sorensen SR, Morgan JAW, Aamand J, Walker A (2003) In-field spatial variability in the degradation of the phenyl-urea herbicide isoproturon is the result of interactions between degradative Sphingomonas spp. and soil pH. Appl Environ Microbiol 69(2):827–834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. El-Sebai T, Lagacherie B, Cooper JF, Soulas G, Martin-Laurent F (2005) Enhanced isoproturon mineralisation in a clay silt loam agricultural soil. Agron Sustain Dev 25(2):271–277

    Article  CAS  Google Scholar 

  13. El-Sebai T, Lagacherie B, Soulas G, Martin-Laurent F (2007) Spatial variability of isoproturon mineralizing activity within an agricultural field: geostatistical analysis of simple physicochemical and microbiological soil parameters. Environ Pollut 145(3):680–690

    Article  CAS  PubMed  Google Scholar 

  14. Badawi N, Ronhede S, Olsson S, Kragelund BB, Johnsen AH, Jacobsen OS, Aamand J (2009) Metabolites of the phenylurea herbicides chlorotoluron, diuron, isoproturon and linuron produced by the soil fungus Mortierella sp. Environ Pollut 157(10):2806–2812

    Article  CAS  PubMed  Google Scholar 

  15. Hussain S, Sorensen SR, Devers-Lamrani M, El-Sebai T, Martin-Laurent F (2009) Characterization of an isoproturon mineralizing bacterial culture enriched from a French agricultural soil. Chemosphere 77(8):1052–1059

    Article  CAS  PubMed  Google Scholar 

  16. Sun JQ, Huang X, Chen QL, Liang B, Qiu JG, Ali SW, Li SP (2009) Isolation and characterization of three Sphingobium sp. strains capable of degrading isoproturon and cloning of the catechol 1, 2-dioxygenase gene from these strains. World J Microbiol Biotechnol 25(2):259–268

    Article  CAS  Google Scholar 

  17. El-Sebai T, Lagacherie B, Soulas G, Martin-Laurent F (2004) Isolation and characterisation of an isoproturon-mineralising Methylopila sp. TES from French agricultural soil. FEMS Microbiol Lett 239(1):103–110

    Article  CAS  PubMed  Google Scholar 

  18. Scow KM, Hicks KA (2005) Natural attenuation and enhanced bioremediation of organic contaminants in groundwater. Curr Opin Biotechnol 16(3):246–253

    Article  CAS  PubMed  Google Scholar 

  19. Couto MNPFS, Monteiro E, Vasconcelos MTSD (2010) Mesocosm trials of bioremediation of contaminated soil of a petroleum refinery: comparison of natural attenuation, biostimulation and bioaugmentation. Environ Sci Pollut Res 17(7):1339–1346

    Article  CAS  Google Scholar 

  20. De Lorenzo V (2008) Systems biology approaches to bioremediation. Curr Opin Biotechnol 19(6):579–589

    Article  PubMed  Google Scholar 

  21. Kadian N, Gupta A, Satya S, Mehta RK, Malik A (2008) Biodegradation of herbicide (atrazine) in contaminated soil using various bioprocessed materials. Bioresour Technol 99(11):4642–4647

    Article  CAS  PubMed  Google Scholar 

  22. Cosgrove L, McGeechan PL, Handley PS, Robson GD (2010) Effect of biostimulation and bioaugmentation on degradation of polyurethane buried in soil. Appl Environ Microbiol 76(3):810–819

    Article  CAS  PubMed  Google Scholar 

  23. Kanissery RG, Sims GK (2011) Biostimulation for the enhanced degradation of herbicides in soil. Appl Environ Soil Sci 2011:843450. doi:10.1155/2011/843450

    Article  Google Scholar 

  24. Siddique T, Benedict CO, Muhammad A, William TF (2003) Enrichment and isolation of endosulfan-degrading microorganisms. J Environ Qual 32:47–54

    Article  CAS  PubMed  Google Scholar 

  25. Bouyoucos GJ (1962) Hydrometer method improved for making particle size analysis of soils. Agron J 54:464–465

    Article  Google Scholar 

  26. Jackson ML (1973) Soil chemical analysis. Prentice Hall of India Pvt. Ltd, New Delhi

    Google Scholar 

  27. Walkley A, Black IA (1934) an examination of the Degtjareff method for determining organic carbon in soils: effect of variations in digestion conditions and of inorganic soil constituents. Soil Sci 63:251–263

    Article  Google Scholar 

  28. Olsen SR, Cole CV, Watanabe FS, Dean, LA (1954) Estimation of available phosphorus in soils by extraction with sodium bicarbonate. U.S. Department of Agriculture Circular No. 939

  29. Dejonghe W, Berteloot E, Goris J (2003) Synergistic degradation of linuron by a bacterial consortium and isolation of a single linuron-degrading variovorax strain. Appl Environ Microbiol 69:1532–1541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Widehem P, Ait-Aissa S, Tixier C (2002) Isolation, characterization and diuron transformation capacities of a bacterial strain Arthrobacter sp. N2. Chemosphere 46:527–534

    Article  CAS  PubMed  Google Scholar 

  31. Smith EA, Prues SL, Oehme FW (1997) Environmental degradation of polyacrylamides. 2 Effects of environmental (outdoor) exposure. Ecotoxicol Environ Saf 37:76–91

    Article  CAS  PubMed  Google Scholar 

  32. Andrea MM, Peres TB, Luchini LC, Pettinelli A (2000) Impact of long-term pesticide applications on some soil biological parameters. J Environ Sci Health B 35:297–307

    Article  CAS  PubMed  Google Scholar 

  33. Bending GD, Shaw E, Walker A (2001) Spatial heterogeneity in the metabolism and dynamics of isoproturon degrading microbial communities in soil. Biol Fertil Soils 33:484–489

    Article  CAS  Google Scholar 

  34. Walker A, Jurado-Exposito M, Bending GD, Smith VJR (2001) Spatial variability in the degradation rate of isoproturon in soil. Environ Pollut 111:407–415

    Article  CAS  PubMed  Google Scholar 

  35. Rasmussen J, Aamand J, Rosenberg P, Jacobsen OS, Sorensen SR (2005) Spatial variability in the mineralisation of the phenylurea herbicide linuron within a Danish agricultural field: multivariate correlation to simple soil parameters. Pest Manag Sci 61:829–837

    Article  CAS  PubMed  Google Scholar 

  36. Russell JB, Dombrowski DB (1980) Effect of pH on the efficiency of growth by pure cultures of rumen bacteria in continuous culture. Appl Environ Microbiol 39(3):604–610

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Sun CQ, O’Connor CJ, Turner SJ, Lewis GD, Stanley RA, Roberton AM (1998) The effect of pH on the inhibition of bacterial growth by physiological concentrations of butyric acid: implications for neonates fed on suckled milk. Chem Biol Interact 113(2):117–131

    Article  CAS  PubMed  Google Scholar 

  38. Rousk J, Brookes PC, Baath E (2009) Contrasting soil pH effects on fungal and bacterial growth suggest functional redundancy in carbon mineralization. Appl Environ Microbiol 75(6):1589–1596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hussain S, Arshad M, Saleem M, Khalid A (2007) Biodegradation of α and β-endosulfan by soil bacteria. Biodegradation 18:731–740

    Article  CAS  PubMed  Google Scholar 

  40. Kumar M, Philip L (2006) Enrichment and isolation of a mixed bacterial culture for complete mineralization of endosulfan. J Environ Sci Health B 41:81–96

    Article  CAS  PubMed  Google Scholar 

  41. Awasthi N, Manickam N, Kumar A (1997) Biodegradation of endosulfan by a bacterial coculture. Bull Environ Contam Toxicol 59:928–934

    Article  CAS  PubMed  Google Scholar 

  42. Goswami S, Singh DK (2009) Biodegradation of α and β endosulfan in broth medium and soil microcosm by bacterial strain Bordetella sp. B9. Biodegradation 20:199–207

    Article  CAS  PubMed  Google Scholar 

  43. Giri K, Rai JPN (2012) Biodegradation of endosulfan isomers in broth culture and soil microcosm by Pseudomonas fluorescens isolated from soil. Int J Environ Stud 69(5):729–774

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Laboratory facilities provided by G.B. Pant University of Agriculture and Technology, Pantnagar and technical assistance for HPLC analysis from Dr. R.N. Ram, Professor and Head, Department of Fishery Biology, College of Fisheries are gratefully acknowledged. Authors are also grateful to two anonymous referees for critical review, providing valuable suggestions and strengthening the manuscript. Thanks are due to Genetech Labs Pvt. Ltd., Biotech Park, Kursi Road Jankipuram, Lucknow for 16S rRNA gene sequencing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krishna Giri.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giri, K., Suyal, D.C., Mishra, G. et al. Biodegradation of Isoproturon by Bacillus pumilus K1 Isolated from Foothill Agroecosystem of North West Himalaya. Proc. Natl. Acad. Sci., India, Sect. B Biol. Sci. 87, 839–848 (2017). https://doi.org/10.1007/s40011-015-0667-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40011-015-0667-x

Keywords

Navigation