Skip to main content
Log in

Mass spectrometry based environmental metabolomics: a primer and review

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

Environmental metabolomics can be described as the study of the interactions of living organisms with their natural environments at the metabolic level. Until recently, nuclear magnetic resonance (NMR) spectroscopy has been the primary bioanalytical tool for measuring metabolite levels in this field. While NMR has some specific advantages, the higher sensitivity offered by mass spectrometry (MS) is beginning to revolutionise our ability to probe environmental metabolomes. This review provides the first comprehensive overview of the use and capabilities of MS within environmental metabolomics. Its primary aims are to introduce environmental scientists to the range of MS approaches used in metabolomics and to highlight the breadth and diversity of environmental and ecological research conducted, from ecophysiology and ecotoxicology to chemical ecology. The review is structured around MS approaches: non-targeted gas chromatography–MS, non-targeted directed infusion MS, and both non-targeted and targeted liquid chromatography–MS. Each section begins with a brief introduction to the analytical method, including some advantages and limitations in the context of metabolomics research, and then exemplifies the use of that technique in environmental metabolomics. The review concludes with a discussion on some of the challenges that remain in MS based environmental metabolomics and provides recommendations for the path ahead.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aliferis, K. A., & Chrysayi-Tokousbalides, M. (2011). Metabolomics in pesticide research and development: Review and future perspectives. Metabolomics, 7, 35–53.

    Article  CAS  Google Scholar 

  • Allen, A. E., Dupont, C. L., Obornik, M., Horak, A., Nunes-Nesi, A., McCrow, J. P., et al. (2011). Evolution and metabolic significance of the urea cycle in photosynthetic diatoms. Nature, 473, 203–207.

    Article  PubMed  CAS  Google Scholar 

  • Allwood, J. W., Erban, A., de Koning, S., Dunn, W. B., Luedemann, A., Lommen, A., et al. (2009). Inter-laboratory reproducibility of fast gas chromatography-electron impact-time of flight mass spectrometry (GC-EI-TOF/MS) based plant metabolomics. Metabolomics, 5, 479–496.

    Article  PubMed  CAS  Google Scholar 

  • Avery, E. L., Dunstan, R. H., & Nell, J. A. (1998). The use of lipid metabolic profiling to assess the biological impact of marine sewage pollution. Archives of Environmental Contamination and Toxicology, 35, 229–235.

    Article  PubMed  CAS  Google Scholar 

  • Barofsky, A., Vidoudez, C., & Pohnert, G. (2009). Metabolic profiling reveals growth stage variability in diatom exudates. Limnology and Oceanography: Methods, 7, 382–390.

    Article  CAS  Google Scholar 

  • Booth, S. C., Workentine, M. L., Wen, J., Shaykhutdinov, R., Vogel, H. J., Ceri, H., et al. (2011). Differences in metabolism between the biofilm and planktonic response to metal stress. Journal of Proteome Research, 10, 3190–3199.

    Article  PubMed  CAS  Google Scholar 

  • Brito-Echeverria, J., Lucio, M., Lopez-Lopez, A., Anton, J., Schmitt-Kopplin, P., & Rossello-Mora, R. (2011). Response to adverse conditions in two strains of the extremely halophilic species Salinibacter ruber. Extremophiles, 15, 379–389.

    Article  PubMed  CAS  Google Scholar 

  • Brown, S. C., Kruppa, G., & Dasseux, J. L. (2005). Metabolomics applications of FT-ICR mass spectrometry. Mass Spectrometry Reviews, 24, 223–231.

    Article  PubMed  CAS  Google Scholar 

  • Brügger, B., Erben, G., Sandhoff, R., Wieland, F. T., & Lehmann, W. D. (1997). Quantitative analysis of biological membrane lipids at the low picomole level by nano-electrospray ionization tandem mass spectrometry. Proceedings of the National academy of Sciences of the United States of America, 94, 2339–2344.

    Article  PubMed  Google Scholar 

  • Bundy, J. G., Davey, M. P., & Viant, M. R. (2009). Environmental metabolomics: A critical review and future perspectives. Metabolomics, 5, 3–21.

    Article  CAS  Google Scholar 

  • Chen, J., Canales, L., & Neal, R. E. (2011). Multi-segment direct inject nano-ESI-LTQ-FT-ICR-MS/MS for protein identification. Proteome Science, 9, 38.

    Article  PubMed  CAS  Google Scholar 

  • Colbourne, J. K., Pfrender, M. E., Gilbert, D., Thomas, W. K., Tucker, A., Oakley, T. H., et al. (2011). The ecoresponsive genome of Daphnia pulex. Science, 331, 555–561.

    Article  PubMed  CAS  Google Scholar 

  • Cubbon, S., Antonio, C., Wilson, J., & Thomas-Oates, J. (2010). Metabolomic applications of HILIC-LC-MS. Mass Spectrometry Reviews, 29, 671–684.

    Article  PubMed  CAS  Google Scholar 

  • Davey, M. P., Burrell, M. M., Woodward, F. I., & Quick, W. P. (2008). Population-specific metabolic phenotypes of Arabidopsis lyrata ssp. petraea. New Phytologist, 177, 380–388.

    PubMed  CAS  Google Scholar 

  • Davey, M. P., Woodward, F. I., & Quick, W. P. (2009). Intraspecific variation in cold-temperature metabolic phenotypes of Arabidopsis lyrata ssp. petraea. Metabolomics, 5, 138–149.

    Article  CAS  Google Scholar 

  • Dettmer, K., Aronov, P. A., & Hammock, B. D. (2007). Mass spectrometry-based metabolomics. Mass Spectrometry Reviews, 26, 51–78.

    Article  PubMed  CAS  Google Scholar 

  • Dodson, S. I., & Hanazato, T. (1995). Commentary on effects of anthropogenic and natural organic-chemicals on development, swimming behavior, and reproduction of Daphnia, a key member of aquatic ecosystems. Environmental Health Perspectives, 103, 7–11.

    PubMed  CAS  Google Scholar 

  • Dunn, W. B., & Ellis, D. I. (2005). Metabolomics: Current analytical platforms and methodologies. Trends in Analytical Chemistry, 24, 285–294.

    Article  CAS  Google Scholar 

  • Dunn, W. B., Broadhurst, D. I., Atherton, H. J., Goodacre, R., & Griffin, J. L. (2011). Systems level studies of mammalian metabolomes: The roles of mass spectrometry and nuclear magnetic resonance spectroscopy. Chemical Society Reviews, 40, 387–426.

    Article  PubMed  CAS  Google Scholar 

  • Dwivedi, P., Wu, P., Klopsch, S. J., Puzon, G. J., Xun, L., & Hill, H. H. (2008). Metabolic profiling by ion mobility mass spectrometry (IMMS). Metabolomics, 4, 63–80.

    Article  CAS  Google Scholar 

  • Epperson, L. E., Karimpour-Fard, A., Hunter, L. E., & Martin, S. L. (2011). Metabolic cycles in a circannual hibernator. Physiological Genomics, 43, 799–807.

    Article  PubMed  CAS  Google Scholar 

  • Fiehn, O. (2008). Extending the breadth of metabolite profiling by gas chromatography coupled to mass spectrometry. Trends in Analytical Chemistry, 27, 261–269.

    Article  PubMed  CAS  Google Scholar 

  • Flores-Valverde, A. M., & Hill, E. M. (2008). Methodology for profiling the steroid metabolome in animal tissues using ultraperformance liquid chromatography-electrospray-time-of-flight mass spectrometry. Analytical Chemistry, 80, 8771–8779.

    Article  PubMed  CAS  Google Scholar 

  • Flores-Valverde, A. M., Horwood, J., & Hill, E. M. (2010). Disruption of the steroid metabolome in fish caused by exposure to the environmental estrogen 17 alpha-ethinylestradiol. Environmental Science and Technology, 44, 3552–3558.

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Reyero, N., & Perkins, E. J. (2011). Systems biology: Leading the revolution in ecotoxicology. Environmental Toxicology and Chemistry, 30, 265–273.

    Article  PubMed  CAS  Google Scholar 

  • Gika, H. G., Theodoridis, G. A., & Wilson, I. D. (2008). Hydrophilic interaction and reversed-phase ultra-performance liquid chromatography TOF-MS for metabolomic analysis of Zucker rat urine. Journal of Separation Science, 31, 1598–1608.

    Article  PubMed  CAS  Google Scholar 

  • Gohlke, R. S., & McLafferty, F. W. (1993). Early gas chromatography/mass spectrometry. Journal of the American Society of Mass Spectrometry, 4, 367–371.

    Article  CAS  Google Scholar 

  • Griffiths, W. J., & Wang, Y. Q. (2009). Mass spectrometry: From proteomics to metabolomics and lipidomics. Chemical Society Reviews, 38, 1882–1896.

    Article  PubMed  CAS  Google Scholar 

  • Halket, J. M., Przyborowska, A., Stein, S. E., Mallard, W. G., Down, S., & Chalmers, R. A. (1999). Deconvolution gas chromatography mass spectrometry of urinary organic acids—potential for pattern recognition and automated identification of metabolic disorders. Rapid Communications in Mass Spectrometry, 13, 279–284.

    Article  PubMed  CAS  Google Scholar 

  • Han, J., Danell, R. M., Patel, J. R., Gumerov, D. R., Scarlett, C. O., Speir, J. P., et al. (2008). Towards high-throughput metabolomics using ultrahigh-field Fourier transform ion cyclotron resonance mass spectrometry. Metabolomics, 4, 128–140.

    Article  PubMed  CAS  Google Scholar 

  • Han, J., Datla, R., Chan, S., & Borchers, C. H. (2009). Mass spectrometry-based technologies for high-throughput metabolomics. Bioanalysis, 1, 1665–1684.

    Article  PubMed  CAS  Google Scholar 

  • Hill, R. W., Li, C., Jones, A. D., Gunn, J. P., & Frade, P. R. (2010). Abundant betaines in reef-building corals and ecological indicators of a photoprotective role. Coral Reefs, 29, 869–880.

    Article  Google Scholar 

  • Hoffman, D. E., Jonsson, P., Bylesjo, M., Trygg, J., Antti, H., Eriksson, M. E., et al. (2010). Changes in diurnal patterns within the Populus transcriptome and metabolome in response to photoperiod variation. Plant, Cell and Environment, 33, 1298–1313.

    PubMed  CAS  Google Scholar 

  • Holmes, E., Loo, R. L., Stamler, J., Bictash, M., Yap, I. K. S., Chan, Q., et al. (2008). Human metabolic phenotype diversity and its association with diet and blood pressure. Nature, 453, 396–400.

    Article  PubMed  CAS  Google Scholar 

  • Hop, C., Chen, Y., & Yu, L. J. (2005). Uniformity of ionization response of structurally diverse analytes using a chip-based nanoelectrospray ionization source. Rapid Communications in Mass Spectrometry, 19, 3139–3142.

    Article  PubMed  CAS  Google Scholar 

  • Hu, Q. Z., Noll, R. J., Li, H. Y., Makarov, A., Hardman, M., & Cooks, R. G. (2005). The Orbitrap: A new mass spectrometer. Journal of Mass Spectrometry, 40, 430–443.

    Article  PubMed  CAS  Google Scholar 

  • Ivanišević, J., Thomas, O. P., Lejeusne, C., Chevaldonne, P., & Perez, T. (2011). Metabolic fingerprinting as an indicator of biodiversity: Towards understanding inter-specific relationships among Homoscleromorpha sponges. Metabolomics, 7, 289–304.

    Article  CAS  Google Scholar 

  • Jansen, J. J., Allwood, J. W., Marsden-Edwards, E., van der Putten, W. H., Goodacre, R., & van Dam, N. M. (2009). Metabolomic analysis of the interaction between plants and herbivores. Metabolomics, 5, 150–161.

    Article  CAS  Google Scholar 

  • Janz, D., Behnke, K., Schnitzler, J. P., Kanawati, B., Schmitt-Kopplin, P., & Polle, A. (2010). Pathway analysis of the transcriptome and metabolome of salt sensitive and tolerant poplar species reveals evolutionary adaption of stress tolerance mechanisms. BMC Plant Biology, 10, 150.

    Article  PubMed  CAS  Google Scholar 

  • Jones, O. A. H., Spurgeon, D. J., Svendsen, C., & Griffin, J. L. (2008). A metabolomics based approach to assessing the toxicity of the polyaromatic hydrocarbon pyrene to the earthworm Lumbricus rubellus. Chemosphere, 71, 601–609.

    Article  PubMed  CAS  Google Scholar 

  • Junot, C., Madalinski, G., Tabet, J. C., & Ezan, E. (2010). Fourier transform mass spectrometry for metabolome analysis. Analyst, 135, 2203–2219.

    Article  PubMed  CAS  Google Scholar 

  • Kanehisa, M., Goto, S., Hattori, M., Aoki-Kinoshita, K. F., Itoh, M., Kawashima, S., et al. (2006). From genomics to chemical genomics: New developments in KEGG. Nucleic Acids Research, 34, D354–D357.

    Article  PubMed  CAS  Google Scholar 

  • Kawana, S., Nakagawa, K., Hasegawa, Y., Kobayashi, H., & Yamaguchi, S. (2008). Improvement of sample throughput using fast gas chromatography mass-spectrometry for biochemical diagnosis of organic acid disorders. Clinica Chimica Acta, 392, 34–40.

    Article  CAS  Google Scholar 

  • Khalil, M. B., Hou, W., Zhou, H., Elisma, F., Swayne, L. A., Blanchard, A. P., et al. (2010). Lipidomics era: Accomplishments and challenges. Mass Spectrometry Reviews, 29, 877–929.

    Article  CAS  Google Scholar 

  • Kind, T., & Fiehn, O. (2011). Advances in structure elucidation of small molecules using mass spectrometry. Bioanalytical Reviews, 2, 23–60.

    Article  Google Scholar 

  • Kind, T., Wohlgemuth, G., Lee, D. Y., Lu, Y., Palazoglu, M., Shahbaz, S., et al. (2009). FiehnLib: Mass spectral and retention index libraries for metabolomics based on quadrupole and time-of-flight gas chromatography/mass spectrometry. Analytical Chemistry, 81, 10038–10048.

    Article  PubMed  CAS  Google Scholar 

  • Kluender, C., Sans-Piche, F., Riedl, J., Altenburger, R., Hartig, C., Laue, G., et al. (2009). A metabolomics approach to assessing phytotoxic effects on the green alga Scenedesmus vacuolatus. Metabolomics, 5, 59–71.

    Article  CAS  Google Scholar 

  • Koek, M. M., Jellema, R. H., van der Greef, J., Tas, A. C., & Hankemeier, T. (2011a). Quantitative metabolomics based on gas chromatography mass spectrometry: Status and perspectives. Metabolomics, 7, 307–328.

    Article  PubMed  CAS  Google Scholar 

  • Koek, M. M., van der Kloet, F. M., Kleemann, R., Kooistra, T., Verheij, E. R., & Hankemeier, T. (2011b). Semi-automated non-target processing in GC × GC-MS metabolomics analysis: Applicability for biomedical studies. Metabolomics, 7, 1–14.

    Article  PubMed  CAS  Google Scholar 

  • Koulman, A., Cao, M., Faville, M., Lane, G., Mace, W., & Rasmussen, S. (2009). Semi-quantitative and structural metabolic phenotyping by direct infusion ion trap mass spectrometry and its application in genetical metabolomics. Rapid Communications in Mass Spectrometry, 23, 2253–2263.

    Article  PubMed  CAS  Google Scholar 

  • Lai, L., Michopoulos, F., Gika, H., Theodoridis, G., Wilkinson, R. W., Odedra, R., et al. (2010). Methodological considerations in the development of HPLC-MS methods for the analysis of rodent plasma for metabolomic studies. Molecular Biosystems, 6, 108–120.

    Article  PubMed  CAS  Google Scholar 

  • Lee, J. S., Kim, Y. S., Park, S., Kim, J., Kang, S. J., Lee, M. H., et al. (2011). Exceptional production of both prodigiosin and cycloprodigiosin as major metabolic constituents by a novel marine bacterium, Zooshikella rubidus S1-1. Applied and Environmental Microbiology, 77, 4967–4973.

    Article  PubMed  CAS  Google Scholar 

  • Li, C., Hill, R. W., & Jones, A. D. (2010). Determination of betaine metabolites and dimethylsulfoniopropionate in coral tissues using liquid chromatography-time-of-flight mass spectrometry and stable isotope-labeled internal standards. Journal of Chromatography B, 878, 1809–1816.

    Article  CAS  Google Scholar 

  • Lin, C. Y., Viant, M. R., & Tjeerdema, R. S. (2006). Metabolomics: Methodologies and applications in the environmental sciences. Journal of Pesticide Science, 31, 245–251.

    Article  CAS  Google Scholar 

  • Macel, M., van Dam, N. M., & Keurentjes, J. J. B. (2010). Metabolomics: The chemistry between ecology and genetics. Molecular Ecology Resources, 10, 583–593.

    Article  PubMed  CAS  Google Scholar 

  • McKelvie, J. R., Yuk, J., Xu, Y. P., Simpson, A. J., & Simpson, M. J. (2009). (1)H NMR and GC/MS metabolomics of earthworm responses to sub-lethal DDT and endosulfan exposure. Metabolomics, 5, 84–94.

    Article  CAS  Google Scholar 

  • Michaud, M. R., & Denlinger, D. L. (2007). Shifts in the carbohydrate, polyol, and amino acid pools during rapid cold-hardening and diapause-associated cold-hardening in flesh flies (Sarcophaga crassipalpis): A metabolomic comparison. Journal of Comparative Physiology B, 177, 753–763.

    Article  CAS  Google Scholar 

  • Michaud, M. R., Benoit, J. B., Lopez-Martinez, G., Elnitsky, M. A., Lee, R. E., & Denlinger, D. L. (2008). Metabolomics reveals unique and shared metabolic changes in response to heat shock, freezing and desiccation in the Antarctic midge, Belgica antarctica. Journal of Insect Physiology, 54, 645–655.

    Article  CAS  Google Scholar 

  • Michopoulos, F., Lai, L., Gika, H., Theodoridis, G., & Wilson, I. (2009). UPLC-MS-based analysis of human plasma for metabolomics using solvent precipitation or solid phase extraction. Journal of Proteome Research, 8, 2114–2121.

    Article  PubMed  CAS  Google Scholar 

  • Moing, A., Maucourt, M., Renaud, C., Gaudillere, M., Brouquisse, R., Lebouteiller, B., et al. (2004). Quantitative metabolic profiling by 1-dimensional H-1-NMR analyses: Application to plant genetics and functional genomics. Functional Plant Biology, 31, 889–902.

    Article  CAS  Google Scholar 

  • Morrison, N., Bearden, D., Bundy, J. G., Collette, T., Currie, F., Davey, M. P., et al. (2007). Standard reporting requirements for biological samples in metabolomics experiments: Environmental context. Metabolomics, 3, 203–210.

    Article  CAS  Google Scholar 

  • Murphy, R. C., & Gaskell, S. J. (2011). New applications of mass spectrometry in lipid analysis. Journal of Biological Chemistry, 286, 25427–25433.

    Article  PubMed  CAS  Google Scholar 

  • Nappo, M., Berkov, S., Codina, C., Avila, C., Messina, P., Zupo, V., et al. (2009). Metabolite profiling of the benthic diatom Cocconeis scutellum by GC-MS. Journal of Applied Phycology, 21, 295–306.

    Article  CAS  Google Scholar 

  • Nelson, C. J., Otis, J. P., Martin, S. L., & Carey, H. V. (2009). Analysis of the hibernation cycle using LC-MS-based metabolomics in ground squirrel liver. Physiological Genomics, 37, 43–51.

    Article  PubMed  CAS  Google Scholar 

  • Nelson, C. J., Otis, J. P., & Carey, H. V. (2010). Global analysis of circulating metabolites in hibernating ground squirrels. Comparative Biochemistry and Physiology D, 5, 265–273.

    Google Scholar 

  • Orsini, L., Decaestecker, E., De Meester, L., Pfrender, M. E., & Colbourne, J. K. (2011). Genomics in the ecological arena. Biology Letters, 7, 2–3.

    Article  PubMed  Google Scholar 

  • Ossipov, V., Ossipova, S., Bykov, V., Oksanen, E., Koricheva, J., & Haukioja, E. (2008). Application of metabolomics to genotype and phenotype discrimination of birch trees grown in a long-term open-field experiment. Metabolomics, 4, 39–51.

    Article  CAS  Google Scholar 

  • Pasikanti, K. K., Ho, P. C., & Chan, E. C. Y. (2008). Development and validation of a gas chromatography/mass spectrometry metabolomic platform for the global profiling of urinary metabolites. Rapid Communications in Mass Spectrometry, 22, 2984–2992.

    Article  PubMed  CAS  Google Scholar 

  • Plumb, R. S., Stumpf, C. L., Gorenstein, M. V., Castro-Perez, J. M., Dear, G. J., Anthony, M., et al. (2002). Metabolomics: The use of electrospray mass spectrometry coupled to reversed-phase liquid chromatography shows potential for the screening of rat urine in drug development. Rapid Communications in Mass Spectrometry, 16, 1991–1996.

    Article  PubMed  CAS  Google Scholar 

  • Plumb, R. S., Johnson, K. A., Rainville, P., Shockcor, J. P., Williams, R., Granger, J. H., et al. (2006). The detection of phenotypic differences in the metabolic plasma profile of three strains of Zucker rats at 20 weeks of age using ultra-performance liquid chromatography/orthogonal acceleration time-of-flight mass spectrometry. Rapid Communications in Mass Spectrometry, 20, 2800–2806.

    Article  PubMed  CAS  Google Scholar 

  • Poynton, H. C., Taylor, N. S., Hicks, J., Colson, K., Chan, S. R., Clark, C., et al. (2011). Metabolomics of microliter hemolymph samples enables an improved understanding of the combined metabolic and transcriptional responses of Daphnia magna to cadmium. Environmental Science and Technology, 45, 3710–3717.

    Article  PubMed  CAS  Google Scholar 

  • Prince, E. K., & Pohnert, G. (2010). Searching for signals in the noise: Metabolomics in chemical ecology. Analytical and Bioanalytical Chemistry, 396, 193–197.

    Article  PubMed  CAS  Google Scholar 

  • Ralston-Hooper, K., Hopf, A., Oh, C., Zhang, X., Adamec, J., & Sepulveda, M. S. (2008). Development of GCxGC/TOF-MS metabolomics for use in ecotoxicological studies with invertebrates. Aquatic Toxicology, 88, 48–52.

    Article  PubMed  CAS  Google Scholar 

  • Redestig, H., Kobayashi, M., Saito, K., & Kusano, M. (2011). Exploring matrix effects and quantification performance in metabolomics experiments using artificial biological gradients. Analytical Chemistry, 83, 5645–5651.

    Article  PubMed  CAS  Google Scholar 

  • Robert, J. A., Madilao, L. L., White, R., Yanchuk, A., King, J., & Bohlmann, J. (2010). Terpenoid metabolite profiling in Sitka spruce identifies association of dehydroabietic acid, (+)-3-carene, and terpinolene with resistance against white pine weevil. Botany-Botanique, 88, 810–820.

    Article  CAS  Google Scholar 

  • Roberts, L. D., McCombie, G., Titman, C. M., & Griffin, J. L. (2008). A matter of fat: An introduction to lipidomic profiling methods. Journal of Chromatography B, 871, 174–181.

    Article  CAS  Google Scholar 

  • Robinson, A. R., Ukrainetz, N. K., Kang, K. Y., & Mansfield, S. D. (2007). Metabolite profiling of Douglas-fir (Pseudotsuga menziesii) field trials reveals strong environmental and weak genetic variation. New Phytologist, 174, 762–773.

    Article  PubMed  CAS  Google Scholar 

  • Rochfort, S. (2005). Metabolomics reviewed: A new “Omics” platform technology for systems biology and implications for natural products research. Journal of Natural Products, 68, 1813–1820.

    Article  PubMed  CAS  Google Scholar 

  • Samuelsson, L. M., & Larsson, D. G. J. (2008). Contributions from metabolomics to fish research. Molecular Biosystems, 4, 974–979.

    Article  PubMed  CAS  Google Scholar 

  • Shaw, J. R., Pfrender, M., Eads, B. D., Klaper, R., Callaghan, A., Colson, I., et al. (2007). Daphnia as an emerging model for toxicological genomics. In C. Hogstrand & P. Kille (Eds.), Advances in experimental biology on toxicogenomics (pp. 165–219). Amsterdam: Elsevier Press.

    Google Scholar 

  • Snape, J. R., Maund, S. J., Pickford, D. B., & Hutchinson, T. H. (2004). Ecotoxicogenomics: The challenge of integrating genomics into aquatic and terrestrial ecotoxicology. Aquatic Toxicology, 67, 143–154.

    Article  PubMed  CAS  Google Scholar 

  • Soga, T., Igarashi, K., Ito, C., Mizobuchi, K., Zimmermann, H. P., & Tomita, M. (2009). Metabolomic profiling of anionic metabolites by capillary electrophoresis mass spectrometry. Analytical Chemistry, 81, 6165–6174.

    Article  PubMed  CAS  Google Scholar 

  • Southam, A. D., Payne, T. G., Cooper, H. J., Arvanitis, T. N., & Viant, M. R. (2007). Dynamic range and mass accuracy of wide-scan direct infusion nanoelectrospray Fourier transform ion cyclotron resonance mass spectrometry-based metabolomics increased by the spectral stitching method. Analytical Chemistry, 79, 4595–4602.

    Article  PubMed  CAS  Google Scholar 

  • Southam, A. D., Lange, A., Hines, A., Hill, E. M., Katsu, Y., Iguchi, T., et al. (2011). Metabolomics reveals target and off-target toxicities of a model organophosphate pesticide to roach (Rutilus rutilus): Implications for biomonitoring. Environmental Science and Technology, 45, 3759–3767.

    Article  PubMed  CAS  Google Scholar 

  • Sumner, L. W., Amberg, A., Barrett, D., Beale, M. H., Beger, R., Daykin, C. A., et al. (2007). Proposed minimum reporting standards for chemical analysis. Metabolomics, 3, 211–221.

    Article  CAS  Google Scholar 

  • Taylor, N. S., Weber, R. J. M., Southam, A. D., Payne, T. G., Hrydziuszko, O., Arvanitis, T. N., et al. (2009). A new approach to toxicity testing in Daphnia magna: Application of high throughput FT-ICR mass spectrometry metabolomics. Metabolomics, 5, 44–58.

    Article  CAS  Google Scholar 

  • Taylor, N. S., Weber, R. J. M., White, T. A., & Viant, M. R. (2010). Discriminating between different acute chemical toxicities via changes in the Daphnid metabolome. Toxicological Sciences, 118, 307–317.

    Article  PubMed  CAS  Google Scholar 

  • Tolstikov, V. V., & Fiehn, O. (2002). Analysis of highly polar compounds of plant origin: Combination of hydrophilic interaction chromatography and electrospray ion trap mass spectrometry. Analytical Biochemistry, 301, 298–307.

    Article  PubMed  CAS  Google Scholar 

  • Tolstikov, V. V., Lommen, A., Nakanishi, K., Tanaka, N., & Fiehn, O. (2003). Monolithic silica-based capillary reversed-phase liquid chromatography/electrospray mass spectrometry for plant metabolomics. Analytical Chemistry, 75, 6737–6740.

    Article  PubMed  CAS  Google Scholar 

  • Trauger, S. A., Kalisak, E., Kalisiak, J., Morita, H., Weinberg, M. V., Menon, A. L., et al. (2008). Correlating the transcriptome, proteome, and metabolome in the environmental adaptation of a hyperthermophile. Journal of Proteome Research, 7, 1027–1035.

    Article  PubMed  CAS  Google Scholar 

  • Van Aggelen, G., Ankley, G. T., Baldwin, W. S., Bearden, D. W., Benson, W. H., Chipman, J. K., et al. (2010). Integrating Omic technologies into aquatic ecological risk assessment and environmental monitoring: Hurdles, achievements, and future outlook. Environmental Health Perspectives, 118, 1–5.

    PubMed  Google Scholar 

  • Vandenbrouck, T., Jones, O. A. H., Dom, N., Griffin, J. L., & De Coen, W. (2010). Mixtures of similarly acting compounds in Daphnia magna: From gene to metabolite and beyond. Environment International, 36, 254–268.

    Article  PubMed  CAS  Google Scholar 

  • Viant, M. R. (2007). Metabolomics of aquatic organisms: The new ‘omics’ on the block. Marine Ecology Progress Series, 332, 301–306.

    Article  CAS  Google Scholar 

  • Viant, M. R. (2008). Recent developments in environmental metabolomics. Molecular Biosystems, 4, 980–986.

    Article  PubMed  CAS  Google Scholar 

  • Viant, M. R., Rosenblum, E. S., & Tjeerdema, R. S. (2003). NMR-based metabolomics: A powerful approach for characterizing the effects of environmental stressors on organism health. Environmental Science and Technology, 37, 4982–4989.

    Article  PubMed  CAS  Google Scholar 

  • Viant, M. R., Bearden, D. W., Bundy, J. G., Burton, I. W., Collette, T. W., Ekman, D. R., et al. (2009). International NMR-based environmental metabolomics intercomparison exercise. Environmental Science and Technology, 43, 219–225.

    Article  PubMed  CAS  Google Scholar 

  • Villas-Boas, S. G., & Bruheim, P. (2007). The potential of metabolomics tools in Bioremediation studies. OMICS: A Journal of Integrative Biology, 11, 305–313.

    Article  CAS  Google Scholar 

  • Wallis, C. M., Huber, D. P. W., & Lewis, K. J. (2011). Ecosystem, location, and climate effects on foliar secondary metabolites of lodge pole pine populations from central British Columbia. Journal of Chemical Ecology, 37, 607–621.

    Article  PubMed  CAS  Google Scholar 

  • Warne, M. A., Lenz, E. M., Osborn, D., Weeks, J. M., & Nicholson, J. K. (2000). An NMR-based metabolomic investigation of the toxic effects of 3-trifluoromethyl-aniline on the earthworm Eisenia veneta. Biomarkers, 5, 56–72.

    Article  CAS  Google Scholar 

  • Weber, R. J. M., & Viant, M. R. (2010). MI-Pack: Increased confidence of metabolite identification in mass spectra by integrating accurate masses and metabolic pathways. Chemometrics and Intelligent Laboratory Systems, 104, 75–82.

    Article  CAS  Google Scholar 

  • Weber, R. J. M., Southam, A. D., Sommer, U., & Viant, M. R. (2011). Characterization of isotopic abundance measurements in high resolution FT-ICR and Orbitrap mass spectra for improved confidence of metabolite identification. Analytical Chemistry, 83, 3737–3743.

    Article  PubMed  CAS  Google Scholar 

  • Wei, R., Li, G. D., & Seymour, A. B. (2010). High-throughput and multiplexed LC/MS/MRM method for targeted metabolomics. Analytical Chemistry, 82, 5527–5533.

    Article  PubMed  CAS  Google Scholar 

  • Wetzel, D. L., Reynolds, J. E., Sprinkel, J. M., Schwacke, L., Mercurio, P., & Rommel, S. A. (2010). Fatty acid profiles as a potential lipidomic biomarker of exposure to brevetoxin for endangered Florida manatees (Trichechus manatus latirostris). Science of the Total Environment, 408, 6124–6133.

    Article  PubMed  CAS  Google Scholar 

  • Wiesemeier, T., Hay, M., & Pohnert, G. (2007). The potential role of wound-activated volatile release in the chemical defence of the brown alga Dictyota dichotoma: Blend recognition by marine herbivores. Aquatic Sciences, 69, 403–412.

    Article  CAS  Google Scholar 

  • Williams, E. S., Panko, J., & Paustenbach, D. J. (2009). The European Union’s REACH regulation: A review of its history and requirements. Critical Reviews in Toxicology, 39, 553–575.

    Article  PubMed  Google Scholar 

  • Wilson, M. P., & Schwarzman, M. R. (2009). Toward a new US chemicals policy: Rebuilding the foundation to advance new science, green chemistry, and environmental health. Environmental Health Perspectives, 117, 1202–1209.

    Article  PubMed  CAS  Google Scholar 

  • Wilson, I. D., Nicholson, J. K., Castro-Perez, J., Granger, J. H., Johnson, K. A., Smith, B. W., et al. (2005a). High resolution “Ultra performance” liquid chromatography coupled to oa-TOF mass spectrometry as a tool for differential metabolic pathway profiling in functional genomic studies. Journal of Proteome Research, 4, 591–598.

    Article  PubMed  CAS  Google Scholar 

  • Wilson, I. D., Plumb, R., Granger, J., Major, H., Williams, R., & Lenz, E. A. (2005b). HPLC-MS-based methods for the study of metabolomics. Journal of Chromatography B, 817, 67–76.

    Article  CAS  Google Scholar 

  • Wu, H., Southam, A. D., Hines, A., & Viant, M. R. (2008). High throughput tissue extraction protocol for NMR- and MS-based metabolomics. Analytical Biochemistry, 372, 204–212.

    Article  PubMed  CAS  Google Scholar 

  • Xu, J. L., Chen, D. Y., Yan, X. J., Chen, J. J., & Zhou, C. X. (2010). Global characterization of the photosynthetic glycerolipids from a marine diatom Stephanodiscus sp. by ultra performance liquid chromatography coupled with electrospray ionization-quadrupole-time of flight mass spectrometry. Analytica Chimica Acta, 663, 60–68.

    Article  PubMed  CAS  Google Scholar 

  • Zelena, E., Dunn, W. B., Broadhurst, D., Francis-McIntyre, S., Carroll, K. M., Begley, P., et al. (2009). Development of a robust and repeatable UPLC-MS method for the long-term metabolomic study of human serum. Analytical Chemistry, 81, 1357–1364.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was in part supported by the UK Natural Environmental Research Council (NERC) Biomolecular Analysis Facility at the University of Birmingham (R8-H10-61).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark R. Viant.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Viant, M.R., Sommer, U. Mass spectrometry based environmental metabolomics: a primer and review. Metabolomics 9 (Suppl 1), 144–158 (2013). https://doi.org/10.1007/s11306-012-0412-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11306-012-0412-x

Keywords

Navigation