Skip to main content

Coronary Microcalcification

  • Chapter
  • First Online:
Cardiovascular Calcification

Abstract

Although the assessment of myocardial ischemia has been traditionally based on angiographic evaluation of epicardial coronary artery stenosis, it is recognized that the severity of coronary obstruction has a limited prognostic value of subsequent coronary syndromes. Indeed, many patients with clinical features of myocardial ischemia do not have flow-limiting coronary lesions on angiography. However, the absence of angiographic obstructive lesions does not exclude coronary artery structural or functional abnormalities. Such discordance between coronary stenosis and coronary syndromes is due to the complex nature of atherosclerosis, which is no longer considered just a simple lipid-storage disease but includes inflammation, endothelial dysfunction, arterial wall shear stress, immunological activity, arterial remodeling and calcification. Since arterial endothelium regulates vascular permeability and the arterial tone and flow, inflammation-induced endothelial dysfunction has a central role in the initiation and progression of atherosclerosis. Although the endothelium of the entire vasculature is exposed to inflammation, atherosclerotic plaques develop near arterial bifurcation or curved segments. This focal localization is determined by the effect of wall shear stress (WSS). In the presence of cardiovascular risk factors, WSS induces endothelial inflammation and has an essential role in the development and progression of atherosclerotic plaques. Endothelial damage results in increased permeability and subendothelial retention of small and dense low-density lipoprotein cholesterol. Lipid accumulation promotes migration of macrophages which catabolize the lipoproteins within the arterial wall and coalesce into a necrotic core. Also, vascular smooth muscle cells migrate into the intima forming a fibrous cap, mostly collagen. If the inflammation persists, macrophages exert a catabolic effect resulting in the dissolution of collagen, producing a thin-cap fibro-atheroma (TCFA) which makes the plaque unstable. Inflammation also stimulates the aggregation of small crystals of hydroxyapatite giving rise to microcalcification, less than 50 microns in diameter, embedded in the fibrous cap. Microcalcifications exert a mechanical stress within the fibrous cap and may predispose to plaque rupture. The majority of microcalcifications merge into larger layers of calcium which stabilize the plaque. The morphology of atherosclerotic plaques may change over time, undergoing progressive transformation from high-risk to more stable lesions, or subclinical rupture and healing. Such changes in plaque stability are not simply related to local vascular factors but may reflect more systemic factors, such as inflammatory state and blood thrombogenicity. Direct visualization of plaque morphology and extent of atherosclerosis is currently achieved by angiography, non-contrast computed tomography (CT) with measurement of coronary artery calcium (CAC) score, contrast enhanced computed tomographic coronary angiography (CTCA), cardiac magnetic resonance (CMR), intravascular ultrasound (IVUS), optical coherence tomography (OCT), and near-infrared spectroscopy (NIRS). Among these, only OCT has the spatial resolution to visualize microcalcifications. Metabolic imaging that could assess disease activity and distinguish between patients with stable disease from those with increased inflammatory activity, is based on positron emission tomography (PET) which may incorporate CT or CMR to provide simultaneous disease activity and morphological information.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Marzilli M, Merz CNB, Boden WE, et al. Obstructive coronary atherosclerosis and ischemic heart disease: an elusive link! J Am Coll Cardiol. 2012;60:951–6.

    Article  Google Scholar 

  2. Niccoli G, Stefanini GG, Capodanno D, Crea F, Ambrose JA, Berg R. Are the culprit lesions severely stenotic? JACC Cardiovasc Imaging. 2013;6:1108–14.

    Article  Google Scholar 

  3. Nicoll R, Henein MY. Arterial calcification: friend or foe? Int J Cardiol. 2013;167:322–7.

    Article  Google Scholar 

  4. Tian J, Dauerman H, Toma C, et al. Prevalence and characteristics of TCFA and degree of coronary artery stenosis: an OCT, IVUS, and angiographic study. J Am Coll Cardiol. 2014;64:672–80.

    Article  Google Scholar 

  5. Ylä-Herttuala S, Bentzon JF, Daemen M, et al. Stabilisation of atherosclerotic plaques. Position paper of the European Society of Cardiology (ESC) Working Group on atherosclerosis and vascular biology. Thromb Haemost. 2011;106:1.

    Article  Google Scholar 

  6. Bittencourt SM, Hulten PE, Ghoshhajra AB, et al. Prognostic value of nonobstructive and obstructive coronary artery disease detected by coronary computed tomography angiography to identify cardiovascular events. Circ Cardiovasc Imaging. 2014;7:282–91.

    Article  Google Scholar 

  7. Patel MR, Peterson ED, Dai D, et al. Low diagnostic yield of elective coronary angiography. N Engl J Med. 2010;362:886–95.

    Article  CAS  Google Scholar 

  8. Douglas PS, Patel MR, Bailey SR, et al. Hospital variability in the rate of finding obstructive coronary artery disease at elective, diagnostic coronary angiography. J Am Coll Cardiol. 2011;58:801–9.

    Article  Google Scholar 

  9. De Bruyne B, Hersbach F, Pijls NHJ, et al. Abnormal epicardial coronary resistance in patients with diffuse atherosclerosis but “normal” coronary angiography. Circulation. 2001;104:2401–6.

    Article  Google Scholar 

  10. Sara JD, Widmer RJ, Matsuzawa Y, Lennon RJ, Lerman LO, Lerman A. Prevalence of coronary microvascular dysfunction among patients with chest pain and nonobstructive coronary artery disease. J Am Coll Cardiol Intv. 2015;8:1445–53.

    Article  Google Scholar 

  11. Ford TJ, Berry C, De Bruyne B, et al. Physiological predictors of acute coronary syndromes: emerging insights from the plaque to the vulnerable patient. J Am Coll Cardiol Intv. 2017;10:2539–47.

    Article  Google Scholar 

  12. Falk E, Nakano M, Bentzon JF, Finn AV, Virmani R. Update on acute coronary syndromes: the pathologists’ view. Eur Heart J. 2012;34:719–28.

    Article  Google Scholar 

  13. Aird CW. Endothelium as an organ system. Crit Care Med. 2004;32:S271–S9.

    Article  Google Scholar 

  14. Gutiérrez E, Flammer AJ, Lerman LO, Elízaga J, Lerman A, Fernández-Avilés F. Endothelial dysfunction over the course of coronary artery disease. Eur Heart J. 2013;34:3175–81.

    Article  Google Scholar 

  15. Bonetti PO, Lerman LO, Lerman A. Endothelial dysfunction: a marker of atherosclerotic risk. Arterioscler Thromb Vasc Biol. 2003;23:168–75.

    Article  CAS  Google Scholar 

  16. Wang T, Butany J. Pathogenesis of atherosclerosis. Diagn Histopathol. 2017;23:473–8.

    Article  Google Scholar 

  17. Sakakura K, Nakano M, Otsuka F, Ladich E, Kolodgie FD, Virmani R. Pathophysiology of atherosclerosis plaque progression. Heart Lung Circul. 2013;22:399–411.

    Article  Google Scholar 

  18. Siasos G, Sara JD, Zaromytidou M, et al. Local low shear stress and endothelial dysfunction in patients with nonobstructive coronary atherosclerosis. J Am Coll Cardiol. 2018;71:2092–102.

    Article  Google Scholar 

  19. Libby P, Pasterkamp G. Requiem for the ‘vulnerable plaque’. Eur Heart J. 2015;36:2984–7.

    Google Scholar 

  20. Moriya J. Critical roles of inflammation in atherosclerosis. J Cardiol. 2019;73:22–7.

    Article  Google Scholar 

  21. Hansson GK. Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med. 2005;352:1685–95.

    Article  CAS  Google Scholar 

  22. Helderman F, Segers D, de Crom R, et al. Effect of shear stress on vascular inflammation and plaque development. Curr Opin Lipidol. 2007;18:527–33.

    Article  CAS  Google Scholar 

  23. Orekhov AN, Nikiforov NN, Ivanova EA, Sobenin IA. Possible role of mitochondrial DNA mutations in chronification of inflammation: focus on atherosclerosis. J Clin Med. 2020;9:978. https://doi.org/10.3390/jcm9040978.

    Article  CAS  Google Scholar 

  24. Toutouzas K, Benetos G, Karanasos A, Chatzizisis YS, Giannopoulos AA, Tousoulis D. Vulnerable plaque imaging: updates on new pathobiological mechanisms. Eur Heart J. 2015;36:3147–54.

    Article  CAS  Google Scholar 

  25. Schoenhagen P, Tuzcu EM, Ellis GS. Plaque vulnerability, plaque rupture, and acute coronary syndromes. (Multi)-focal manifestation of a systemic disease process. Circulation. 2002;106:760–2.

    Article  Google Scholar 

  26. Collaboration TERF. C-reactive protein concentration and risk of coronary heart disease, stroke, and mortality: an individual participant meta-analysis. Lancet. 2010;375:132–40.

    Article  Google Scholar 

  27. Badimon L, Peña E, Arderiu G, et al. C-Reactive protein in atherothrombosis and angiogenesis. Front Immunol. 2018;9.

    Google Scholar 

  28. Joshi MS, Tong L, Cook AC, et al. Increased myocardial prevalence of C-reactive protein in human coronary heart disease: direct effects on microvessel density and endothelial cell survival. Cardiovasc Pathol. 2012;21:428–35.

    Article  CAS  Google Scholar 

  29. Calabrò P, Golia E, Yeh ETH. CRP and the risk of atherosclerotic events. Semin Immunopathol. 2009;31:79–94.

    Article  Google Scholar 

  30. Kinlay S, Libby P, Ganz P. Endothelial function and coronary artery disease. Curr Opin Lipidol. 2001;12:383–9.

    Article  CAS  Google Scholar 

  31. Asakura T, Karino T. Flow patterns and spatial distribution of atherosclerotic lesions in human coronary arteries. Circ Res. 1990;66:1045–66.

    Article  CAS  Google Scholar 

  32. Shaaban AM, Duerinckx AJ. Wall shear stress and early atherosclerosis: a review. Am J Roentgenol. 2000;174:1657–65.

    Article  CAS  Google Scholar 

  33. Antoniadis A, Papafaklis M, Takahashi S, Feldman C, Stone P. Role of endothelial shear stress in the destabilization of coronary plaque: acute coronary syndromes and rapid plaque progression. In: Arampatzis C, MCFadden EP, Michalis L, editors. Coronary atherosclerosis current management and treatment. London: CRC Press LLC; 2012. p. 212–26.

    Google Scholar 

  34. Kwak BR, Bäck M, Bochaton-Piallat M-L, et al. Biomechanical factors in atherosclerosis: mechanisms and clinical implications†. Eur Heart J. 2014;35:3013–20.

    Article  CAS  Google Scholar 

  35. Slager CJ, Wentzel JJ, Gijsen FJH, et al. The role of shear stress in the generation of rupture-prone vulnerable plaques. Nat Clin Pract Cardiovasc Med. 2005;2:401–7.

    Article  CAS  Google Scholar 

  36. Malek AM, Alper SL, Izumo S. Hemodynamic shear stress and its role in atherosclerosis. JAMA. 1999;282:2035–42.

    Article  CAS  Google Scholar 

  37. Huige L, Ulrich F. Prevention of atherosclerosis by interference with the vascular nitric oxide system. Curr Pharm Des. 2009;15:3133–45.

    Article  Google Scholar 

  38. Vita JA. Endothelial function. Circulation. 2011;124:e906–e12.

    Article  Google Scholar 

  39. Chatzizisis YS, Coskun AU, Jonas M, Edelman ER, Feldman CL, Stone PH. Role of endothelial shear stress in the natural history of coronary atherosclerosis and vascular remodeling: molecular, cellular, and vascular behavior. J Am Coll Cardiol. 2007;49:2379–93.

    Article  CAS  Google Scholar 

  40. Stone PH, Coskun AU, Kinlay S, et al. Regions of low endothelial shear stress are the sites where coronary plaque progresses and vascular remodelling occurs in humans: an in vivo serial study. Eur Heart J. 2007;28:705–10.

    Article  Google Scholar 

  41. Chatzizisis YS, Jonas M, Coskun AU, et al. Prediction of the localization of high-risk coronary atherosclerotic plaques on the basis of low endothelial shear stress. Circulation. 2008;117:993–1002.

    Article  Google Scholar 

  42. Stone PH, Saito S, Takahashi S, et al. Prediction of progression of coronary artery disease and clinical outcomes using vascular profiling of endothelial shear stress and arterial plaque characteristics: the PREDICTION Study. Circulation. 2012;126:172–81.

    Article  Google Scholar 

  43. Wentzel JJ, Chatzizisis YS, Gijsen FJH, Giannoglou GD, Feldman CL, Stone PH. Endothelial shear stress in the evolution of coronary atherosclerotic plaque and vascular remodelling: current understanding and remaining questions. Cardiovasc Res. 2012;96:234–43.

    Article  CAS  Google Scholar 

  44. Gijsen FJH, Wentzel JJ, Thury A, et al. Strain distribution over plaques in human coronary arteries relates to shear stress. Am J Phys Heart Circ Phys. 2008;295:H1608–H14.

    CAS  Google Scholar 

  45. Park J-B, Choi G, Chun EJ, et al. Computational fluid dynamic measures of wall shear stress are related to coronary lesion characteristics. Heart. 2016;102:1655–61.

    Article  Google Scholar 

  46. Katranas S, Antoniadis A, Kelekis A, Giannoglou G. Insights on atherosclerosis by non-invasive assessment of wall stress and arterial morphology along the length of human coronary plaques. Int J Cardiovasc Imaging. 2015;31:1627–33.

    Article  Google Scholar 

  47. Choi G, Lee JM, Kim H-J, et al. Coronary artery axial plaque stress and its relationship with lesion geometry: application of computational fluid dynamics to coronary CT angiography. JACC Cardiovasc Imaging. 2015;8:1156–66.

    Article  Google Scholar 

  48. Raitoharju E, Oksala N, Lehtimäki T. MicroRNAs in the atherosclerotic plaque. Clin Chem. 2013;59:1708–21.

    Article  CAS  Google Scholar 

  49. Resnick N, Yahav H, Shay-Salit A, et al. Fluid shear stress and the vascular endothelium: for better and for worse. Prog Biophys Mol Biol. 2003;81:177–99.

    Article  Google Scholar 

  50. Stone PH, Maehara A, Coskun AU, et al. Role of low endothelial shear stress and plaque characteristics in the prediction of nonculprit major adverse cardiac events: The PROSPECT Study. JACC Cardiovasc Imaging. 2018;11:462–71.

    Article  Google Scholar 

  51. Yamamoto E, Siasos G, Zaromytidou M, et al. Low endothelial shear stress predicts evolution to high-risk coronary plaque phenotype in the future. Circ Cardiovasc Interv. 2017;10:e005455.

    Article  Google Scholar 

  52. Bajraktari A, Bytyci I, Henein MY. The relationship between coronary artery wall shear strain and plaque morphology: a systematic review and meta-analysis. Diagnostics. 2020;10.

    Google Scholar 

  53. Samady H, Eshtehardi P, McDaniel MC, et al. Coronary artery wall shear stress is associated with progression and transformation of atherosclerotic plaque and arterial remodeling in patients with coronary artery disease. Circulation. 2011;124:779–88.

    Article  CAS  Google Scholar 

  54. Murata N, Hiro T, Takayama T, et al. High shear stress on the coronary arterial wall is related to computed tomography-derived high-risk plaque: a three-dimensional computed tomography and color-coded tissue-characterizing intravascular ultrasonography study. Heart Vessel. 2019;34:1429–39.

    Article  Google Scholar 

  55. Fukumoto Y, Hiro T, Fujii T, et al. Localized elevation of shear stress is related to coronary plaque rupture: a 3-dimensional intravascular ultrasound study with in-vivo color mapping of shear stress distribution. J Am Coll Cardiol. 2008;51:645–50.

    Article  Google Scholar 

  56. Kumar A, Thompson EW, Lefieux A, et al. High coronary shear stress in patients with coronary artery disease predicts myocardial infarction. J Am Coll Cardiol. 2018;72:1926–35.

    Article  Google Scholar 

  57. Korshunov VA, Schwartz SM, Berk BC. Vascular Remodeling: hemodynamic and biochemical mechanisms underlying Glagov’s phenomenon. Arterioscler Thromb Vasc Biol. 2007;27:1722–8.

    Article  CAS  Google Scholar 

  58. Schoenhagen P, Nissen SE, Tuzcu EM. Coronary arterial remodeling: from bench to bedside. Curr Atheroscler Rep. 2003;5:150–4.

    Article  Google Scholar 

  59. Varnava AM, Davies MJ. Relation between coronary artery remodelling (compensatory dilatation) and stenosis in human native coronary arteries. Heart. 2001;86:207–11.

    CAS  Google Scholar 

  60. Vergallo R, Papafaklis MI, Yonetsu T, et al. Endothelial shear stress and coronary plaque characteristics in humans. Circ Cardiovasc Imaging. 2014;7:905–11.

    Article  Google Scholar 

  61. Burke AP, Kolodgie FD, Farb A, Weber D, Virmani R. Morphological predictors of arterial remodeling in coronary atherosclerosis. Circulation. 2002;105:297–303.

    Article  Google Scholar 

  62. Kröner ESJ, van Velzen JE, Boogers MJ, et al. Positive remodeling on coronary computed tomography as a marker for plaque vulnerability on virtual histology intravascular ultrasound. Am J Cardiol. 2011;107:1725–9.

    Article  Google Scholar 

  63. Kume T, Okura H, Kawamoto T, et al. Relationship between coronary remodeling and plaque characterization in patients without clinical evidence of coronary artery disease. Atherosclerosis. 2008;197:799–805.

    Article  CAS  Google Scholar 

  64. Varnava AM, Mills PG, Davies MJ. Relationship between coronary artery remodeling and plaque vulnerability. Circulation. 2002;105:939–43.

    Article  Google Scholar 

  65. Tricot O, Mallat Z, Heymes C, Belmin J, Lesèche G, Tedgui A. Relation between endothelial cell apoptosis and blood flow direction in human atherosclerotic plaques. Circulation. 2000;101:2450–3.

    Article  CAS  Google Scholar 

  66. Bentzon JF, Otsuka F, Virmani R, Falk E. Mechanisms of plaque formation and rupture. Circ Res. 2014;114:1852–66.

    Article  CAS  Google Scholar 

  67. Schulte DM, Paulsen K, TüRk K, et al. Small dense LDL cholesterol in human subjects with different chronic inflammatory diseases. Nutr Metab Cardiovasc Dis. 2018;28:1100–5.

    Article  CAS  Google Scholar 

  68. Nakashima Y, Wight TN, Sueishi K. Early atherosclerosis in humans: role of diffuse intimal thickening and extracellular matrix proteoglycans. Cardiovasc Res. 2008;79:14–23.

    Article  CAS  Google Scholar 

  69. Kolodgie FD, Burke AP, Nakazawa G, Virmani R. Is pathologic intimal thickening the key to understanding early plaque progression in human atherosclerotic disease? Arterioscler Thromb Vasc Biol. 2007;27:986–9.

    Article  CAS  Google Scholar 

  70. Tabas I, García-Cardeña G, Owens GK. Recent insights into the cellular biology of atherosclerosis. J Cell Biol. 2015;209:13–22.

    Article  CAS  Google Scholar 

  71. Hansson GK, Hermansson A. The immune system in atherosclerosis. Nat Immunol. 2011;12:204–12.

    Article  CAS  Google Scholar 

  72. Wolf D, Zirlik A, Ley K. Beyond vascular inflammation—recent advances in understanding atherosclerosis. Cell Mol Life Sci. 2015;72:3853–69.

    Article  CAS  Google Scholar 

  73. Mundi S, Massaro M, Scoditti E, et al. Endothelial permeability, LDL deposition, and cardiovascular risk factors—a review. Cardiovasc Res. 2017;114:35–52.

    Article  Google Scholar 

  74. Libby P, Ridker PM, Hansson GK. Progress and challenges in translating the biology of atherosclerosis. Nature. 2011;473:317–25.

    Article  CAS  Google Scholar 

  75. Corrales-Medina VF, Madjid M, Musher DM. Role of acute infection in triggering acute coronary syndromes. Lancet Infect Dis. 2010;10:83–92.

    Article  Google Scholar 

  76. Hansson GK, Robertson A-KL, Söderberg-Nauclér C. Inflammation and atherosclerosis. Ann Rev Pathol Mech Disease. 2006;1:297–329.

    Article  CAS  Google Scholar 

  77. Bobryshev YV. Transdifferentiation of smooth muscle cells into chondrocytes in atherosclerotic arteries in situ: implications for diffuse intimal calcification. J Pathol. 2005;205:641–50.

    Article  Google Scholar 

  78. Otsuka F, Sakakura K, Yahagi K, Joner M, Virmani R. Has our understanding of calcification in human coronary atherosclerosis progressed? Arterioscler Thromb Vasc Biol. 2014;34:724–36.

    Article  CAS  Google Scholar 

  79. Otsuka F, Kramer MCA, Woudstra P, et al. Natural progression of atherosclerosis from pathologic intimal thickening to late fibroatheroma in human coronary arteries: a pathology study. Atherosclerosis. 2015;241:772–82.

    Article  CAS  Google Scholar 

  80. Vré EAV, Ait-Oufella H, Tedgui A, Mallat Z. Apoptotic cell death and efferocytosis in atherosclerosis. Arterioscler Thromb Vasc Biol. 2012;32:887–93.

    Article  Google Scholar 

  81. Nakahara T, Dweck MR, Narula N, Pisapia D, Narula J, Strauss HW. Coronary artery calcification: from mechanism to molecular imaging. JACC Cardiovasc Imaging. 2017;10:582–93.

    Article  Google Scholar 

  82. Prati F, Marco V, Paoletti G, Albertucci M. Coronary inflammation: why searching, how to identify and treat it. Eur Heart J Suppl. 2020;22:E121–E4.

    Article  CAS  Google Scholar 

  83. Virmani R, Kolodgie FD, Burke AP, et al. Atherosclerotic plaque progression and vulnerability to rupture. Arterioscler Thromb Vasc Biol. 2005;25:2054–61.

    Article  CAS  Google Scholar 

  84. Kolodgie FD, Gold HK, Burke AP, et al. Intraplaque hemorrhage and progression of coronary atheroma. N Engl J Med. 2003;349:2316–25.

    Article  CAS  Google Scholar 

  85. Libby P, Tabas I, Fredman G, Fisher EA. Inflammation and its resolution as determinants of acute coronary syndromes. Circ Res. 2014;114:1867–79.

    Article  CAS  Google Scholar 

  86. Virmani R, Burke AP, Kolodgie FD, Farb A. Pathology of the thin-cap fibroatheroma. J Interv Cardiol. 2003;16:267–72.

    Article  Google Scholar 

  87. Virmani R, Burke AP, Farb A, Kolodgie FD. Pathology of the vulnerable plaque. J Am Coll Cardiol. 2006;47:C13–C8.

    Article  CAS  Google Scholar 

  88. Virmani R, Kolodgie FD, Burke AP, Farb A, Schwartz SM. Lessons from sudden coronary death. Arterioscler Thromb Vasc Biol. 2000;20:1262–75.

    Article  CAS  Google Scholar 

  89. Otsuka F, Joner M, Prati F, Virmani R, Narula J. Clinical classification of plaque morphology in coronary disease. Nat Rev Cardiol. 2014;11:379–89.

    Article  Google Scholar 

  90. Puri R, Nicholls SJ, Ellis SG, Tuzcu EM, Kapadia SR. High-risk coronary atheroma: the interplay between ischemia, plaque burden, and disease progression. J Am Coll Cardiol. 2014;63:1134–40.

    Article  Google Scholar 

  91. Kolodgie DF, Burke PA, Farb KA, et al. The thin-cap fibroatheroma: a type of vulnerable plaque: the major precursor lesion to acute coronary syndromes. Curr Opin Cardiol. 2001;16:285–92.

    Article  CAS  Google Scholar 

  92. Cheruvu PK, Finn AV, Gardner C, et al. Frequency and distribution of thin-cap fibroatheroma and ruptured plaques in human coronary arteries: a pathologic study. J Am Coll Cardiol. 2007;50:940–9.

    Article  Google Scholar 

  93. Yonetsu T, Kakuta T, Lee T, et al. In vivo critical fibrous cap thickness for rupture-prone coronary plaques assessed by optical coherence tomography. Eur Heart J. 2011;32:1251–9.

    Article  Google Scholar 

  94. Criqui MH, Denenberg JO, Ix JH, et al. Calcium density of coronary artery plaque and risk of incident cardiovascular events. JAMA. 2014;311:271–8.

    Article  CAS  Google Scholar 

  95. Nicoll R, Wiklund U, Zhao Y, et al. The coronary calcium score is a more accurate predictor of significant coronary stenosis than conventional risk factors in symptomatic patients: Euro-CCAD study. Int J Cardiol. 2016;207:13–9.

    Article  CAS  Google Scholar 

  96. Sangiorgi G, Rumberger JA, Severson A, et al. Arterial calcification and not lumen stenosis is highly correlated with atherosclerotic plaque burden in humans: a histologic study of 723 coronary artery segments using nondecalcifying methodology. J Am Coll Cardiol. 1998;31:126–33.

    Article  CAS  Google Scholar 

  97. Mori H, Torii S, Kutyna M, Sakamoto A, Finn AV, Virmani R. Coronary artery calcification and its progression: what does it really mean? JACC Cardiovasc Imaging. 2018;11:127–42.

    Article  Google Scholar 

  98. New SEP, Goettsch C, Aikawa M, et al. Macrophage-derived matrix vesicles: an alternative novel mechanism for microcalcification in atherosclerotic plaques. Circ Res. 2013;113:72–7.

    Article  CAS  Google Scholar 

  99. Boulanger CM, Loyer X, Rautou P-E, Amabile N. Extracellular vesicles in coronary artery disease. Nat Rev Cardiol. 2017;14:259.

    Article  CAS  Google Scholar 

  100. Roijers RB, Debernardi N, Cleutjens JPM, Schurgers LJ, Mutsaers PHA, van der Vusse GJ. Microcalcifications in early intimal lesions of atherosclerotic human coronary arteries. Am J Pathol. 2011;178:2879–87.

    Article  CAS  Google Scholar 

  101. Hutcheson JD, Goettsch C, Bertazzo S, et al. Genesis and growth of extracellular-vesicle-derived microcalcification in atherosclerotic plaques. Nat Mater. 2016;15:335.

    Article  CAS  Google Scholar 

  102. Chatrou MLL, Cleutjens JP, van Der Vusse GJ, Roijers RB, Mutsaers PHA, Schurgers LJ. Intra-section analysis of human coronary arteries reveals a potential role for micro-calcifications in macrophage recruitment in the early stage of atherosclerosis. PLoS One. 2015;10:e0142335.

    Article  Google Scholar 

  103. Nakahara T, Narula J, Strauss HW. Calcification and inflammation in atherosclerosis: which is the chicken, and which is the egg? J Am Coll Cardiol. 2016;67:79–80.

    Article  Google Scholar 

  104. Nadra I, Mason JC, Philippidis P, et al. Proinflammatory activation of macrophages by basic calcium phosphate crystals via protein kinase C and MAP kinase pathways. Circ Res. 2005;96:1248–56.

    Article  CAS  Google Scholar 

  105. Abdelbaky A, Corsini E, Figueroa AL, et al. Focal arterial inflammation precedes subsequent calcification in the same location. Circ Cardiovasc Imaging. 2013;6:747–54.

    Article  Google Scholar 

  106. Rudd JHF, Myers KS, Bansilal S, et al. Relationships among regional arterial inflammation, calcification, risk factors, and biomarkers. Circ Cardiovasc Imaging. 2009;2:107–15.

    Article  Google Scholar 

  107. Panh L, Lairez O, Ruidavets J-B, Galinier M, Carrié D, Ferrières J. Coronary artery calcification: from crystal to plaque rupture. Arch Cardiovasc Dis. 2017;110:550–61.

    Article  Google Scholar 

  108. Hutcheson JD, Maldonado N, Aikawa E. Small entities with large impact: microcalcifications and atherosclerotic plaque vulnerability. Curr Opin Lipidol. 2014;25:327–32.

    Article  CAS  Google Scholar 

  109. Cardoso L, Weinbaum S. Changing views of the biomechanics of vulnerable plaque rupture: a review. Ann Biomed Eng. 2014;42:415–31.

    Article  Google Scholar 

  110. Reith S, Milzi A, Dettori R, Marx N, Burgmaier M. Predictors for target lesion microcalcifications in patients with stable coronary artery disease: an optical coherence tomography study. Clin Res Cardiol. 2018;107:763–71.

    Article  Google Scholar 

  111. Maldonado N, Kelly-Arnold A, Cardoso L, Weinbaum S. The explosive growth of small voids in vulnerable cap rupture cavitation and interfacial debonding. J Biomech. 2013;46:396–401.

    Article  Google Scholar 

  112. Kelly-Arnold A, Maldonado N, Laudier D, Aikawa E, Cardoso L, Weinbaum S. Revised microcalcification hypothesis for fibrous cap rupture in human coronary arteries. Proc Natl Acad Sci. 2013;110:10741–6.

    Article  CAS  Google Scholar 

  113. Cardoso L, Kelly-Arnold A, Maldonado N, Laudier D, Weinbaum S. Effect of tissue properties, shape and orientation of microcalcifications on vulnerable cap stability using different hyperelastic constitutive models. J Biomech. 2014;47:870–7.

    Article  Google Scholar 

  114. Vengrenyuk Y, Carlier S, Xanthos S, et al. A hypothesis for vulnerable plaque rupture due to stress-induced debonding around cellular microcalcifications in thin fibrous caps. Proc Natl Acad Sci. 2006;103:14678–83.

    Article  CAS  Google Scholar 

  115. Abedin M, Tintut Y, Demer LL. Vascular Calcification: mechanisms and clinical ramifications. Arterioscler Thromb Vasc Biol. 2004;24:1161–70.

    Article  CAS  Google Scholar 

  116. Cheng GC, Loree HM, Kamm RD, Fishbein MC, Lee RT. Distribution of circumferential stress in ruptured and stable atherosclerotic lesions. A structural analysis with histopathological correlation. Circulation. 1993;87:1179–87.

    Article  CAS  Google Scholar 

  117. Hsu JJ, Lim J, Tintut Y, Demer LL. Cell-matrix mechanics and pattern formation in inflammatory cardiovascular calcification. Heart. 2016;102:1710–5.

    Article  CAS  Google Scholar 

  118. Li ZY, Howarth S, Tang T, Graves M, U-King-Im J, Gillard JH. Does calcium deposition play a role in the stability of atheroma? Location may be the key. Cerebrovasc Dis. 2007;24:452–9.

    Article  Google Scholar 

  119. Maldonado N, Kelly-Arnold A, Vengrenyuk Y, et al. A mechanistic analysis of the role of microcalcifications in atherosclerotic plaque stability: potential implications for plaque rupture. Am J Phys Heart Circ Phys. 2012;303:H619–H28.

    CAS  Google Scholar 

  120. Huang H, Virmani R, Younis H, Burke AP, Kamm RD, Lee RT. The impact of calcification on the biomechanical stability of atherosclerotic plaques. Circulation. 2001;103:1051–6.

    Article  CAS  Google Scholar 

  121. Ruiz JL, Weinbaum S, Aikawa E, Hutcheson JD. Zooming in on the genesis of atherosclerotic plaque microcalcifications. J Physiol. 2016;594:2915–27.

    Article  CAS  Google Scholar 

  122. Pu J, Mintz GS, Biro S, et al. Insights into echo-attenuated plaques, echolucent plaques, and plaques with spotty calcification: novel findings from comparisons among intravascular ultrasound, near-infrared spectroscopy, and pathological histology in 2,294 human coronary artery segments. J Am Coll Cardiol. 2014;63:2220–33.

    Article  Google Scholar 

  123. Kataoka Y, Wolski K, Uno K, et al. Spotty calcification as a marker of accelerated progression of coronary atherosclerosis: insights from serial intravascular ultrasound. J Am Coll Cardiol. 2012;59:1592–7.

    Article  Google Scholar 

  124. Ehara S, Kobayashi Y, Yoshiyama M, et al. Spotty calcification typifies the culprit plaque in patients with acute myocardial infarction. Circulation. 2004;110:3424–9.

    Article  Google Scholar 

  125. Ferencik M, Pencina KM, Liu T, et al. Coronary artery calcium distribution is an independent predictor of incident major coronary heart disease events. Circ Cardiovasc Imaging. 2017;10:e006592.

    Article  Google Scholar 

  126. Henein M, Granåsen G, Wiklund U, et al. High dose and long-term statin therapy accelerate coronary artery calcification. Int J Cardiol. 2015;184:581–6.

    Article  Google Scholar 

  127. Evangelos D, George K, Lourdes Victoria Q-S, Paraskevi F, Theodoros T. The anti-inflammatory effects of statins on coronary artery disease: an updated review of the literature. Curr Cardiol Rev. 2017;13:209–16.

    Google Scholar 

  128. Tahara N, Kai H, Ishibashi M, et al. Simvastatin attenuates plaque inflammation: evaluation by fluorodeoxyglucose positron emission tomography. J Am Coll Cardiol. 2006;48:1825–31.

    Article  CAS  Google Scholar 

  129. Lee S-E, Chang H-J, Sung JM, et al. Effects of statins on coronary atherosclerotic plaques: the PARADIGM study. JACC Cardiovasc Imaging. 2018;11:1475–84.

    Article  Google Scholar 

  130. Houslay ES, Cowell SJ, Prescott RJ, et al. Progressive coronary calcification despite intensive lipid-lowering treatment: a randomised controlled trial. Heart. 2006;92:1207–12.

    Article  CAS  Google Scholar 

  131. Shioi A, Ikari Y. Plaque calcification during atherosclerosis progression and regression. J Atheroscler Thromb. 2018;25:294–303.

    Article  CAS  Google Scholar 

  132. Hattori K, Ozaki Y, Ismail TF, et al. Impact of statin therapy on plaque characteristics as assessed by serial OCT, grayscale and integrated backscatter–IVUS. JACC Cardiovasc Imaging. 2012;5:169–77.

    Article  Google Scholar 

  133. Puri R, Nicholls SJ, Shao M, et al. Impact of statins on serial coronary calcification during atheroma progression and regression. J Am Coll Cardiol. 2015;65:1273–82.

    Article  CAS  Google Scholar 

  134. Zheng G, Chen J, Lin C, Huang X, Lin J. Effect of statin therapy on fibrous cap thickness in coronary plaques using optical coherence tomography: a systematic review and meta-analysis. J Interv Cardiol. 2015;28:514–22.

    Article  Google Scholar 

  135. Mujaj B, Bos D, Selwaness M, et al. Statin use is associated with carotid plaque composition: The Rotterdam Study. Int J Cardiol. 2018;260:213–8.

    Article  Google Scholar 

  136. Nicoll R, Henein M. Arterial calcification: a new perspective? Int J Cardiol. 2017;228:11–22.

    Article  CAS  Google Scholar 

  137. Shemesh J, Apter S, Itzchak Y, Motro M. Coronary calcification compared in patients with acute versus in those with chronic coronary events by using dual-sector spiral CT. Radiology. 2003;226:483–8.

    Article  Google Scholar 

  138. Otsuka F, Finn AV, Virmani R. Do vulnerable and ruptured plaques hide in heavily calcified arteries? Atherosclerosis. 2013;229:34–7.

    Article  CAS  Google Scholar 

  139. Beckman JA, Ganz J, Creager MA, Ganz P, Kinlay S. Relationship of clinical presentation and calcification of culprit coronary artery stenoses. Arterioscler Thromb Vasc Biol. 2001;21:1618–22.

    Article  CAS  Google Scholar 

  140. Henein MY, Bengrid T, Nicoll R, Zhao Y, Johansson B, Schmermund A. Coronary calcification compromises myocardial perfusion irrespective of luminal stenosis. Int J Cardiol Heart Vascul. 2017;14:41–5.

    Google Scholar 

  141. Driessen RS, Stuijfzand WJ, Raijmakers PG, et al. Effect of plaque burden and morphology on myocardial blood flow and fractional flow reserve. J Am Coll Cardiol. 2018;71:499–509.

    Article  Google Scholar 

  142. Fleg JL, Stone GW, Fayad ZA, et al. Detection of high-risk atherosclerotic plaque: report of the NHLBI working group on current status and future directions. JACC Cardiovasc Imaging. 2012;5:941–55.

    Article  Google Scholar 

  143. Falk E, Nakano M, Bentzon JF, Finn AV, Virmani R. Update on acute coronary syndromes: the pathologists’ view. Eur Heart J. 2013;34:719–28.

    Article  CAS  Google Scholar 

  144. Partida RA, Libby P, Crea F, Jang I-K. Plaque erosion: a new in vivo diagnosis and a potential major shift in the management of patients with acute coronary syndromes. Eur Heart J. 2018;39:2070–6.

    Article  Google Scholar 

  145. Arbab-Zadeh A, Nakano M, Virmani R, Fuster V. Acute coronary events. Circulation. 2012;125:1147–56.

    Article  Google Scholar 

  146. Henneman MM, Schuijf JD, Pundziute G, et al. Noninvasive evaluation with multislice computed tomography in suspected acute coronary syndrome: plaque morphology on multislice computed tomography versus coronary calcium score. J Am Coll Cardiol. 2008;52:216–22.

    Article  Google Scholar 

  147. Libby P. Current concepts of the pathogenesis of the acute coronary syndromes. Circulation. 2001;104:365–72.

    Article  CAS  Google Scholar 

  148. Kolodgie DF, Burke PA, Wight NT, Virmani NR. The accumulation of specific types of proteoglycans in eroded plaques: a role in coronary thrombosis in the absence of rupture. Curr Opin Lipidol. 2004;15:575–82.

    Article  CAS  Google Scholar 

  149. Cheng JM, Garcia-Garcia HM, de Boer SPM, et al. In vivo detection of high-risk coronary plaques by radiofrequency intravascular ultrasound and cardiovascular outcome: results of the ATHEROREMO-IVUS study. Eur Heart J. 2014;35:639–47.

    Article  Google Scholar 

  150. Calvert PA, Obaid DR, O’Sullivan M, et al. Association between IVUS findings and adverse outcomes in patients with coronary artery disease: the VIVA (VH-IVUS in vulnerable atherosclerosis) study. JACC Cardiovasc Imaging. 2011;4:894–901.

    Article  Google Scholar 

  151. Stone GW, Maehara A, Lansky AJ, et al. A prospective natural-history study of coronary atherosclerosis. N Engl J Med. 2011;364:226–35.

    Article  CAS  Google Scholar 

  152. Kubo T, Maehara A, Mintz GS, et al. The dynamic nature of coronary artery lesion morphology assessed by serial virtual histology intravascular ultrasound tissue characterization. J Am Coll Cardiol. 2010;55:1590–7.

    Article  CAS  Google Scholar 

  153. Tian J, Ren X, Vergallo R, et al. Distinct morphological features of ruptured culprit plaque for acute coronary events compared to those with silent rupture and thin-cap fibroatheroma: a combined optical coherence tomography and intravascular ultrasound study. J Am Coll Cardiol. 2014;63:2209–16.

    Article  Google Scholar 

  154. Zaromytidou M, Antoniadis AP, Siasos G, et al. Heterogeneity of coronary plaque morphology and natural history: current understanding and clinical significance. Curr Atheroscler Rep. 2016;18:80.

    Article  Google Scholar 

  155. Antoniadis PA, Stone HP. Evolving understanding of the heterogeneous natural history of individual coronary artery plaques and the role of local endothelial shear stress. Curr Opin Cardiol. 2017;32:748–54.

    Article  Google Scholar 

  156. Goldstein JA. Multifocal coronary plaque instability. Prog Cardiovasc Dis. 2002;44:449–54.

    Article  Google Scholar 

  157. Rioufol G, Finet G, Ginon I, et al. Multiple atherosclerotic plaque rupture in acute coronary syndrome. Circulation. 2002;106:804–8.

    Article  CAS  Google Scholar 

  158. Buffon A, Biasucci LM, Liuzzo G, D’Onofrio G, Crea F, Maseri A. Widespread Coronary Inflammation in Unstable Angina. N Engl J Med. 2002;347:5–12.

    Article  Google Scholar 

  159. Crea F, Liuzzo G. Pathogenesis of acute coronary syndromes. J Am Coll Cardiol. 2013;61:1–11.

    Article  CAS  Google Scholar 

  160. Rothwell PM, Villagra R, Gibson R, Donders R, Warlow CP. Evidence of a chronic systemic cause of instability of atherosclerotic plaques. Lancet. 2000;355:19–24.

    Article  CAS  Google Scholar 

  161. Arbab-Zadeh A, Fuster V. The myth of the “vulnerable plaque”: transitioning from a focus on individual lesions to atherosclerotic disease burden for coronary artery disease risk assessment. J Am Coll Cardiol. 2015;65:846–55.

    Article  Google Scholar 

  162. Nissen SE. The vulnerable plaque “hypothesis”: promise, but little progress. JACC Cardiovasc Imaging. 2009;2:483–5.

    Article  Google Scholar 

  163. Mushenkova VN, Summerhill IV, Zhang D, Romanenko BE, Grechko VA, Orekhov NA. Current advances in the diagnostic imaging of atherosclerosis: insights into the pathophysiology of vulnerable plaque. Int J Mol Sci. 2020;21.

    Google Scholar 

  164. Chow CK, Sheth T. What is the role of invasive versus non-invasive coronary angiography in the investigation of patients suspected to have coronary heart disease? Intern Med J. 2011;41:5–13.

    Article  CAS  Google Scholar 

  165. Kočka V. The coronary angiography – an old-timer in great shape. Cor Vasa. 2015;57:e419–e24.

    Article  Google Scholar 

  166. Gould KL. Does coronary flow trump coronary anatomy? JACC Cardiovasc Imaging. 2009;2:1009–23.

    Article  Google Scholar 

  167. Fearon WF. Is a myocardial infarction more likely to result from a mild coronary lesion or an ischemia-producing one? Circ Cardiovasc Interv. 2011;4:539–41.

    Article  Google Scholar 

  168. Meijboom WB, Van Mieghem CAG, van Pelt N, et al. Comprehensive assessment of coronary artery stenoses: computed tomography coronary angiography versus conventional coronary angiography and correlation with fractional flow reserve in patients with stable angina. J Am Coll Cardiol. 2008;52:636–43.

    Article  Google Scholar 

  169. Tonino PAL, Fearon WF, De Bruyne B, et al. Angiographic versus functional severity of coronary artery stenoses in the FAME study: fractional flow reserve versus angiography in multivessel evaluation. J Am Coll Cardiol. 2010;55:2816–21.

    Article  Google Scholar 

  170. Glagov S, Weisenberg E, Zarins CK, Stankunavicius R, Kolettis GJ. Compensatory enlargement of human atherosclerotic coronary arteries. N Engl J Med. 1987;316:1371–5.

    Article  CAS  Google Scholar 

  171. Little WC, Constantinescu M, Applegate RJ, et al. Can coronary angiography predict the site of a subsequent myocardial infarction in patients with mild-to-moderate coronary artery disease? Circulation. 1988;78:1157–66.

    Article  CAS  Google Scholar 

  172. Dacanay S, Kennedy HL, Uretz E, Parrillo JE, Klein LW. Morphological and quantitative angiographic analyses of progression of coronary stenoses. A comparison of Q-wave and non-Q-wave myocardial infarction. Circulation. 1994;90:1739–46.

    Article  CAS  Google Scholar 

  173. Narula J, Nakano M, Virmani R, et al. Histopathologic characteristics of atherosclerotic coronary disease and implications of the findings for the invasive and noninvasive detection of vulnerable plaques. J Am Coll Cardiol. 2013;61:1041–51.

    Article  Google Scholar 

  174. Qiao J-H, Fishbein MC. The severity of coronary atherosclerosis at sites of plaque rupture with occlusive thrombosis. J Am Coll Cardiol. 1991;17:1138–42.

    Article  CAS  Google Scholar 

  175. Zaman T, Agarwal S, Anabtawi AG, et al. Angiographic lesion severity and subsequent myocardial infarction. Am J Cardiol. 2012;110:167–72.

    Article  Google Scholar 

  176. Ojio S, Takatsu H, Tanaka T, et al. Considerable time from the onset of plaque rupture and/or thrombi until the onset of acute myocardial infarction in humans. Circulation. 2000;102:2063–9.

    Article  CAS  Google Scholar 

  177. Ahmadi A, Leipsic J, Blankstein R, et al. Do plaques rapidly progress prior to myocardial infarction? Circ Res. 2015;117:99–104.

    Article  CAS  Google Scholar 

  178. Agatston AS, Janowitz WR, Hildner FJ, Zusmer NR, Viamonte M, Detrano R. Quantification of coronary artery calcium using ultrafast computed tomography. J Am Coll Cardiol. 1990;15:827–32.

    Article  CAS  Google Scholar 

  179. Mahabadi AA, Möhlenkamp S, Lehmann N, et al. CAC score improves coronary and CV risk assessment above statin indication by ESC and AHA/ACC primary prevention guidelines. J Am Coll Cardiol Img. 2017;10:143–53.

    Article  Google Scholar 

  180. Youssef G, Kalia N, Darabian S, Budoff MJ. Coronary calcium: new insights, recent data, and clinical role. Curr Cardiol Rep. 2013;15:325.

    Article  Google Scholar 

  181. Sandfort V, Bluemke DA. CT calcium scoring. History, current status and outlook. Diagn Interv Imaging. 2017;98:3–10.

    Article  CAS  Google Scholar 

  182. McClelland RL, Jorgensen NW, Budoff M, et al. 10-Year coronary heart disease risk prediction using coronary artery calcium and traditional risk factors: derivation in the MESA (Multi-Ethnic Study of Atherosclerosis) with validation in the HNR (Heinz Nixdorf Recall) study and the DHS (Dallas Heart Study). J Am Coll Cardiol. 2015;66:1643–53.

    Article  CAS  Google Scholar 

  183. Carr JJ, Jacobs DR Jr, Terry JG, et al. Association of coronary artery calcium in adults aged 32 to 46 years with incident coronary heart disease and death. JAMA Cardiol. 2017;2:391–9.

    Google Scholar 

  184. Detrano R, Guerci AD, Carr JJ, et al. Coronary calcium as a predictor of coronary events in four racial or ethnic groups. N Engl J Med. 2008;358:1336–45.

    Article  CAS  Google Scholar 

  185. Piepoli MF, Hoes AW, Agewall S, et al. 2016 European Guidelines on cardiovascular disease prevention in clinical practice. The Sixth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice European Heart Journal. 2016;37:2315–2381.

    Google Scholar 

  186. Hecht H, Blaha MJ, Berman DS, et al. Clinical indications for coronary artery calcium scoring in asymptomatic patients: expert consensus statement from the Society of Cardiovascular Computed Tomography. J Cardiovasc Comput Tomogr. 2017;11:157–68.

    Article  Google Scholar 

  187. Greenland P, Bonow RO, Brundage BH, Budoff MJ, Eisenberg MJ, Grundy SM. ACCF/AHA 2007 clinical expert consensus document on coronary artery calcium scoring by computed tomography in global cardiovascular risk assessment and in evaluation of patients with chest pain. J Am Coll Cardiol. 2007;49:378–402.

    Article  Google Scholar 

  188. Stone NJ, Robinson JG, Lichtenstein AH, et al. 2013 ACC/AHA guideline on the treatment of blood cholesterol to reduce atherosclerotic cardiovascular risk in adults: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2014;63:2889–934.

    Article  Google Scholar 

  189. Nasir JK, Rubin JJ, Blaha JM, et al. Interplay of coronary artery calcification and traditional risk factors for the prediction of all-cause mortality in asymptomatic individuals. Circ Cardiovasc Imaging. 2012;5:467–73.

    Article  Google Scholar 

  190. Papageorgiou N, Briasoulis A, Androulakis E, Tousoulis D. Imaging subclinical atherosclerosis: where do we stand? Curr Cardiol Rev. 2017;13:47–55.

    Article  Google Scholar 

  191. Sarwar A, Shaw LJ, Shapiro MD, et al. Diagnostic and prognostic value of absence of coronary artery calcification. JACC Cardiovasc Imaging. 2009;2:675–88.

    Article  Google Scholar 

  192. Gottlieb I, Miller JM, Arbab-Zadeh A, et al. The absence of coronary calcification does not exclude obstructive coronary artery disease or the need for revascularization in patients referred for conventional coronary angiography. J Am Coll Cardiol. 2010;55:627–34.

    Article  CAS  Google Scholar 

  193. Drosch T, Brodoefel H, Reimann A, et al. Prevalence and clinical characteristics of symptomatic patients with obstructive coronary artery disease in the absence of coronary calcifications. Acad Radiol. 2010;17:1254–8.

    Article  Google Scholar 

  194. Martin SS, Blaha MJ, Blankstein R, et al. Dyslipidemia, coronary artery calcium, and incident atherosclerotic cardiovascular disease. Circulation. 2014;129:77–86.

    Article  CAS  Google Scholar 

  195. Shaw LJ, Giambrone AE, Blaha MJ, et al. Long-term prognosis after coronary artery calcification testing in asymptomatic patients: a cohort study. Ann Intern Med. 2015;163:14–21.

    Article  Google Scholar 

  196. Budoff MJ, Shaw LJ, Liu ST, et al. Long-term prognosis associated with coronary calcification: observations from a registry of 25,253 patients. J Am Coll Cardiol. 2007;49:1860–70.

    Article  Google Scholar 

  197. Nasir K, Rivera J, Yoon Y, et al. Variation in atherosclerotic plaque composition according to increasing coronary artery calcium scores on computed tomography angiography. Int J Cardiovasc Imaging. 2010;26:923–32.

    Article  Google Scholar 

  198. Marwan M, Ropers D, Pflederer T, Daniel WG, Achenbach S. Clinical characteristics of patients with obstructive coronary lesions in the absence of coronary calcification: an evaluation by coronary CT angiography. Heart. 2009;95:1056–60.

    Article  CAS  Google Scholar 

  199. Nerlekar N, Ha FJ, Cheshire C, et al. Computed tomographic coronary angiography-derived plaque characteristics predict major adverse cardiovascular events. Circ Cardiovasc Imaging. 2018;11:e006973.

    Article  Google Scholar 

  200. Mitchell JD, Fergestrom N, Gage BF, et al. Impact of statins on cardiovascular outcomes following coronary artery calcium scoring. J Am Coll Cardiol. 2018;72:3233–42.

    Article  CAS  Google Scholar 

  201. Halon DA, Lavi I, Barnett-Griness O, et al. Plaque morphology as predictor of late plaque events in patients with asymptomatic type 2 diabetes: a long-term observational study. JACC Cardiovasc Imaging. 2019;12:1353–63.

    Article  Google Scholar 

  202. Criqui MH, Knox JB, Denenberg JO, et al. Coronary artery calcium volume and density: potential interactions and overall predictive value: the multi-ethnic study of atherosclerosis. JACC Cardiovasc Imaging. 2017;10:845–54.

    Article  Google Scholar 

  203. Yoon H-C, Emerick AM, Hill JA, Gjertson DW, Goldin JG. Calcium begets calcium: progression of coronary artery calcification in asymptomatic subjects. Radiology. 2002;224:236–41.

    Article  Google Scholar 

  204. Lee SE, Sung JM, Andreini D, et al. Differential association between the progression of coronary artery calcium score and coronary plaque volume progression according to statins: the Progression of AtheRosclerotic PlAque DetermIned by Computed TomoGraphic Angiography Imaging (PARADIGM) study. Eur Heart J Cardiovasc Imaging. 2019;20:1307–14.

    Article  Google Scholar 

  205. Budoff MJ, Dowe D, Jollis JG, et al. Diagnostic performance of 64-multidetector row coronary computed tomographic angiography for evaluation of coronary artery stenosis in individuals without known coronary artery disease: results from the prospective multicenter ACCURACY (Assessment by Coronary Computed Tomographic Angiography of Individuals Undergoing Invasive Coronary Angiography) trial. J Am Coll Cardiol. 2008;52:1724–32.

    Article  Google Scholar 

  206. Min JK, Dunning A, Lin FY, et al. Age- and sex-related differences in all-cause mortality risk based on coronary computed tomography angiography findings: results from the international multicenter CONFIRM (Coronary CT Angiography Evaluation for Clinical Outcomes: An International Multicenter Registry) of 23,854 patients without known coronary artery disease. J Am Coll Cardiol. 2011;58:849–60.

    Article  Google Scholar 

  207. Giannopoulos AA, Benz DC, Gräni C, Buechel RR. Imaging the event-prone coronary artery plaque. J Nucl Cardiol. 2019;26:141–53.

    Article  Google Scholar 

  208. Thomsen C, Abdulla J. Characteristics of high-risk coronary plaques identified by computed tomographic angiography and associated prognosis: a systematic review and meta-analysis. Eur Heart J Cardiovasc Imaging. 2016;17:120–9.

    Article  Google Scholar 

  209. Thomas IC, Forbang NI, Criqui MH. The evolving view of coronary artery calcium and cardiovascular disease risk. Clin Cardiol. 2018;41:144–50.

    Article  Google Scholar 

  210. Voros S, Rinehart S, Qian Z, et al. Coronary atherosclerosis imaging by coronary CT angiography: current status, correlation with intravascular interrogation and meta-analysis. JACC Cardiovasc Imaging. 2011;4:537–48.

    Article  Google Scholar 

  211. Obaid DR, Calvert PA, Gopalan D, et al. Atherosclerotic plaque composition and classification identified by coronary computed tomography. Circ Cardiovasc Imaging. 2013;6:655–64.

    Article  Google Scholar 

  212. Leber AW, Knez A, Becker A, et al. Accuracy of multidetector spiral computed tomography in identifying and differentiating the composition of coronary atherosclerotic plaques: a comparative study with intracoronary ultrasound. J Am Coll Cardiol. 2004;43:1241–7.

    Article  Google Scholar 

  213. Saremi F, Achenbach S. Coronary plaque characterization using CT. Am J Roentgenol. 2015;204:W249–W60.

    Article  Google Scholar 

  214. Taylor AJ, Cerqueira M, Hodgson JM, et al. ACCF/SCCT/ACR/AHA/ASE/ASNC/NASCI/SCAI/SCMR 2010 Appropriate Use Criteria for Cardiac Computed Tomography: A Report of the American College of Cardiology Foundation Appropriate Use Criteria Task Force, the Society of Cardiovascular Computed Tomography, the American College of Radiology, the American Heart Association, the American Society of Echocardiography, the American Society of Nuclear Cardiology, the North American Society for Cardiovascular Imaging, the Society for Cardiovascular Angiography and Interventions, and the Society for Cardiovascular Magnetic Resonance. J Am College Cardiol. 2010;56:1864–94.

    Article  Google Scholar 

  215. Gilard M, Le Gal G, Cornily J-C, et al. Midterm prognosis of patients with suspected coronary artery disease and normal multislice computed tomographic findings: a prospective management outcome study. Arch Intern Med. 2007;167:1686–9.

    Article  Google Scholar 

  216. Min JK, Shaw LJ, Devereux RB, et al. Prognostic value of multidetector coronary computed tomographic angiography for prediction of all-cause mortality. J Am Coll Cardiol. 2007;50:1161–70.

    Article  Google Scholar 

  217. Jiang B, Wang J, Lv X, Cai W. Prognostic value of cardiac computed tomography angiography in patients with suspected coronary artery disease: a meta-analysis. Cardiology. 2014;128:304–12.

    Article  Google Scholar 

  218. Fischer C, Hulten E, Belur P, Smith R, Voros S, Villines TC. Coronary CT angiography versus intravascular ultrasound for estimation of coronary stenosis and atherosclerotic plaque burden: a meta-analysis. J Cardiovasc Comput Tomogr. 2013;7:256–66.

    Article  Google Scholar 

  219. Butler J, Shapiro M, Reiber J, et al. Extent and distribution of coronary artery disease: a comparative study of invasive versus noninvasive angiography with computed angiography. Am Heart J. 2007;153:378–84.

    Article  Google Scholar 

  220. Pathan F, Negishi K. Prediction of cardiovascular outcomes by imaging coronary atherosclerosis. Cardiovasc Diagn Ther. 2016;6:322–39.

    Article  Google Scholar 

  221. de Knegt MC, Linde JJ, Fuchs A, et al. Relationship between patient presentation and morphology of coronary atherosclerosis by quantitative multidetector computed tomography. Eur Heart J Cardiovasc Imaging. 2018;20:1221–30.

    Article  Google Scholar 

  222. Shishikura D. Noninvasive imaging modalities to visualize atherosclerotic plaques. Cardiovasc Diagn Ther. 2016;6:340–53.

    Article  Google Scholar 

  223. Xie Y, Kim Y-J, Pang J, et al. Coronary atherosclerosis T1-weighed characterization with integrated anatomical reference: comparison with high-risk plaque features detected by invasive coronary imaging. JACC Cardiovasc Imaging. 2017;10:637–48.

    Article  Google Scholar 

  224. Kato S, Kitagawa K, Ishida N, et al. Assessment of coronary artery disease using magnetic resonance coronary angiography: a national multicenter trial. J Am Coll Cardiol. 2010;56:983–91.

    Article  Google Scholar 

  225. Andrews JPM, Fayad ZA, Dweck MR. New methods to image unstable atherosclerotic plaques. Atherosclerosis. 2018;272:118–28.

    Article  CAS  Google Scholar 

  226. Miao C, Chen S, Macedo R, et al. Positive remodeling of the coronary arteries detected by magnetic resonance imaging in an asymptomatic population: MESA (Multi-Ethnic Study of Atherosclerosis). J Am Coll Cardiol. 2009;53:1708–15.

    Article  Google Scholar 

  227. Matsumoto K, Ehara S, Hasegawa T, et al. Localization of coronary high-intensity signals on T1-weighted MR imaging: relation to plaque morphology and clinical severity of angina pectoris. JACC Cardiovasc Imaging. 2015;8:1143–52.

    Article  Google Scholar 

  228. Kawasaki T, Koga S, Koga N, et al. Characterization of hyperintense plaque with noncontrast T1-weighted cardiac magnetic resonance coronary plaque imaging: comparison with multislice computed tomography and intravascular ultrasound. JACC Cardiovasc Imaging. 2009;2:720–8.

    Article  Google Scholar 

  229. Jansen CHP, Perera D, Wiethoff AJ, et al. Contrast-enhanced magnetic resonance imaging for the detection of ruptured coronary plaques in patients with acute myocardial infarction. PLoS One. 2017;12:e0188292.

    Article  Google Scholar 

  230. Hamdan A, Asbach P, Wellnhofer E, et al. A prospective study for comparison of MR and CT imaging for detection of coronary artery stenosis. JACC Cardiovasc Imaging. 2011;4:50–61.

    Article  Google Scholar 

  231. Sakuma H, Ichikawa Y, Chino S, Hirano T, Makino K, Takeda K. Detection of coronary artery stenosis with whole-heart coronary magnetic resonance angiography. J Am Coll Cardiol. 2006;48:1946–50.

    Article  Google Scholar 

  232. Robson PM, Dweck MR, Trivieri MG, et al. Coronary artery PET/MR imaging: feasibility, limitations, and solutions. JACC Cardiovasc Imaging. 2017;10:1103–12.

    Article  Google Scholar 

  233. Wurster T, Landmesser U, Engel L-C, Bigalke B, Makowski M. Coronary vessel wall imaging: state of the art and future directions. Curr Cardiovasc Imaging Reports. 2019;12:16.

    Article  Google Scholar 

  234. Mintz GS. Intravascular imaging of coronary calcification and its clinical implications. JACC Cardiovasc Imaging. 2015;8:461–71.

    Article  Google Scholar 

  235. Giavarini A, Kilic ID, Redondo Diéguez A, et al. Intracoronary imaging. Heart. 2017;103:708–25.

    Article  Google Scholar 

  236. Honda S, Kataoka Y, Kanaya T, Noguchi T, Ogawa H, Yasuda S. Characterization of coronary atherosclerosis by intravascular imaging modalities. Cardiovasc Diagn Ther. 2016;6:93–106.

    Article  Google Scholar 

  237. van Soest G, Marcu L, Bouma BE, Regar E. Intravascular imaging for characterization of coronary atherosclerosis. Curr Opin Biomed Eng. 2017;3:1–12.

    Article  Google Scholar 

  238. Nasu K, Tsuchikane E, Katoh O, et al. Accuracy of in vivo coronary plaque morphology assessment: a validation study of in vivo virtual histology compared with in vitro histopathology. J Am Coll Cardiol. 2006;47:2405–12.

    Article  Google Scholar 

  239. Lowe HC, Narula J, Fujimoto JG, Jang I-K. Intracoronary optical diagnostics: current status, limitations, and potential. J Am Coll Cardiol Intv. 2011;4:1257–70.

    Article  Google Scholar 

  240. Mintz GS, Guagliumi G. Intravascular imaging in coronary artery disease. Lancet. 2017;390:793–809.

    Article  Google Scholar 

  241. Tearney GJ, Yabushita H, Houser SL, et al. Quantification of macrophage content in atherosclerotic plaques by optical coherence tomography. Circulation. 2003;107:113–9.

    Article  Google Scholar 

  242. Sinclair H, Bourantas C, Bagnall A, Mintz GS, Kunadian V. OCT for the identification of vulnerable plaque in acute coronary syndrome. JACC Cardiovasc Imaging. 2015;8:198–209.

    Article  Google Scholar 

  243. Habara M, Otsuka F, Tsuchikane E, et al. In vivo tissue characterization of human atherosclerotic plaques by optical coherence tomography: a directional coronary atherectomy study with histopathologic confirmation. Int J Cardiol. 2018;268:1–10.

    Article  Google Scholar 

  244. Suh MW, Seto HA, Margey JPR, Cruz-Gonzalez JPI, Jang JPI-K. Intravascular detection of the vulnerable plaque. Circ Cardiovasc Imaging. 2011;4:169–78.

    Article  Google Scholar 

  245. Burgmaier M, Milzi A, Dettori R, Burgmaier K, Marx N, Reith S. Co-localization of plaque macrophages with calcification is associated with a more vulnerable plaque phenotype and a greater calcification burden in coronary target segments as determined by OCT. PLoS One. 2018;13:e0205984.

    Article  Google Scholar 

  246. Diletti R, Garcia-Garcia HM, Gomez-Lara J, et al. Assessment of coronary atherosclerosis progression and regression at bifurcations using combined IVUS and OCT. JACC Cardiovasc Imaging. 2011;4:774–80.

    Article  Google Scholar 

  247. Xing L, Higuma T, Wang Z, et al. Prevalence and clinical significance of lipid-rich plaque detected by optical coherence tomography: a four-year follow-up study. J Am Coll Cardiol. 2017;69:975.

    Article  Google Scholar 

  248. Osborn EA, Jaffer FA. Imaging atherosclerosis and risk of plaque rupture. Curr Atheroscler Rep. 2013;15:359.

    Article  Google Scholar 

  249. Brugaletta S, Sabaté M. Assessment of plaque composition by intravascular ultrasound and near-infrared spectroscopy – from PROSPECT I to PROSPECT II. Circ J. 2014;78:1531–9.

    Article  Google Scholar 

  250. Gardner CM, Tan H, Hull EL, et al. Detection of lipid core coronary plaques in autopsy specimens with a novel catheter-based near-infrared spectroscopy system. JACC Cardiovasc Imaging. 2008;1:638–48.

    Article  Google Scholar 

  251. Waksman R, Di Mario C, Torguson R, et al. Identification of patients and plaques vulnerable to future coronary events with near-infrared spectroscopy intravascular ultrasound imaging: a prospective, cohort study. Lancet. 2019; https://doi.org/10.1016/S0140-6736(19)31794-5.

  252. Madder RD, Husaini M, Davis AT, et al. Large lipid-rich coronary plaques detected by near-infrared spectroscopy at non-stented sites in the target artery identify patients likely to experience future major adverse cardiovascular events. Eur Heart J Cardiovasc Imaging. 2016;17:393–9.

    Article  Google Scholar 

  253. Oemrawsingh RM, Cheng JM, García-García HM, et al. Near-infrared spectroscopy predicts cardiovascular outcome in patients with coronary artery disease. J Am Coll Cardiol. 2014;64:2510–8.

    Article  Google Scholar 

  254. Bourantas CV, Jaffer FA, Gijsen FJ, et al. Hybrid intravascular imaging: recent advances, technical considerations, and current applications in the study of plaque pathophysiology. Eur Heart J. 2017;38:400–12.

    Article  Google Scholar 

  255. Kang S-J, Mintz GS, Pu J, et al. Combined IVUS and NIRS detection of fibroatheromas: histopathological validation in human coronary arteries. JACC Cardiovasc Imaging. 2015;8:184–94.

    Article  Google Scholar 

  256. Evans NR, Tarkin JM, Chowdhury MM, Warburton EA, Rudd JHF. PET imaging of atherosclerotic disease: advancing plaque assessment from anatomy to pathophysiology. Curr Atheroscler Rep. 2016;18.

    Google Scholar 

  257. Joshi NV, Vesey A, Newby DE, Dweck MR. Will 18F-sodium fluoride PET-CT imaging be the magic bullet for identifying vulnerable coronary atherosclerotic plaques? Curr Cardiol Rep. 2014;16:521.

    Article  Google Scholar 

  258. Robson PM, Dey D, Newby DE, et al. MR/PET imaging of the cardiovascular system. JACC Cardiovasc Imaging. 2017;10:1165–79.

    Article  Google Scholar 

  259. Ben-Haim S, Kupzov E, Tamir A, Israel O. Evaluation of 18F-FDG uptake and arterial wall calcifications using 18F-FDG PET/CT. J Nucl Med. 2004;45:1816–21.

    Google Scholar 

  260. Adamson PD, Vesey AT, Joshi NV, Newby DE, Dweck MR. Salt in the wound: (18)F-fluoride positron emission tomography for identification of vulnerable coronary plaques. Cardiovasc Diagn Ther. 2015;5:150–5.

    Google Scholar 

  261. Fiz F, Morbelli S, Piccardo A, et al. F-18-NaF uptake by atherosclerotic plaque on PET/CT imaging: inverse correlation between calcification density and mineral metabolic activity. J Nucl Med. 2015;56:1019–23.

    Article  CAS  Google Scholar 

  262. Dweck MR, Puntmann VO, Vesey AT, Fayad ZA, Nagel E. MR imaging of coronary arteries and plaques. JACC Cardiovasc Imaging. 2016;9:306–16.

    Article  Google Scholar 

  263. Kwiecinski J, Dey D, Cadet S, et al. Predictors of 18F-sodium fluoride uptake in patients with stable coronary artery disease and adverse plaque features on computed tomography angiography. Eur Heart J Cardiovasc Imaging. 2019. https://doi.org/10.1093/ehjci/jez152.

  264. Kitagawa T, Yamamoto H, Toshimitsu S, et al. 18F-sodium fluoride positron emission tomography for molecular imaging of coronary atherosclerosis based on computed tomography analysis. Atherosclerosis. 2017;263:385–92.

    Article  CAS  Google Scholar 

  265. Gandhi S, Mosleh W, Abdel-Qadir H, Farkouh ME. Statins and contrast-induced acute kidney injury with coronary angiography. Am J Med. 2014;127:987–1000.

    Article  CAS  Google Scholar 

  266. La Manna G, Pancaldi LG, Capecchi A, et al. Risk for contrast nephropathy in patients undergoing coronarography. Artif Organs. 2010;34:E193–E9.

    Article  Google Scholar 

  267. Caspi O, Habib M, Cohen Y, et al. Acute kidney injury after primary angioplasty: is contrast-induced nephropathy the culprit? J Am Heart Assoc. 2017;6. https://doi.org/10.1161/JAHA.117.005715.

  268. James MT, Samuel SM, Manning MA, et al. Contrast-induced acute kidney injury and risk of adverse clinical outcomes after coronary angiography: a systematic review and meta-analysis. Circul Cardiovasc Interv. 2013;6:37–43.

    Article  Google Scholar 

  269. Maioli M, Toso A, Leoncini M, Gallopin M, Musilli N, Bellandi F. Persistent renal damage after contrast-induced acute kidney injury. Circulation. 2012;125:3099–107.

    Article  Google Scholar 

  270. Lencioni R, Fattori R, Morana G, Stacul F. Contrast-induced nephropathy in patients undergoing computed tomography (CONNECT) – a clinical problem in daily practice? a multicenter observational study. Acta Radiol. 2010;51:741–50.

    Article  Google Scholar 

  271. Wichmann LJ, Katzberg WR, Litwin ES, et al. Contrast-induced nephropathy. Circulation. 2015;132:1931–6.

    Article  Google Scholar 

  272. Pedersen C, Thomsen CF, Hosbond SE, Thomassen A, Mickley H, Diederichsen ACP. Coronary computed tomography angiography – Tolerability of β-blockers and contrast media, and temporal changes in radiation dose. Scand Cardiovasc J. 2014;48:271–7.

    Article  CAS  Google Scholar 

  273. Sun Z. Coronary CT angiography with prospective ECG-triggering: an effective alternative to invasive coronary angiography. Cardiovasc Diagn Ther. 2012;2:28–37.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Federico Vancheri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vancheri, F., Longo, G., Vancheri, S., Henein, M. (2022). Coronary Microcalcification. In: Henein, M. (eds) Cardiovascular Calcification. Springer, Cham. https://doi.org/10.1007/978-3-030-81515-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-81515-8_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-81514-1

  • Online ISBN: 978-3-030-81515-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics