Skip to main content

Coronary Plaque Types: Thin Cap Fibroatheroma, Healed Plaque, Calcified Plaque

  • Chapter
  • First Online:
Cardiovascular OCT Imaging

Abstract

Optical coherence tomography (OCT) is a recently developed intravascular catheter-based imaging technique able to visualize the coronary wall structures and coronary plaques with a definition similar to histology. According to the molecular composition, a coronary plaque will appear composed by structures of different signal intensity ranging from bright and lucent to fully dark aspect. Thin cap fibroatheroma is the prototype of coronary vulnerable plaque and is identified by a large lipid arc (more than 90°) covered by a fibrous cap <65 μm thick. The presence of multiple layers of different optical density identify at OCT healed plaques, lesions undergone several episodes of subclinical thrombosis and spontaneous healing. The presence of calcium generates at OCT observation low-signal areas with sharply demarcated borders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Timmis A, Townsend N, Gale C, et al. European Society of Cardiology: cardiovascular disease statistics 2017. Eur Heart J. 2018;39(7):508–79.

    Article  PubMed  Google Scholar 

  2. Virmani R, Kolodgie FD, Burke AP, Farb A, Schwartz SM. Lessons from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic lesions. Arterioscler Thromb Vasc Biol. 2000;20(5):1262–75.

    Article  CAS  PubMed  Google Scholar 

  3. Burke AP, Virmani R. Pathophysiology of acute myocardial infarction. Med Clin North Am. 2007;91(4):553–572; ix.

    Article  PubMed  Google Scholar 

  4. Finn AV, Nakano M, Narula J, Kolodgie FD, Virmani R. Concept of vulnerable/unstable plaque. Arterioscler Thromb Vasc Biol. 2010;30(7):1282–92.

    Article  CAS  PubMed  Google Scholar 

  5. Fujimoto JG. Optical coherence tomography for ultrahigh resolution in vivo imaging. Nat Biotechnol. 2003;21(11):1361–7.

    Article  CAS  PubMed  Google Scholar 

  6. Jang IK, Bouma BE, Kang DH, et al. Visualization of coronary atherosclerotic plaques in patients using optical coherence tomography: comparison with intravascular ultrasound. J Am Coll Cardiol. 2002;39(4):604–9.

    Article  PubMed  Google Scholar 

  7. Jang IK, Tearney GJ, MacNeill B, et al. In vivo characterization of coronary atherosclerotic plaque by use of optical coherence tomography. Circulation. 2005;111(12):1551–5.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Prati F, Regar E, Mintz GS, et al. Expert review document on methodology, terminology, and clinical applications of optical coherence tomography: physical principles, methodology of image acquisition, and clinical application for assessment of coronary arteries and atherosclerosis. Eur Heart J. 2010;31(4):401–15.

    Article  PubMed  Google Scholar 

  9. Di Vito L, Yoon JH, Kato K, et al. Comprehensive overview of definitions for optical coherence tomography-based plaque and stent analyses. Coron Artery Dis. 2014;25(2):172–85.

    Article  PubMed  Google Scholar 

  10. Otsuka F, Joner M, Prati F, Virmani R, Narula J. Clinical classification of plaque morphology in coronary disease. Nat Rev Cardiol. 2014;11(7):379–89.

    Article  PubMed  Google Scholar 

  11. Kato K, Yonetsu T, Jia H, et al. Nonculprit coronary plaque characteristics of chronic kidney disease. Circ Cardiovasc Imaging. 2013;6(3):448–56.

    Article  PubMed  Google Scholar 

  12. Tearney GJ, Regar E, Akasaka T, et al. Consensus standards for acquisition, measurement, and reporting of intravascular optical coherence tomography studies: a report from the International Working Group for Intravascular Optical Coherence Tomography Standardization and Validation. J Am Coll Cardiol. 2012;59(12):1058–72.

    Article  PubMed  Google Scholar 

  13. Jia H, Abtahian F, Aguirre AD, et al. In vivo diagnosis of plaque erosion and calcified nodule in patients with acute coronary syndrome by intravascular optical coherence tomography. J Am Coll Cardiol. 2013;62(19):1748–58.

    Article  PubMed  Google Scholar 

  14. Sugiyama T, Yamamoto E, Fracassi F, et al. Calcified plaques in patients with acute coronary syndromes. JACC Cardiovasc Interv. 2019;12(6):531–40.

    Article  PubMed  Google Scholar 

  15. Yahagi K, Kolodgie FD, Otsuka F, et al. Pathophysiology of native coronary, vein graft, and in-stent atherosclerosis. Nat Rev Cardiol. 2016;13(2):79–98.

    Article  CAS  PubMed  Google Scholar 

  16. Fan J, Watanabe T. Inflammatory reactions in the pathogenesis of atherosclerosis. J Atheroscler Thromb. 2003;10(2):63–71.

    Article  CAS  PubMed  Google Scholar 

  17. Aikawa M, Rabkin E, Okada Y, et al. Lipid lowering by diet reduces matrix metalloproteinase activity and increases collagen content of rabbit atheroma: a potential mechanism of lesion stabilization. Circulation. 1998;97(24):2433–44.

    Article  CAS  PubMed  Google Scholar 

  18. Velican C. A dissecting view on the role of the fatty streak in the pathogenesis of human atherosclerosis: culprit or bystander? Med Interne. 1981;19(4):321–37.

    CAS  PubMed  Google Scholar 

  19. McGill HC, McMahan CA, Herderick EE, et al. Effects of coronary heart disease risk factors on atherosclerosis of selected regions of the aorta and right coronary artery. PDAY Research Group. Pathobiological determinants of atherosclerosis in youth. Arterioscler Thromb Vasc Biol. 2000;20(3):836–45.

    Article  PubMed  Google Scholar 

  20. Yabushita H, Bouma BE, Houser SL, et al. Characterization of human atherosclerosis by optical coherence tomography. Circulation. 2002;106(13):1640–5.

    Article  PubMed  Google Scholar 

  21. MacNeill BD, Jang IK, Bouma BE, et al. Focal and multi-focal plaque macrophage distributions in patients with acute and stable presentations of coronary artery disease. J Am Coll Cardiol. 2004;44(5):972–9.

    Article  PubMed  Google Scholar 

  22. Tearney GJ, Yabushita H, Houser SL, et al. Quantification of macrophage content in atherosclerotic plaques by optical coherence tomography. Circulation. 2003;107(1):113–9.

    Article  PubMed  Google Scholar 

  23. Otsuka F, Kramer MC, Woudstra P, et al. Natural progression of atherosclerosis from pathologic intimal thickening to late fibroatheroma in human coronary arteries: a pathology study. Atherosclerosis. 2015;241(2):772–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Stupka N, Kintakas C, White JD, et al. Versican processing by a disintegrin-like and metalloproteinase domain with thrombospondin-1 repeats proteinases-5 and -15 facilitates myoblast fusion. J Biol Chem. 2013;288(3):1907–17.

    Article  CAS  PubMed  Google Scholar 

  25. Kolodgie FD, Gold HK, Burke AP, et al. Intraplaque hemorrhage and progression of coronary atheroma. N Engl J Med. 2003;349(24):2316–25.

    Article  CAS  PubMed  Google Scholar 

  26. Sluimer JC, Kolodgie FD, Bijnens AP, et al. Thin-walled microvessels in human coronary atherosclerotic plaques show incomplete endothelial junctions relevance of compromised structural integrity for intraplaque microvascular leakage. J Am Coll Cardiol. 2009;53(17):1517–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Virmani R, Joner M, Sakakura K. Recent highlights of ATVB: calcification. Arterioscler Thromb Vasc Biol. 2014;34(7):1329–32.

    Article  CAS  PubMed  Google Scholar 

  28. Tenekecioglu E, Albuquerque FN, Sotomi Y, et al. Intracoronary optical coherence tomography: clinical and research applications and intravascular imaging software overview. Catheter Cardiovasc Interv. 2017;89(4):679–89.

    Article  PubMed  Google Scholar 

  29. Stone GW, Maehara A, Lansky AJ, et al. A prospective natural-history study of coronary atherosclerosis. N Engl J Med. 2011;364(3):226–35.

    Article  CAS  PubMed  Google Scholar 

  30. Kubo T, Imanishi T, Takarada S, et al. Assessment of culprit lesion morphology in acute myocardial infarction: ability of optical coherence tomography compared with intravascular ultrasound and coronary angioscopy. J Am Coll Cardiol. 2007;50(10):933–9.

    Article  PubMed  Google Scholar 

  31. Kubo T, Imanishi T, Kashiwagi M, et al. Multiple coronary lesion instability in patients with acute myocardial infarction as determined by optical coherence tomography. Am J Cardiol. 2010;105(3):318–22.

    Article  PubMed  Google Scholar 

  32. Toutouzas K, Karanasos A, Riga M, et al. Optical coherence tomography assessment of the spatial distribution of culprit ruptured plaques and thin-cap fibroatheromas in acute coronary syndrome. EuroIntervention. 2012;8(4):477–85.

    Article  PubMed  Google Scholar 

  33. Yonetsu T, Kakuta T, Lee T, et al. In vivo critical fibrous cap thickness for rupture-prone coronary plaques assessed by optical coherence tomography. Eur Heart J. 2011;32(10):1251–9.

    Article  PubMed  Google Scholar 

  34. Lee CW, Hwang I, Park CS, et al. Comparison of ADAMTS-1, -4 and -5 expression in culprit plaques between acute myocardial infarction and stable angina. J Clin Pathol. 2011;64(5):399–404.

    Article  PubMed  Google Scholar 

  35. Johnson JL, Jenkins NP, Huang WC, et al. Relationship of MMP-14 and TIMP-3 expression with macrophage activation and human atherosclerotic plaque vulnerability. Mediat Inflamm. 2014;2014:276457.

    Article  CAS  Google Scholar 

  36. Ruggio A, Pedicino D, Flego D, et al. Correlation between CD4+CD28null T lymphocytes, regulatory T cells and plaque rupture: an optical coherence tomography study in acute coronary syndromes. Int J Cardiol. 2019;276:289–92.

    Article  PubMed  Google Scholar 

  37. Edsfeldt A, Gonçalves I, Grufman H, et al. Impaired fibrous repair: a possible contributor to atherosclerotic plaque vulnerability in patients with type II diabetes. Arterioscler Thromb Vasc Biol. 2014;34(9):2143–50.

    Article  CAS  PubMed  Google Scholar 

  38. Takarada S, Imanishi T, Kubo T, et al. Effect of statin therapy on coronary fibrous-cap thickness in patients with acute coronary syndrome: assessment by optical coherence tomography study. Atherosclerosis. 2009;202(2):491–7.

    Article  CAS  PubMed  Google Scholar 

  39. Hou J, Xing L, Jia H, et al. Comparison of intensive versus moderate lipid-lowering therapy on fibrous cap and atheroma volume of coronary lipid-rich plaque using serial optical coherence tomography and intravascular ultrasound imaging. Am J Cardiol. 2016;117(5):800–6.

    Article  PubMed  Google Scholar 

  40. Kurihara O, Thondapu V, Kim HO, et al. Comparison of vascular response to statin therapy in patients with versus without diabetes mellitus. Am J Cardiol. 2019;123(10):1559–64.

    Article  CAS  PubMed  Google Scholar 

  41. Minami Y, Wang Z, Aguirre AD, et al. Clinical predictors for lack of favorable vascular response to statin therapy in patients with coronary artery disease: a serial optical coherence tomography study. J Am Heart Assoc. 2017;6(11):e006241.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Nishiguchi T, Kubo T, Tanimoto T, et al. Effect of early pitavastatin therapy on coronary fibrous-cap thickness assessed by optical coherence tomography in patients with acute coronary syndrome: the ESCORT study. JACC Cardiovasc Imaging. 2018;11(6):829–38.

    Article  PubMed  Google Scholar 

  43. Romagnoli E, Gatto L, La Manna A, et al. Role of single OCT morphological variable in the CLIMA trial (relationship between coronary pLaque morphology of the left anterIor descending artery and long terM clinicAl outcome). J Am Coll Cardiol. 2018;72(13 Suppl):B24.

    Article  Google Scholar 

  44. Fracassi F, Niccoli G, Vetrugno V, et al. Optical coherence tomography and C-reactive protein in risk stratification of acute coronary syndromes. Int J Cardiol. 2019;286:7–12.

    Article  PubMed  Google Scholar 

  45. Davies MJ. The contribution of thrombosis to the clinical expression of coronary atherosclerosis. Thromb Res. 1996;82(1):1–32.

    Article  CAS  PubMed  Google Scholar 

  46. Yamamoto MH, Yamashita K, Matsumura M, et al. Serial 3-vessel optical coherence tomography and intravascular ultrasound analysis of changing morphologies associated with lesion progression in patients with stable angina pectoris. Circ Cardiovasc Imaging. 2017;10(9):e006347.

    Article  PubMed  Google Scholar 

  47. Burke AP, Kolodgie FD, Farb A, et al. Healed plaque ruptures and sudden coronary death: evidence that subclinical rupture has a role in plaque progression. Circulation. 2001;103(7):934–40.

    Article  CAS  PubMed  Google Scholar 

  48. Mann J, Davies MJ. Mechanisms of progression in native coronary artery disease: role of healed plaque disruption. Heart. 1999;82(3):265–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Jang IK. Plaque progression: slow linear or rapid stepwise? Circ Cardiovasc Imaging. 2017;10(9):e006964.

    Article  PubMed  Google Scholar 

  50. Fracassi F, Crea F, Sugiyama T, et al. Healed culprit plaques in acute coronary syndromes. J Am Coll Cardiol. 2019;73(18):2253–63.

    Article  PubMed  Google Scholar 

  51. Shimokado A, Matsuo Y, Kubo T, et al. In vivo optical coherence tomography imaging and histopathology of healed coronary plaques. Atherosclerosis. 2018;275:35–42.

    Article  CAS  PubMed  Google Scholar 

  52. Vergallo R, Porto I, D’Amario D, et al. Coronary atherosclerotic phenotype and plaque healing in patients with recurrent acute coronary syndromes compared with patients with long-term clinical stability: an in vivo optical coherence tomography study. JAMA Cardiol. 2019; https://doi.org/10.1001/jamacardio.2019.0275.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Detrano R, Guerci AD, Carr JJ, et al. Coronary calcium as a predictor of coronary events in four racial or ethnic groups. N Engl J Med. 2008;358(13):1336–45.

    Article  CAS  PubMed  Google Scholar 

  54. Otsuka F, Sakakura K, Yahagi K, Joner M, Virmani R. Has our understanding of calcification in human coronary atherosclerosis progressed? Arterioscler Thromb Vasc Biol. 2014;34(4):724–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Burke AP, Weber DK, Kolodgie FD, Farb A, Taylor AJ, Virmani R. Pathophysiology of calcium deposition in coronary arteries. Herz. 2001;26(4):239–44.

    Article  CAS  PubMed  Google Scholar 

  56. Friedrich GJ, Moes NY, Mühlberger VA, et al. Detection of intralesional calcium by intracoronary ultrasound depends on the histologic pattern. Am Heart J. 1994;128(3):435–41.

    Article  CAS  PubMed  Google Scholar 

  57. Burke AP, Virmani R, Galis Z, Haudenschild CC, Muller JE. 34th Bethesda conference: task force #2--what is the pathologic basis for new atherosclerosis imaging techniques? J Am Coll Cardiol. 2003;41(11):1874–86.

    Article  PubMed  Google Scholar 

  58. Mizukoshi M, Kubo T, Takarada S, et al. Coronary superficial and spotty calcium deposits in culprit coronary lesions of acute coronary syndrome as determined by optical coherence tomography. Am J Cardiol. 2013;112(1):34–40.

    Article  CAS  PubMed  Google Scholar 

  59. Ong DS, Lee JS, Soeda T, et al. Coronary calcification and plaque vulnerability: an optical coherence tomographic study. Circ Cardiovasc Imaging. 2016;9(1):e003929.

    Article  PubMed  Google Scholar 

  60. Virmani R, Burke AP, Farb A, Kolodgie FD. Pathology of the vulnerable plaque. J Am Coll Cardiol. 2006;47(8 Suppl):C13–8.

    Article  CAS  PubMed  Google Scholar 

  61. Bentzon JF, Otsuka F, Virmani R, Falk E. Mechanisms of plaque formation and rupture. Circ Res. 2014;114(12):1852–66.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fracassi, F., Niccoli, G. (2020). Coronary Plaque Types: Thin Cap Fibroatheroma, Healed Plaque, Calcified Plaque. In: Jang, IK. (eds) Cardiovascular OCT Imaging. Springer, Cham. https://doi.org/10.1007/978-3-030-25711-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-25711-8_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-25710-1

  • Online ISBN: 978-3-030-25711-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics