Skip to main content
Log in

Imaging the event-prone coronary artery plaque

  • Review Article
  • Published:
Journal of Nuclear Cardiology Aims and scope

Abstract

Acute coronary events, the dreaded manifestation of coronary atherosclerosis, remain one of the main contributors to mortality and disability in the developed world. The majority of those events are associated with atherosclerotic plaques-related thrombus formation following an acute disruption, that being rupture or erosion, of an event-prone lesion. These historically termed vulnerable plaques have been the target of numerous benchtop and clinical research endeavors, yet to date without solid results that would allow for early identification and potential treatment. Technological leaps in cardiovascular imaging have provided novel insights into the formation and role of the event-prone plaques. From intracoronary optical coherence tomography that has enhanced our understanding of the pathophysiological mechanisms of plaque disruption, over coronary computed tomography angiography that enables non-invasive serial plaque imaging, and positron emission tomography poised to be rapidly implemented into clinical practice to the budding field of plaque imaging with cardiac magnetic resonance, we summarize the invasive and non-invasive imaging modalities currently available in our armamentarium. Finally, the current status and potential future imaging directions are critically appraised.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1

Adapted with permission from Oxford University Press from Ref. 33

Figure 2

Reproduced with permission of Elsevier from Ref. 63

Figure 3
Figure 4

Reproduced with permission of Springer from Ref. 67

Figure 5

Reproduced with permission of Elsevier from Ref. 77

Figure 6
Figure 7

Modified and reproduced under the Creative Commons Attribution License (CC BY) from Ref. 86

Figure 8

Modified and reproduced under the Creative Commons Attribution License (CC BY) from Ripa RS, Kjær A. Imaging Atherosclerosis with Hybrid Positron Emission Tomography/Magnetic Resonance Imaging. Biomed Res Int. 2015; 914516

Similar content being viewed by others

Abbreviations

TCFA:

Thin cap fibroatheroma

OCT:

Optical coherence tomography

ESS:

Endothelial shear stress

IVUS:

Intravascular ultrasound

NIRS:

Near-infrared spectroscopy

CCTA:

Coronary computed tomography angiography

ACS:

Acute coronary syndrome

PET:

Positron emission tomography

CMR:

Cardiac magnetic resonance

CAD:

Coronary artery disease

References

  1. Anderson JL, Morrow DA. Acute myocardial infarction. N Engl J Med 2017;376:2053-64.

    Article  CAS  PubMed  Google Scholar 

  2. Narula J, Garg P, Achenbach S, Motoyama S, Virmani R, Strauss HW. Arithmetic of vulnerable plaques for noninvasive imaging. Nat Clin Pract Cardiovasc Med 2008;5:S2-S10.

    Article  PubMed  Google Scholar 

  3. Virmani R, Burke AP, Farb A, Kolodgie FD. Pathology of the vulnerable plaque. J Am Coll Cardiol 2006;47:C13-C8.

    Article  CAS  PubMed  Google Scholar 

  4. Narula J, Nakano M, Virmani R, Kolodgie FD, Petersen R, Newcomb R, et al. Histopathologic characteristics of atherosclerotic coronary disease and implications of the findings for the invasive and noninvasive detection of vulnerable plaques. J Am Coll Cardiol 2013;61:1041-51.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Virmani R, Kolodgie FD, Burke AP, Farb A, Schwartz SM. Lessons from sudden coronary death: A comprehensive morphological classification scheme for atherosclerotic lesions. Arterioscler Thromb Vasc Biol. 2000;20:1262-75.

    Article  CAS  PubMed  Google Scholar 

  6. Libby P. Mechanisms of acute coronary syndromes and their implications for therapy. N Engl J Med 2013;368:2004-13.

    Article  CAS  PubMed  Google Scholar 

  7. Libby P. Superficial erosion and the precision management of acute coronary syndromes: Not one-size-fits-all. Eur Heart J 2017;38:801-03.

    PubMed  Google Scholar 

  8. Libby P, Pasterkamp G. Requiem for the ‘vulnerable plaque’. Eur Heart J 2015;36:2984-87.

    PubMed  Google Scholar 

  9. Kwak BR, Back M, Bochaton-Piallat ML, Caligiuri G, Daemen MJ, Davies PF, et al. Biomechanical factors in atherosclerosis: Mechanisms and clinical implications. Eur Heart J 2014;35:3013-20 20a-20d.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chatzizisis YS, Coskun AU, Jonas M, Edelman ER, Feldman CL, Stone PH. Role of endothelial shear stress in the natural history of coronary atherosclerosis and vascular remodeling: Molecular, cellular, and vascular behavior. J Am Coll Cardiol 2007;49:2379-93.

    Article  CAS  PubMed  Google Scholar 

  11. Koskinas KC, Chatzizisis YS, Baker AB, Edelman ER, Stone PH, Feldman CL. The role of low endothelial shear stress in the conversion of atherosclerotic lesions from stable to unstable plaque. Curr Opin Cardiol 2009;24:580-90.

    Article  PubMed  Google Scholar 

  12. Pedrigi RM, de Silva R, Bovens SM, Mehta VV, Petretto E, Krams R. Thin-cap fibroatheroma rupture is associated with a fine interplay of shear and wall stress. Arterioscler Thromb Vasc Biol 2014;34:2224-31.

    Article  CAS  PubMed  Google Scholar 

  13. Chatzizisis YS, Toutouzas K, Giannopoulos AA, Riga M, Antoniadis AP, Fujinom Y, et al. Association of global and local low endothelial shear stress with high-risk plaque using intracoronary 3D optical coherence tomography: Introduction of ‘shear stress score’. Eur Heart J Cardiovasc Imaging 2016. doi:10.1093/ehjci/jew134.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Yabushita H, Bouma BE, Houser SL, Aretz HT, Jang IK, Schlendorf KH, et al. Characterization of human atherosclerosis by optical coherence tomography. Circulation 2002;106:1640-45.

    Article  PubMed  Google Scholar 

  15. Giannopoulos A, Chatzizisis YS, Giannoglou GD. Optical coherence tomography: An arrow in our quiver. Expert Rev Cardiovasc Ther 2012;10:539-41.

    Article  CAS  PubMed  Google Scholar 

  16. Tearney GJ, Regar E, Akasaka T, Adriaenssens T, Barlis P, Bezerra HG, et al. Consensus standards for acquisition, measurement, and reporting of intravascular optical coherence tomography studies: A report from the International Working Group for Intravascular Optical Coherence Tomography Standardization and Validation. J Am Coll Cardiol 2012;59:1058-72.

    Article  PubMed  Google Scholar 

  17. Fujii K, Hao H, Shibuya M, Imanaka T, Fukunaga M, Miki K, et al. Accuracy of OCT, grayscale IVUS, and their combination for the diagnosis of coronary TCFA: An ex vivo validation study. JACC Cardiovasc Imaging 2015;8:451-60.

    Article  PubMed  Google Scholar 

  18. Prati F, Guagliumi G, Mintz GS, Costa M, Regar E, Akasaka T, et al. Expert review document part 2: Methodology, terminology and clinical applications of optical coherence tomography for the assessment of interventional procedures. Eur Heart J 2012;33:2513-20.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Regar E, Schaar JA, Mont E, Virmani R, Serruys PW. Optical coherence tomography. Cardiovasc Radiat Med 2003;4:198-204.

    Article  CAS  PubMed  Google Scholar 

  20. Yonetsu T, Kakuta T, Lee T, Takahashi K, Kawaguchi N, Yamamoto G, et al. In vivo critical fibrous cap thickness for rupture-prone coronary plaques assessed by optical coherence tomography. Eur Heart J 2011;32:1251-59.

    Article  PubMed  Google Scholar 

  21. Prati F, Regar E, Mintz GS, Arbustini E, Di Mario C, Jang IK, et al. Expert review document on methodology, terminology, and clinical applications of optical coherence tomography: Physical principles, methodology of image acquisition, and clinical application for assessment of coronary arteries and atherosclerosis. Eur Heart J 2010;31:401-15.

    Article  PubMed  Google Scholar 

  22. Tearney GJ, Yabushita H, Houser SL, Aretz HT, Jang IK, Schlendorf KH, et al. Quantification of macrophage content in atherosclerotic plaques by optical coherence tomography. Circulation 2003;107:113-9.

    Article  PubMed  Google Scholar 

  23. Taruya A, Tanaka A, Nishiguchi T, Matsuo Y, Ozaki Y, Kashiwagi M, et al. Vasa vasorum restructuring in human atherosclerotic plaque vulnerability: A clinical optical coherence tomography study. J Am Coll Cardiol 2015;65:2469-77.

    Article  PubMed  Google Scholar 

  24. Otsuka F, Joner M, Prati F, Virmani R, Narula J. Clinical classification of plaque morphology in coronary disease. Nat Rev Cardiol 2014;11:379-89.

    Article  PubMed  Google Scholar 

  25. Xing L, Higuma T, Wang Z, Aguirre AD, Mizuno K, Takano M, et al. Clinical significance of lipid-rich plaque detected by optical coherence tomography: A 4-year follow-up study. J Am Coll Cardiol 2017;69:2502-13.

    Article  PubMed  Google Scholar 

  26. Mintz GS, Garcia-Garcia HM, Nicholls SJ, Weissman NJ, Bruining N, Crowe T, et al. Clinical expert consensus document on standards for acquisition, measurement and reporting of intravascular ultrasound regression/progression studies. EuroIntervention 2011;6:1123-30.

    Article  PubMed  Google Scholar 

  27. Garcia-Garcia HM, Mintz GS, Lerman A, Vince DG, Margolis MP, van Es GA, et al. Tissue characterisation using intravascular radiofrequency data analysis: Recommendations for acquisition, analysis, interpretation and reporting. EuroIntervention 2009;5:177-89.

    Article  PubMed  Google Scholar 

  28. Stone GW, Maehara A, Lansky AJ, de Bruyne B, Cristea E, Mintz GS, et al. A prospective natural-history study of coronary atherosclerosis. N Engl J Med 2011;364:226-35.

    Article  CAS  PubMed  Google Scholar 

  29. Calvert PA, Obaid DR, O’Sullivan M, Shapiro LM, McNab D, Densem CG, et al. Association between IVUS findings and adverse outcomes in patients with coronary artery disease: The VIVA (VH-IVUS in vulnerable atherosclerosis) study. JACC Cardiovasc Imaging 2011;4:894-901.

    Article  PubMed  Google Scholar 

  30. Cheng JM, Garcia-Garcia HM, de Boer SPM, Kardys I, Heo JH, Akkerhuis KM, et al. In vivo detection of high-risk coronary plaques by radiofrequency intravascular ultrasound and cardiovascular outcome: Results of the ATHEROREMO-IVUS study. Eur Heart J 2014;35:639-47.

    Article  PubMed  Google Scholar 

  31. Caplan JD, Waxman S, Nesto RW, Muller JE. Near-infrared spectroscopy for the detection of vulnerable coronary artery plaques. J Am Coll Cardiol 2006;47:C92-6.

    Article  PubMed  Google Scholar 

  32. Gardner CM, Tan H, Hull EL, Lisauskas JB, Sum ST, Meese TM, et al. Detection of lipid core coronary plaques in autopsy specimens with a novel catheter-based near-infrared spectroscopy system. JACC Cardiovasc Imaging 2008;1:638-48.

    Article  PubMed  Google Scholar 

  33. Koskinas KC, Ughi GJ, Windecker S, Tearney GJ, Raber L. Intracoronary imaging of coronary atherosclerosis: Validation for diagnosis, prognosis and treatment. Eur Heart J 2016;37:524-35.

    Article  PubMed  Google Scholar 

  34. Kang S-J, Mintz GS, Pu J, Sum ST, Madden SP, Burke AP, et al. Combined IVUS and NIRS detection of fibroatheromas: Histopathological validation in human coronary arteries. JACC Cardiovasc Imaging 2015;8:184-94.

    Article  PubMed  Google Scholar 

  35. Oemrawsingh RM, Cheng JM, García-García HM, van Geuns R-J, de Boer SPM, Simsek C, et al. Near-infrared spectroscopy predicts cardiovascular outcome in patients with coronary artery disease. J Am Coll Cardiol 2014;64:2510-8.

    Article  PubMed  Google Scholar 

  36. Stone GW, Maehara A, Muller JE, Rizik DG, Shunk KA, Ben-Yehuda O, et al. Plaque characterization to inform the prediction and prevention of periprocedural myocardial infarction during percutaneous coronary intervention: The CANARY Trial (Coronary Assessment by Near-infrared of Atherosclerotic Rupture-prone Yellow). JACC Cardiovasc Interv 2015;8:927-36.

    Article  PubMed  Google Scholar 

  37. Li J, Li X, Mohar D, Raney A, Jing J, Zhang J, et al. Integrated IVUS-OCT for real-time imaging of coronary atherosclerosis. JACC Cardiovasc Imaging 2014;7:101-3.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Liu L, Gardecki JA, Nadkarni SK, Toussaint JD, Yagi Y, Bouma BE, et al. Imaging the subcellular structure of human coronary atherosclerosis using 1-μm resolution optical coherence tomography (μOCT). Nat Med 2011;17:1010-14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lee R, Foin N, Otsuka F, Wong P, Mari J-M, Joner M, et al. Intravascular assessment of arterial disease using compensated OCT in comparison with histology. JACC Cardiovasc Imaging 2016;9:321-2.

    Article  CAS  PubMed  Google Scholar 

  40. Toutouzas K, Chatzizisis YS, Riga M, Giannopoulos A, Antoniadis AP, Tu S. Accurate and reproducible reconstruction of coronary arteries and endothelial shear stress calculation using 3D OCT: Comparative study to 3D IVUS and 3D QCA. Atherosclerosis 2015;240:510-9.

    Article  CAS  PubMed  Google Scholar 

  41. Mintz GS. Predicting the vulnerable patient using intravascular imaging. J Am Coll Cardiol 2017;69:2514-6.

    Article  PubMed  Google Scholar 

  42. Budoff MJ, Dowe D, Jollis JG, Gitter M, Sutherland J, Halamert E, et al. Diagnostic performance of 64-multidetector row coronary computed tomographic angiography for evaluation of coronary artery stenosis in individuals without known coronary artery disease: Results from the prospective multicenter ACCURACY (Assessment by Coronary Computed Tomographic Angiography of Individuals Undergoing Invasive Coronary Angiography) trial. J Am Coll Cardiol 2008;52:1724-32.

    Article  PubMed  Google Scholar 

  43. Min JK, Dunning A, Lin FY, Achenbach S, Al-Mallah M, Budoff MJ, et al. Age- and sex-related differences in all-cause mortality risk based on coronary computed tomography angiography findings results from the International Multicenter CONFIRM (Coronary CT Angiography Evaluation for Clinical Outcomes: An International Multicenter Registry) of 23,854 patients without known coronary artery disease. J Am Coll Cardiol 2011;58:849-60.

    Article  PubMed  Google Scholar 

  44. Narula J, Nakano M, Virmani R, Kolodgie FD, Petersen R, Newcomb R, et al. Histopathologic characteristics of atherosclerotic coronary disease and implications of the findings for the invasive and noninvasive detection of vulnerable plaques. J Am Coll Cardiol 2013;61:1041-51.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Ferencik M, Schlett CL, Ghoshhajra BB, Kriegel MF, Joshi SB, Maurovich-Horvat P, et al. A computed tomography-based coronary lesion score to predict acute coronary syndrome among patients with acute chest pain and significant coronary stenosis on coronary computed tomographic angiogram. Am J Cardiol 2012;110:183-9.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Motoyama S, Sarai M, Harigaya H, Anno H, Inoue K, Hara T, et al. Computed tomographic angiography characteristics of atherosclerotic plaques subsequently resulting in acute coronary syndrome. J Am Coll Cardiol 2009;54:49-57.

    Article  PubMed  Google Scholar 

  47. Thomsen C, Abdulla J. Characteristics of high-risk coronary plaques identified by computed tomographic angiography and associated prognosis: A systematic review and meta-analysis. Eur Heart J Cardiovasc Imaging 2016;17:120-9.

    Article  PubMed  Google Scholar 

  48. Kashiwagi M, Tanaka A, Kitabata H, Tsujioka H, Kataiwa H, Komukai K, et al. Feasibility of noninvasive assessment of thin-cap fibroatheroma by multidetector computed tomography. JACC Cardiovasc Imaging 2009;2:1412-9.

    Article  PubMed  Google Scholar 

  49. Motoyama S, Kondo T, Sarai M, Sugiura A, Harigaya H, Sato T, et al. Multislice computed tomographic characteristics of coronary lesions in acute coronary syndromes. J Am Coll Cardiol 2007;50:319-26.

    Article  PubMed  Google Scholar 

  50. Cademartiri F, Mollet NR, Runza G, Bruining N, Hamers R, Somers P, et al. Influence of intracoronary attenuation on coronary plaque measurements using multislice computed tomography: Observations in an ex vivo model of coronary computed tomography angiography. Eur Radiol 2005;15:1426-31.

    Article  PubMed  Google Scholar 

  51. Achenbach S, Boehmer K, Pflederer T, Ropers D, Seltmann M, Lell M, et al. Influence of slice thickness and reconstruction kernel on the computed tomographic attenuation of coronary atherosclerotic plaque. J Cardiovasc Comput Tomogr 2010;4:110-5.

    Article  PubMed  Google Scholar 

  52. Benz DC, Grani C, Mikulicic F, Vontobel J, Fuchs TA, Possner M, et al. Adaptive statistical iterative reconstruction-V: Impact on image quality in ultralow-dose coronary computed tomography angiography. J Comput Assist Tomogr 2016;40:958-63.

    Article  PubMed  Google Scholar 

  53. Benz DC, Grani C, Hirt Moch B, Mikulicic F, Vontobel J, Fuchs TA, et al. Minimized radiation and contrast agent exposure for coronary computed tomography angiography: First clinical experience on a latest generation 256-slice scanner. Acad Radiol 2016;23:1008-14.

    Article  PubMed  Google Scholar 

  54. Nakajima S, Ito H, Mitsuhashi T, Kubo Y, Matsui K, Tanaka I. Clinical application of effective atomic number for classifying non-calcified coronary plaques by dual-energy computed tomography. Atherosclerosis 2017;261:138-43.

    Article  CAS  PubMed  Google Scholar 

  55. Shah NR, Cheezum MK, Motoyama S, Chatzizisis YS. Do we really need another individual coronary plaque characterization measurement? Atherosclerosis 2017;261:160-2.

    Article  CAS  PubMed  Google Scholar 

  56. Otsuka K, Fukuda S, Tanaka A, Nakanishi K, Taguchi H, Yoshikawa J, et al. Napkin-ring sign on coronary CT angiography for the prediction of acute coronary syndrome. JACC Cardiovasc Imaging 2013;6:448-57.

    Article  PubMed  Google Scholar 

  57. Glagov S, Weisenberg E, Zarins CK, Stankunavicius R, Kolettis GJ. Compensatory enlargement of human atherosclerotic coronary arteries. N Engl J Med 1987;316:1371-5.

    Article  CAS  PubMed  Google Scholar 

  58. Falk E, Shah PK, Fuster V. Coronary plaque disruption. Circulation 1995;92:657-71.

    Article  CAS  PubMed  Google Scholar 

  59. Mintz GS, Nissen SE, Anderson WD, Bailey SR, Erbel R, Fitzgerald PJ. American College of Cardiology Clinical Expert Consensus Document on Standards for Acquisition, Measurement and Reporting of Intravascular Ultrasound Studies (IVUS). A report of the American College of Cardiology Task Force on Clinical Expert Consensus Documents. J Am Coll Cardiol 2001;37:1478-92.

    Article  CAS  PubMed  Google Scholar 

  60. Kröner ES, van Velzen JE, Boogers MJ, Siebelink HM, Schalij MJ, Kroft LJ, et al. Positive remodeling on coronary computed tomography as a marker for plaque vulnerability on virtual histology intravascular ultrasound. Am J Cardiol 2011;107:1725-9.

    Article  PubMed  Google Scholar 

  61. Maurovich-Horvat P, Ferencik M, Voros S, Merkely B, Hoffmann U. Comprehensive plaque assessment by coronary CT angiography. Nat Rev Cardiol 2014;11:390-402.

    Article  PubMed  Google Scholar 

  62. Burke AP, Weber DK, Kolodgie FD, Farb A, Taylor AJ, Virmani R. Pathophysiology of calcium deposition in coronary arteries. Herz 2001;26:239-44.

    Article  CAS  PubMed  Google Scholar 

  63. Motoyama S, Ito H, Sarai M, Kondo T, Kawai H, Nagahara Y, et al. Plaque characterization by coronary computed tomography angiography and the likelihood of acute coronary events in mid-term follow-up. J Am Coll Cardiol 2015;66:337-46.

    Article  PubMed  Google Scholar 

  64. Vallabhajosula S, Fuster V. Atherosclerosis: Imaging techniques and the evolving role of nuclear medicine. J Nucl Med 1997;38:1788-96.

    CAS  PubMed  Google Scholar 

  65. Demeure F, Hanin FX, Bol A, Vincent MF, Pouleur AC, Gerber B, et al. A randomized trial on the optimization of 18F-FDG myocardial uptake suppression: Implications for vulnerable coronary plaque imaging. J Nucl Med 2014;55:1629-35.

    Article  CAS  PubMed  Google Scholar 

  66. Tawakol A, Migrino RQ, Hoffmann U, Abbara S, Houser S, Gewirtz H, et al. Noninvasive in vivo measurement of vascular inflammation with F-18 fluorodeoxyglucose positron emission tomography. J Nucl Cardiol 2005;12:294-301.

    Article  PubMed  Google Scholar 

  67. Masteling MG, Zeebregts CJ, Tio RA, Breek JC, Tietge UJ, de Boer JF, et al. High-resolution imaging of human atherosclerotic carotid plaques with micro 18F-FDG PET scanning exploring plaque vulnerability. J Nucl Cardiol 2011;18:1066-75.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Moreno PR, Falk E, Palacios IF, Newell JB, Fuster V, Fallon JT. Macrophage infiltration in acute coronary syndromes. Implications for plaque rupture. Circulation 1994;90:775-8.

    Article  CAS  PubMed  Google Scholar 

  69. Ogawa M, Nakamura S, Saito Y, Kosugi M, Magata Y. What can be seen by 18F-FDG PET in atherosclerosis imaging? The effect of foam cell formation on 18F-FDG uptake to macrophages in vitro. J Nucl Med 2012;53:55-8.

    Article  CAS  PubMed  Google Scholar 

  70. Dunphy MP, Freiman A, Larson SM, Strauss HW. Association of vascular 18F-FDG uptake with vascular calcification. J Nucl Med 2005;46:1278-84.

    PubMed  Google Scholar 

  71. Rudd JH, Myers KS, Bansilal S, Machac J, Rafique A, Farkouh M, et al. (18)Fluorodeoxyglucose positron emission tomography imaging of atherosclerotic plaque inflammation is highly reproducible: Implications for atherosclerosis therapy trials. J Am Coll Cardiol 2007;50:892-6.

    Article  PubMed  Google Scholar 

  72. Rudd JH, Myers KS, Bansilal S, Machac J, Pinto CA, Tong C, et al. Atherosclerosis inflammation imaging with 18F-FDG PET: Carotid, iliac, and femoral uptake reproducibility, quantification methods, and recommendations. J Nucl Med 2008;49:871-8.

    Article  PubMed  Google Scholar 

  73. Wykrzykowska J, Lehman S, Williams G, Parker JA, Palmer MR, Varkey S, et al. Imaging of inflamed and vulnerable plaque in coronary arteries with 18F-FDG PET/CT in patients with suppression of myocardial uptake using a low-carbohydrate, high-fat preparation. J Nucl Med 2009;50:563-8.

    Article  PubMed  Google Scholar 

  74. Rudd JH, Myers KS, Bansilal S, Machac J, Woodward M, Fuster V, et al. Relationships among regional arterial inflammation, calcification, risk factors, and biomarkers: A prospective fluorodeoxyglucose positron-emission tomography/computed tomography imaging study. Circ Cardiovasc Imaging 2009;2:107-15.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Kim TN, Kim S, Yang SJ, Yoo HJ, Seo JA, Kim SG, et al. Vascular inflammation in patients with impaired glucose tolerance and type 2 diabetes: Analysis with 18F-fluorodeoxyglucose positron emission tomography. Circ Cardiovasc Imaging 2010;3:142-8.

    Article  PubMed  Google Scholar 

  76. Paulmier B, Duet M, Khayat R, Pierquet-Ghazzar N, Laissy JP, Maunoury C, et al. Arterial wall uptake of fluorodeoxyglucose on PET imaging in stable cancer disease patients indicates higher risk for cardiovascular events. J Nucl Cardiol 2008;15:209-17.

    Article  PubMed  Google Scholar 

  77. Figueroa AL, Abdelbaky A, Truong QA, Corsini E, MacNabb MH, Lavender ZR, et al. Measurement of arterial activity on routine FDG PET/CT images improves prediction of risk of future CV events. JACC Cardiovasc Imaging 2013;6:1250-9.

    Article  PubMed  Google Scholar 

  78. Tahara N, Kai H, Ishibashi M, Nakaura H, Kaida H, Baba K, et al. Simvastatin attenuates plaque inflammation: Evaluation by fluorodeoxyglucose positron emission tomography. J Am Coll Cardiol 2006;48:1825-31.

    Article  CAS  PubMed  Google Scholar 

  79. Cheng VY, Slomka PJ, Le Meunier L, Tamarappoo BK, Nakazato R, Dey D, et al. Coronary arterial 18F-FDG uptake by fusion of PET and coronary CT angiography at sites of percutaneous stenting for acute myocardial infarction and stable coronary artery disease. J Nucl Med 2012;53:575-83.

    Article  CAS  PubMed  Google Scholar 

  80. Alexanderson E, Slomka P, Cheng V, Meave A, Saldana Y, Garcia-Rojas L, et al. Fusion of positron emission tomography and coronary computed tomographic angiography identifies fluorine 18 fluorodeoxyglucose uptake in the left main coronary artery soft plaque. J Nucl Cardiol 2008;15:841-3.

    Article  PubMed  Google Scholar 

  81. Singh P, Emami H, Subramanian S, Maurovich-Horvat P, Marincheva-Savcheva G, Medina HM. Coronary plaque morphology and the anti-inflammatory impact of atorvastatin: A multicenter 18F-fluorodeoxyglucose positron emission tomographic/computed tomographic study. Circ Cardiovasc Imaging 2016;9:e004195.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Gaemperli O, Shalhoub J, Owen DR, Lamare F, Johansson S, Fouladi N, et al. Imaging intraplaque inflammation in carotid atherosclerosis with 11C-PK11195 positron emission tomography/computed tomography. Eur Heart J 2012;33:1902-10.

    Article  CAS  PubMed  Google Scholar 

  83. Rominger A, Saam T, Vogl E, Ubleis C, la Fougere C, Forster S, et al. In vivo imaging of macrophage activity in the coronary arteries using 68Ga-DOTATATE PET/CT: Correlation with coronary calcium burden and risk factors. J Nucl Med 2010;51:193-7.

    Article  PubMed  Google Scholar 

  84. Hyafil F, Pelisek J, Laitinen I, Schottelius M, Mohring M, Doring Y, et al. Imaging the Cytokine Receptor CXCR4 in atherosclerotic plaques with the radiotracer 68Ga-pentixafor for PET. J Nucl Med 2017;58:499-506.

    Article  CAS  PubMed  Google Scholar 

  85. Dweck MR, Chow MW, Joshi NV, Williams MC, Jones C, Fletcher AM, et al. Coronary arterial 18F-sodium fluoride uptake: A novel marker of plaque biology. J Am Coll Cardiol 2012;59:1539-48.

    Article  CAS  PubMed  Google Scholar 

  86. Joshi NV, Vesey AT, Williams MC, Shah AS, Calvert PA, Craighead FH, et al. 18F-fluoride positron emission tomography for identification of ruptured and high-risk coronary atherosclerotic plaques: A prospective clinical trial. Lancet 2014;383:705-13.

    Article  PubMed  Google Scholar 

  87. Otsuka M, Bruining N, Van Pelt NC, Mollet NR, Ligthart JM, Vourvouri E, et al. Quantification of coronary plaque by 64-slice computed tomography: A comparison with quantitative intracoronary ultrasound. Invest Radiol 2008;43:314-21.

    Article  PubMed  Google Scholar 

  88. Johnson LL, Schofield L, Donahay T, Narula N, Narula J. 99mTc-annexin V imaging for in vivo detection of atherosclerotic lesions in porcine coronary arteries. J Nucl Med 2005;46:1186-93.

    PubMed  Google Scholar 

  89. Liu C, Zhang X, Song Y, Wang Y, Zhang F, Zhang Y, et al. SPECT and fluorescence imaging of vulnerable atherosclerotic plaque with a vascular cell adhesion molecule 1 single-chain antibody fragment. Atherosclerosis 2016;254:263-70.

    Article  CAS  PubMed  Google Scholar 

  90. Greenwood JP, Maredia N, Younger JF, Brown JM, Nixon J, Everett CC, et al. Cardiovascular magnetic resonance and single-photon emission computed tomography for diagnosis of coronary heart disease (CE-MARC): A prospective trial. Lancet 2012;379:453-60.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Sharif F, Lohan DG, Wijns W. Non-invasive detection of vulnerable coronary plaque. World J Cardiol 2011;3:219-29.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Hamdan A, Asbach P, Wellnhofer E, Klein C, Gebker R, Kelle S, et al. A prospective study for comparison of MR and CT imaging for detection of coronary artery stenosis. JACC Cardiovasc Imaging 2011;4:50-61.

    Article  PubMed  Google Scholar 

  93. Scott AD, Keegan J, Firmin DN. Motion in cardiovascular MR imaging. Radiology 2009;250:331-51.

    Article  PubMed  Google Scholar 

  94. Kramer CM, Narula J. Atherosclerotic plaque imaging: The last frontier for cardiac magnetic resonance. JACC Cardiovasc Imaging 2009;2:916-8.

    Article  PubMed  Google Scholar 

  95. Larose E, Yeghiazarians Y, Libby P, Yucel EK, Aikawa M, Kacher DF, et al. Characterization of human atherosclerotic plaques by intravascular magnetic resonance imaging. Circulation 2005;112:2324-31.

    Article  PubMed  Google Scholar 

  96. Karolyi M, Seifarth H, Liew G, Schlett CL, Maurovich-Horvat P, Stolzmann P, et al. Classification of coronary atherosclerotic plaques ex vivo with T1, T2, and ultrashort echo time CMR. JACC Cardiovasc Imaging 2013;6:466-74.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Morishige K, Kacher DF, Libby P, Josephson L, Ganz P, Weissleder R, et al. High-resolution magnetic resonance imaging enhanced with superparamagnetic nanoparticles measures macrophage burden in atherosclerosis. Circulation 2010;122:1707-15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Libby P, Pasterkamp G. Requiem for the ‘vulnerable plaque’. Eur Heart J 2015;36:2984-7.

    PubMed  Google Scholar 

  99. Saito H, Kuroda S, Hirata K, Magota K, Shiga T, Tamaki N, et al. Validity of dual MRI and F-FDG PET imaging in predicting vulnerable and inflamed carotid plaque. Cerebrovasc Dis 2013;35:370-7.

    Article  PubMed  Google Scholar 

  100. Silvera SS, Aidi HE, Rudd JH, Mani V, Yang L, Farkouh M, et al. Multimodality imaging of atherosclerotic plaque activity and composition using FDG-PET/CT and MRI in carotid and femoral arteries. Atherosclerosis 2009;207:139-43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Disclosure

The authors do not have any personal conflicts of interest to declare. However, the University Hospital Zurich holds a research agreement with GE Healthcare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronny R. Buechel MD.

Additional information

The authors of this article have provided a PowerPoint file, available for download at SpringerLink, which summarizes the contents of the paper and is free for re-use at meetings and presentations. Search for the article DOI on SpringerLink.com.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPTX 1124 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giannopoulos, A.A., Benz, D.C., Gräni, C. et al. Imaging the event-prone coronary artery plaque. J. Nucl. Cardiol. 26, 141–153 (2019). https://doi.org/10.1007/s12350-017-0982-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12350-017-0982-0

Keywords

Navigation