Skip to main content

Developing Quinoline-based Secretagogues for Prostate Apoptosis Response-4 Protein (Par-4) as Potential Antineoplastic Agents

  • Chapter
  • First Online:
Tumor Suppressor Par-4
  • 225 Accesses

Abstract

Secretagogues bearing a 3-arylquinoline scaffold-induced secretory events in normal cells that released the tumor suppressor protein, prostate apoptosis response-4 protein (Par-4) sequestered by the intermediary filament protein, vimentin. The secretion of the Par-4 protein and its binding to a selective, cell-surface receptor GRP78 subsequently triggered paracrine apoptosis in cancer cells. These findings provided a rationale for the study of Par-4 secretagogues as potential agents for the inhibition of tumor growth. Developing secretagogues with these scaffolds, determining vimentin as the biomolecular target, using molecular dynamics to model arylquin binding to vimentin, and understanding the secretion of Par-4 and its apoptotic effects held promise as a new approach for small-molecule interventions as potential treatments for cancer.

Vitaliy M. Sviripa and Ravshan Burikhanov shared equally in the development of this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Aq-1 or Arylquin-1:

3-(2-Fluorophenyl)-N7,N7-dimethylquinoline-2,7-diamine

BFA:

brefeldin A

CM:

cell-culture conditioned medium

CQ:

chloroquine

CYP:

cytochrome P450 monooxygenases

DMF:

Dimethylformamide

EDC:

1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride

EMT:

Epithelial to Mesenchymal transition

ERES:

Exit-site-from-the-endoplasmic-reticulum

ERGIC:

Endoplasmic Reticulum-to-Golgi Intermediate Compartment

ER:

Endoplasmic reticulum

Et3N:

Triethylamine

FIDAS agents:

(E)-4-(2,6-Difluorostyryl)-N,N-dimethylanilines

GDP:

guanosine diphosphate

GRP78:

Glucose-regulated protein-78

GTP:

guanosine triphosphate

HOBt:

1-Hydroxybenzotriazole hydrate

LMP:

lysosomal membrane permeabilization

MAT-2:

methionine S-adenosyltransferase-2

MDM2:

minute-double-minute-2 protein, an E3 ligase

NSAID:

non-steroidal anti-inflammatory drug

Nutlin-3a:

4-[(4S,5R)-4,5-Bis(4-chlorophenyl)-2-(2-isopropoxy-4-methoxy-phenyl)-4,5-dihydro-imidazole-1-carbonyl]-piperazin-2-one

Par-4:

Prostate Apoptosis Response-4 Protein

PEG:

polyethylene glycol spacer (CH2CH2O)n

SAC:

Selective-for-Apoptosis-Induction-Cancer domain [104, 105]

SAR:

Structure–activity relationships

References

  1. Farhan H, Rabouille C (2011) Signalling to and from the secretory pathway. J Cell Sci 124(Pt 2):171–180

    Article  CAS  PubMed  Google Scholar 

  2. Mellman I, Warren G (2000) The road taken: past and future foundations of membrane traffic. Cell 100(1):99–112

    Article  CAS  PubMed  Google Scholar 

  3. Lee MC, Miller EA, Goldberg J, Orci L, Schekman R (2004) Bi-directional protein transport between the ER and Golgi. Annu Rev Cell Dev Biol 20:87–123

    Article  CAS  PubMed  Google Scholar 

  4. Ferro-Novick S, Brose N (2013) Nobel 2013 physiology or medicine: traffic control system within cells. Nature 504(7478):98

    Article  CAS  PubMed  Google Scholar 

  5. Viotti C (2016) ER to Golgi-dependent protein secretion: the conventional pathway. Methods Mol Biol 1459:3–29

    Article  CAS  PubMed  Google Scholar 

  6. Boncompain G, Perez F (2013) The many routes of Golgi-dependent trafficking. Histochem Cell Biol 140(3):251–260

    Article  CAS  PubMed  Google Scholar 

  7. Rabouille C (2017) Pathways of unconventional protein secretion. Trends Cell Biol 27(3):230–240

    Article  CAS  PubMed  Google Scholar 

  8. Kim J, Gee HY, Lee MG (2018) Unconventional protein secretion—new insights into the pathogenesis and therapeutic targets of human diseases. J Cell Sci 131(12):jcs213686

    Article  PubMed  Google Scholar 

  9. Gee HY, Kim J, Lee MG (2018) Unconventional secretion of transmembrane proteins. Semin Cell Dev Biol 83:59–66

    Article  CAS  PubMed  Google Scholar 

  10. Rabouille C, Malhotra V, Nickel W (2012) Diversity in unconventional protein secretion. J Cell Sci 125(Pt 22):5251–5255

    Article  CAS  PubMed  Google Scholar 

  11. Kelly RB (1985) Pathways of protein secretion in eukaryotes. Science 230(4721):25–32

    Article  CAS  PubMed  Google Scholar 

  12. Sells SF, Wood DP Jr, Joshi-Barve SS, Muthukumar S, Jacob RJ, Crist SA, Humphreys S, Rangnekar VM (1994) Commonality of the gene programs induced by effectors of apoptosis in androgen-dependent and -independent prostate cells. Cell Growth Differ 5(4):457–466

    CAS  PubMed  Google Scholar 

  13. Chakraborty M, Qiu SG, Vasudevan KM, Rangnekar VM (2001) Par-4 drives trafficking and activation of Fas and Fasl to induce prostate cancer cell apoptosis and tumor regression. Cancer Res 61(19):7255–7263

    CAS  PubMed  Google Scholar 

  14. El-Guendy N, Rangnekar VM (2003) Apoptosis by Par-4 in cancer and neurodegenerative diseases. Exp Cell Res 283(1):51–66

    Article  CAS  PubMed  Google Scholar 

  15. Shrestha-Bhattarai T, Rangnekar VM (2010) Cancer-selective apoptotic effects of extracellular and intracellular Par-4. Oncogene 29(27):3873–3880

    Article  CAS  PubMed  Google Scholar 

  16. Garcia-Cao I, Duran A, Collado M, Carrascosa MJ, Martin-Caballero J, Flores JM, Diaz-Meco MT, Moscat J, Serrano M (2005) Tumour-suppression activity of the proapoptotic regulator Par4. EMBO Rep 6(6):577–583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Burikhanov R, Zhao Y, Goswami A, Qiu S, Schwarze SR, Rangnekar VM (2009) The tumor suppressor Par-4 activates an extrinsic pathway for apoptosis. Cell 138(2):377–388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Owji H, Nezafat N, Negahdaripour M, Hajiebrahimi A, Ghasemi Y (2018) A comprehensive review of signal peptides: structure, roles, and applications. Eur J Cell Biol 97(6):422–441

    Article  CAS  PubMed  Google Scholar 

  19. Kapp K, Schrempf S, Lemberg MK, Dobberstein B (2009) Post-targeting functions of signal peptides. Landes Bioscience, Austin, TX

    Google Scholar 

  20. McCloud TG, Burns MP, Majadly FD, Muschik GM, Miller DA, Poole KK, Roach JM, Ross JT, Lebherz WB 3rd (1995) Production of brefeldin-A. J Ind Microbiol 15(1):5–9

    Article  CAS  PubMed  Google Scholar 

  21. Jackson CL, Casanova JE (2000) Turning on ARF: the Sec7 family of guanine-nucleotide-exchange factors. Trends Cell Biol 10(2):60–67

    Article  CAS  PubMed  Google Scholar 

  22. Niu TK, Pfeifer AC, Lippincott-Schwartz J, Jackson CL (2005) Dynamics of GBF1, a Brefeldin A-sensitive Arf1 exchange factor at the Golgi. Mol Biol Cell 16(3):1213–1222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Helms JB, Rothman JE (1992) Inhibition by brefeldin A of a Golgi membrane enzyme that catalyses exchange of guanine nucleotide bound to ARF. Nature 360(6402):352–354

    Article  CAS  PubMed  Google Scholar 

  24. El-Guendy N, Zhao Y, Gurumurthy S, Burikhanov R, Rangnekar VM (2003) Identification of a unique core domain of par-4 sufficient for selective apoptosis induction in cancer cells. Mol Cell Biol 23(16):5516–5525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Carta S, Lavieri R, Rubartelli A (2013) Different members of the IL-1 family come out in different ways: DAMPs vs. cytokines? Front Immunol 4:123

    Article  PubMed  PubMed Central  Google Scholar 

  26. Sigalos JT, Pastuszak AW (2018) The safety and efficacy of growth hormone secretagogues. Sex Med Rev 6(1):45–53

    Article  PubMed  Google Scholar 

  27. Smith RG (2005) Development of growth hormone secretagogues. Endocr Rev 26(3):346–360

    Article  CAS  PubMed  Google Scholar 

  28. Chaudhury A, Duvoor C, Reddy Dendi VS, Kraleti S, Chada A, Ravilla R, Marco A, Shekhawat NS, Montales MT, Kuriakose K, Sasapu A, Beebe A, Patil N, Musham CK, Lohani GP, Mirza W (2017) Clinical review of antidiabetic drugs: implications for type 2 diabetes mellitus management. Front Endocrinol (Lausanne) 8:6

    Article  Google Scholar 

  29. Tsang MW (2012) The management of type 2 diabetic patients with hypoglycaemic agents. ISRN Endocrinol 2012:478120

    Article  PubMed  PubMed Central  Google Scholar 

  30. Zhao L, Liu P, Boncompain G, Loos F, Lachkar S, Bezu L, Chen G, Zhou H, Perez F, Kepp O, Kroemer G (2018) Identification of pharmacological inhibitors of conventional protein secretion. Sci Rep 8(1):14966

    Article  PubMed  PubMed Central  Google Scholar 

  31. Van Puyenbroeck V, Vermeire K (2018) Inhibitors of protein translocation across membranes of the secretory pathway: novel antimicrobial and anticancer agents. Cell Mol Life Sci 75(9):1541–1558

    Article  PubMed  PubMed Central  Google Scholar 

  32. Sun W, Yang J (2010) Functional mechanisms for human tumor suppressors. J Cancer 1:136–140

    Article  PubMed  PubMed Central  Google Scholar 

  33. Sherr CJ (2004) Principles of tumor suppression. Cell 116(2):235–246

    Article  CAS  PubMed  Google Scholar 

  34. Wang LH, Wu CF, Rajasekaran N, Shin YK (2018) Loss of tumor suppressor gene function in human cancer: an overview. Cell Physiol Biochem 51(6):2647–2693

    Article  CAS  PubMed  Google Scholar 

  35. Davies MJ (2002) Insulin secretagogues. Curr Med Res Opin 18(Suppl. 1):s22–s30

    Article  PubMed  Google Scholar 

  36. Franke WW, Grund C, Kuhn C, Jackson BW, Illmensee K (1982) Formation of cytoskeletal elements during mouse embryogenesis. III. Primary mesenchymal cells and the first appearance of vimentin filaments. Differentiation 23(1):43–59

    Article  CAS  PubMed  Google Scholar 

  37. Eriksson JE, Dechat T, Grin B, Helfand B, Mendez M, Pallari HM, Goldman RD (2009) Introducing intermediate filaments: from discovery to disease. J Clin Invest 119(7):1763–1771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhao Y, Yan Q, Long X, Chen X, Wang Y (2008) Vimentin affects the mobility and invasiveness of prostate cancer cells. Cell Biochem Funct 26(5):571–577

    Article  CAS  PubMed  Google Scholar 

  39. Lang SH, Hyde C, Reid IN, Hitchcock IS, Hart CA, Bryden AA, Villette JM, Stower MJ, Maitland NJ (2002) Enhanced expression of vimentin in motile prostate cell lines and in poorly differentiated and metastatic prostate carcinoma. Prostate 52(4):253–263

    Article  CAS  PubMed  Google Scholar 

  40. Singh S, Sadacharan S, Su S, Belldegrun A, Persad S, Singh G (2003) Overexpression of vimentin: role in the invasive phenotype in an androgen-independent model of prostate cancer. Cancer Res 63(9):2306–2311

    CAS  PubMed  Google Scholar 

  41. Wu M, Bai X, Xu G, Wei J, Zhu T, Zhang Y, Li Q, Liu P, Song A, Zhao L, Gang C, Han Z, Wang S, Zhou J, Lu Y, Ma D (2007) Proteome analysis of human androgen-independent prostate cancer cell lines: variable metastatic potentials correlated with vimentin expression. Proteomics 7(12):1973–1983

    Article  CAS  PubMed  Google Scholar 

  42. Sethi S, Macoska J, Chen W, Sarkar FH (2010) Molecular signature of epithelial-mesenchymal transition (EMT) in human prostate cancer bone metastasis. Am J Transl Res 3(1):90–99

    PubMed  PubMed Central  Google Scholar 

  43. Gilles C, Polette M, Zahm JM, Tournier JM, Volders L, Foidart JM, Birembaut P (1999) Vimentin contributes to human mammary epithelial cell migration. J Cell Sci 112(Pt 24):4615–4625

    Article  CAS  PubMed  Google Scholar 

  44. Korsching E, Packeisen J, Liedtke C, Hungermann D, Wulfing P, van Diest PJ, Brandt B, Boecker W, Buerger H (2005) The origin of vimentin expression in invasive breast cancer: epithelial-mesenchymal transition, myoepithelial histogenesis or histogenesis from progenitor cells with bilinear differentiation potential? J Pathol 206(4):451–457

    Article  CAS  PubMed  Google Scholar 

  45. Kokkinos MI, Wafai R, Wong MK, Newgreen DF, Thompson EW, Waltham M (2007) Vimentin and epithelial-mesenchymal transition in human breast cancer--observations in vitro and in vivo. Cells Tissues Organs 185(1–3):191–203

    Article  CAS  PubMed  Google Scholar 

  46. Kidd ME, Shumaker DK, Ridge KM (2014) The role of vimentin intermediate filaments in the progression of lung cancer. Am J Respir Cell Mol Biol 50(1):1–6

    Article  PubMed  PubMed Central  Google Scholar 

  47. Trog D, Yeghiazaryan K, Schild HH, Golubnitschaja O (2008) Up-regulation of vimentin expression in low-density malignant glioma cells as immediate and late effects under irradiation and temozolomide treatment. Amino Acids 34(4):539–545

    Article  CAS  PubMed  Google Scholar 

  48. Fortin S, Le Mercier M, Camby I, Spiegl-Kreinecker S, Berger W, Lefranc F, Kiss R (2010) Galectin-1 is implicated in the protein kinase C epsilon/vimentin-controlled trafficking of integrin-beta1 in glioblastoma cells. Brain Pathol 20(1):39–49

    Article  CAS  PubMed  Google Scholar 

  49. Bouamrani A, Ramus C, Gay E, Pelletier L, Cubizolles M, Brugiere S, Wion D, Berger F, Issartel JP (2010) Increased phosphorylation of vimentin in noninfiltrative meningiomas. PLoS One 5(2):e9238

    Article  PubMed  PubMed Central  Google Scholar 

  50. Li M, Zhang B, Sun B, Wang X, Ban X, Sun T, Liu Z, Zhao X (2010) A novel function for vimentin: the potential biomarker for predicting melanoma hematogenous metastasis. J Exp Clin Cancer Res 29:109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Chu YW, Seftor EA, Romer LH, Hendrix MJ (1996) Experimental coexpression of vimentin and keratin intermediate filaments in human melanoma cells augments motility. Am J Pathol 148(1):63–69

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Takemura K, Hirayama R, Hirokawa K, Inagaki M, Tsujimura K, Esaki Y, Mishima Y (1994) Expression of vimentin in gastric cancer: a possible indicator for prognosis. Pathobiology 62(3):149–154

    Article  CAS  PubMed  Google Scholar 

  53. Hong SH, Misek DE, Wang H, Puravs E, Hinderer R, Giordano TJ, Greenson JK, Brenner DE, Simeone DM, Logsdon CD, Hanash SM (2006) Identification of a specific vimentin isoform that induces an antibody response in pancreatic cancer. Biomark Insights 1:175–183

    Article  PubMed  Google Scholar 

  54. Liu C, Chen Y, Yu X, Jin C, Xu J, Long J, Ni Q, Fu D, Jin H, Bai C (2008) Proteomic analysis of differential proteins in pancreatic carcinomas: effects of MBD1 knock-down by stable RNA interference. BMC Cancer 8:121

    Article  PubMed  PubMed Central  Google Scholar 

  55. Yin T, Wang C, Liu T, Zhao G, Zhou F (2006) Implication of EMT induced by TGF-beta1 in pancreatic cancer. J Huazhong Univ Sci Technolog Med Sci 26(6):700–702

    Article  CAS  PubMed  Google Scholar 

  56. Walsh N, O'Donovan N, Kennedy S, Henry M, Meleady P, Clynes M, Dowling P (2009) Identification of pancreatic cancer invasion-related proteins by proteomic analysis. Proteome Sci 7:3

    Article  PubMed  PubMed Central  Google Scholar 

  57. Ngan CY, Yamamoto H, Seshimo I, Tsujino T, Man-i M, Ikeda JI, Konishi K, Takemasa I, Ikeda M, Sekimoto M, Matsuura N, Monden M (2007) Quantitative evaluation of vimentin expression in tumour stroma of colorectal cancer. Br J Cancer 96(6):986–992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. McInroy L, Maatta A (2007) Down-regulation of vimentin expression inhibits carcinoma cell migration and adhesion. Biochem Biophys Res Commun 360(1):109–114

    Article  CAS  PubMed  Google Scholar 

  59. Alfonso P, Nunez A, Madoz-Gurpide J, Lombardia L, Sanchez L, Casal JI (2005) Proteomic expression analysis of colorectal cancer by two-dimensional differential gel electrophoresis. Proteomics 5(10):2602–2611

    Article  CAS  PubMed  Google Scholar 

  60. Du L, Li J, Lei L, He H, Chen E, Dong J, Yang J (2018) High vimentin expression predicts a poor prognosis and progression in colorectal cancer: a study with meta-analysis and TCGA database. Biomed Res Int 2018:6387810

    Article  PubMed  PubMed Central  Google Scholar 

  61. Hu N, Wang C, Han XY, He LJ, Tang ZZ, Giffen C, Emmert-Buck MR, Goldstein AM, Taylor PR (2004) Evaluation of BRCA2 in the genetic susceptibility of familial esophageal cancer. Oncogene 23(3):852–858

    Article  CAS  PubMed  Google Scholar 

  62. Li ZM, Wen YJ, Yang HB, Qin G, Tian L, Deng HX, Wen B (2008) Enhanced expression of human vimentin intermediate filaments in hepatocellular carcinoma cells decreases their proliferative and invasive abilities in vitro. Zhonghua Zhong Liu Za Zhi 30(6):408–412

    CAS  PubMed  Google Scholar 

  63. Bubb MR, Spector I, Bershadsky AD, Korn ED (1995) Swinholide A is a microfilament disrupting marine toxin that stabilizes actin dimers and severs actin filaments. J Biol Chem 270(8):3463–3466

    Article  CAS  PubMed  Google Scholar 

  64. Schiff PB, Fant J, Horwitz SB (1979) Promotion of microtubule assembly in vitro by taxol. Nature 277(5698):665–667

    Article  CAS  PubMed  Google Scholar 

  65. Bensch KG, Malawista SE (1968) Microtubule crystals: a new biophysical phenomenon induced by Vinca alkaloids. Nature 218(5147):1176–1177

    Article  CAS  PubMed  Google Scholar 

  66. Bensch KG, Marantz R, Wisniewski H, Shelanski M (1969) Induction in vitro of microtubular crystals by vinca alkaloids. Science 165(3892):495–496

    Article  CAS  PubMed  Google Scholar 

  67. Bargagna-Mohan P, Hamza A, Kim YE, Khuan Abby Ho Y, Mor-Vaknin N, Wendschlag N, Liu J, Evans RM, Markovitz DM, Zhan CG, Kim KB, Mohan R (2007) The tumor inhibitor and antiangiogenic agent withaferin A targets the intermediate filament protein vimentin. Chem Biol 14(6):623–634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Chernyatina AA, Nicolet S, Aebi U, Herrmann H, Strelkov SV (2012) Atomic structure of the vimentin central alpha-helical domain and its implications for intermediate filament assembly. Proc Natl Acad Sci U S A 109(34):13620–13625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Weinberg R (1993) Tumor suppressor genes. Neuron 11(2):191–196

    Article  CAS  PubMed  Google Scholar 

  70. Matthews H, Hanison J, Nirmalan N (2016) "Omics"-informed drug and biomarker discovery: opportunities, challenges and future perspectives. Proteomes 4(3):28

    Article  PubMed Central  Google Scholar 

  71. Dugger SA, Platt A, Goldstein DB (2018) Drug development in the era of precision medicine. Nat Rev Drug Discov 17(3):183–196

    Article  CAS  PubMed  Google Scholar 

  72. Keener, J.; Sneyd, J., Cellular homeostasis. vol. 8(1) Springer, New York, NY, 2009

    Google Scholar 

  73. Madden E, Logue SE, Healy SJ, Manie S, Samali A (2019) The role of the unfolded protein response in cancer progression: from oncogenesis to chemoresistance. Biol Cell 111(1):1–17

    Article  PubMed  Google Scholar 

  74. Shangary S, Wang S (2009) Small-molecule inhibitors of the MDM2-p53 protein-protein interaction to reactivate p53 function: a novel approach for cancer therapy. Annu Rev Pharmacol Toxicol 49:223–241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Vassilev LT, Vu BT, Graves B, Carvajal D, Podlaski F, Filipovic Z, Kong N, Kammlott U, Lukacs C, Klein C, Fotouhi N, Liu EA (2004) In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 303(5659):844–848

    Article  CAS  PubMed  Google Scholar 

  76. Burikhanov R, Shrestha-Bhattarai T, Qiu S, Shukla N, Hebbar N, Lele SM, Horbinski C, Rangnekar VM (2013) Novel mechanism of apoptosis resistance in cancer mediated by extracellular PAR-4. Cancer Res 73(2):1011–1019

    Article  CAS  PubMed  Google Scholar 

  77. Hebbar N, Wang C, Rangnekar VM (2012) Mechanisms of apoptosis by the tumor suppressor par-4. J Cell Physiol 227(12):3715–3721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Moll UM, Petrenko O (2003) The MDM2-p53 interaction. Mol Cancer Res 1(14):1001–1008

    CAS  PubMed  Google Scholar 

  79. Wade M, Li YC, Wahl GM (2013) MDM2, MDMX and p53 in oncogenesis and cancer therapy. Nat Rev Cancer 13(2):83–96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Toledo F, Wahl GM (2007) MDM2 and MDM4: p53 regulators as targets in anticancer therapy. Int J Biochem Cell Biol 39(7–8):1476–1482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Khurana A, Shafer DA (2019) MDM2 antagonists as a novel treatment option for acute myeloid leukemia: perspectives on the therapeutic potential of idasanutlin (RG7388). Onco Targets Ther 12:2903–2910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Michaelis M, Rothweiler F, Barth S, Cinatl J, van Rikxoort M, Loschmann N, Voges Y, Breitling R, von Deimling A, Rodel F, Weber K, Fehse B, Mack E, Stiewe T, Doerr HW, Speidel D, Cinatl J Jr (2011) Adaptation of cancer cells from different entities to the MDM2 inhibitor nutlin-3 results in the emergence of p53-mutated multi-drug-resistant cancer cells. Cell Death Dis 2:e243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Aziz MH, Shen H, Maki CG (2011) Acquisition of p53 mutations in response to the non-genotoxic p53 activator Nutlin-3. Oncogene 30(46):4678–4686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Wei SJ, Joseph T, Sim AY, Yurlova L, Zolghadr K, Lane D, Verma C, Ghadessy F (2013) In vitro selection of mutant HDM2 resistant to Nutlin inhibition. PLoS One 8(4):e62564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Skalniak L, Kocik J, Polak J, Skalniak A, Rak M, Wolnicka-Glubisz A, Holak TA (2018) Prolonged idasanutlin (RG7388) treatment leads to the generation of p53-mutated cells. Cancers (Basel) 10(11):396

    Article  CAS  PubMed Central  Google Scholar 

  86. Hoffman-Luca CG, Ziazadeh D, McEachern D, Zhao Y, Sun W, Debussche L, Wang S (2015) Elucidation of acquired resistance to Bcl-2 and MDM2 inhibitors in acute leukemia in vitro and in vivo. Clin Cancer Res 21(11):2558–2568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Jung J, Lee JS, Dickson MA, Schwartz GK, Le Cesne A, Varga A, Bahleda R, Wagner AJ, Choy E, de Jonge MJ, Light M, Rowley S, Mace S, Watters J (2016) TP53 mutations emerge with HDM2 inhibitor SAR405838 treatment in de-differentiated liposarcoma. Nat Commun 7:12609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Drummond CJ, Esfandiari A, Liu J, Lu X, Hutton C, Jackson J, Bennaceur K, Xu Q, Makimanejavali AR, Del Bello F, Piergentili A, Newell DR, Hardcastle IR, Griffin RJ, Lunec J (2016) TP53 mutant MDM2-amplified cell lines selected for resistance to MDM2-p53 binding antagonists retain sensitivity to ionizing radiation. Oncotarget 7(29):46203–46218

    Article  PubMed  PubMed Central  Google Scholar 

  89. Chapeau EA, Gembarska A, Durand EY, Mandon E, Estadieu C, Romanet V, Wiesmann M, Tiedt R, Lehar J, de Weck A, Rad R, Barys L, Jeay S, Ferretti S, Kauffmann A, Sutter E, Grevot A, Moulin P, Murakami M, Sellers WR, Hofmann F, Jensen MR (2017) Resistance mechanisms to TP53-MDM2 inhibition identified by in vivo piggyBac transposon mutagenesis screen in an Arf(−/−) mouse model. Proc Natl Acad Sci U S A 114(12):3151–3156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Viallet J, Minna JD (1990) Dominant oncogenes and tumor suppressor genes in the pathogenesis of lung cancer. Am J Respir Cell Mol Biol 2(3):225–232

    Article  CAS  PubMed  Google Scholar 

  91. Luo SY, Lam DC (2013) Oncogenic driver mutations in lung cancer. Transl Respir Med 1(1):6

    Article  PubMed  PubMed Central  Google Scholar 

  92. Chen F, Wang W, El-Deiry WS (2010) Current strategies to target p53 in cancer. Biochem Pharmacol 80(5):724–730

    Article  CAS  PubMed  Google Scholar 

  93. Shrestha-Bhattarai T, Hebbar N, Rangnekar VM (2013) Par(-4)oxysm in breast cancer. Cancer Cell 24(1):3–5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Alvarez JV, Pan TC, Ruth J, Feng Y, Zhou A, Pant D, Grimley JS, Wandless TJ, Demichele A, Investigators IST, Chodosh LA (2013) Par-4 downregulation promotes breast cancer recurrence by preventing multinucleation following targeted therapy. Cancer Cell 24(1):30–44

    Article  CAS  PubMed  Google Scholar 

  95. Thayyullathil F, Pallichankandy S, Rahman A, Kizhakkayil J, Chathoth S, Patel M, Galadari S (2013) Caspase-3 mediated release of SAC domain containing fragment from Par-4 is necessary for the sphingosine-induced apoptosis in Jurkat cells. J Mol Signal 8(1):2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Gonzalez-Gronow M, Selim MA, Papalas J, Pizzo SV (2009) GRP78: a multifunctional receptor on the cell surface. Antioxid Redox Signal 11(9):2299–2306

    Article  CAS  PubMed  Google Scholar 

  97. Burikhanov R, Shrestha-Bhattarai T, Hebbar N, Qiu S, Zhao Y, Zambetti GP, Rangnekar VM (2014) Paracrine apoptotic effect of p53 mediated by tumor suppressor Par-4. Cell Rep 6(2):271–277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Diaz-Meco MT, Lallena MJ, Monjas A, Frutos S, Moscat J (1999) Inactivation of the inhibitory kappaB protein kinase/nuclear factor kappaB pathway by Par-4 expression potentiates tumor necrosis factor alpha-induced apoptosis. J Biol Chem 274(28):19606–19612

    Article  CAS  PubMed  Google Scholar 

  99. Wang BD, Kline CL, Pastor DM, Olson TL, Frank B, Luu T, Sharma AK, Robertson G, Weirauch MT, Patierno SR, Stuart JM, Irby RB, Lee NH (2010) Prostate apoptosis response protein 4 sensitizes human colon cancer cells to chemotherapeutic 5-FU through mediation of an NF kappaB and microRNA network. Mol Cancer 9:98

    Article  PubMed  PubMed Central  Google Scholar 

  100. Diaz-Meco MT, Municio MM, Frutos S, Sanchez P, Lozano J, Sanz L, Moscat J (1996) The product of par-4, a gene induced during apoptosis, interacts selectively with the atypical isoforms of protein kinase C. Cell 86(5):777–786

    Article  CAS  PubMed  Google Scholar 

  101. Lee TJ, Jang JH, Noh HJ, Park EJ, Choi KS, Kwon TK (2010) Overexpression of Par-4 sensitizes TRAIL-induced apoptosis via inactivation of NF-kappaB and Akt signaling pathways in renal cancer cells. J Cell Biochem 109(5):885–895

    CAS  PubMed  Google Scholar 

  102. de Thonel A, Hazoume A, Kochin V, Isoniemi K, Jego G, Fourmaux E, Hammann A, Mjahed H, Filhol O, Micheau O, Rocchi P, Mezger V, Eriksson JE, Rangnekar VM, Garrido C (2014) Regulation of the proapoptotic functions of prostate apoptosis response-4 (Par-4) by casein kinase 2 in prostate cancer cells. Cell Death Dis 5:e1016

    Article  PubMed  PubMed Central  Google Scholar 

  103. Chaudhry P, Singh M, Parent S, Asselin E (2012) Prostate apoptosis response 4 (Par-4), a novel substrate of caspase-3 during apoptosis activation. Mol Cell Biol 32(4):826–839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Zhang J, Sun A, Dong Y, Wei D (2018) Recombinant production and characterization of SAC, the core domain of Par-4, by SUMO fusion system. Appl Biochem Biotechnol 184(4):1155–1167

    Article  CAS  PubMed  Google Scholar 

  105. Sarkar S, Jain S, Rai V, Sahoo DK, Raha S, Suklabaidya S, Senapati S, Rangnekar VM, Maiti IB, Dey N (2015) Plant-derived SAC domain of PAR-4 (Prostate Apoptosis Response 4) exhibits growth inhibitory effects in prostate cancer cells. Front Plant Sci 6:822

    Article  PubMed  PubMed Central  Google Scholar 

  106. Azmi AS, Philip PA, Aboukameel A, Wang Z, Banerjee S, Zafar SF, Goustin AS, Almhanna K, Yang D, Sarkar FH, Mohammad RM (2010) Reactivation of p53 by novel MDM2 inhibitors: implications for pancreatic cancer therapy. Curr Cancer Drug Targets 10(3):319–331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Zhang W, Sviripa V, Kril LM, Chen X, Yu T, Shi J, Rychahou P, Evers BM, Watt DS, Liu C (2011) Fluorinated N,N-dialkylaminostilbenes for Wnt pathway inhibition and colon cancer repression. J Med Chem 54(5):1288–1297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Sviripa VM, Zhang W, Balia AG, Tsodikov OV, Nickell JR, Gizard F, Yu T, Lee EY, Dwoskin LP, Liu C, Watt DS (2014) 2′,6′-Dihalostyrylanilines, pyridines, and pyrimidines for the inhibition of the catalytic subunit of methionine S-adenosyltransferase-2. J Med Chem 57(14):6083–6091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Zhang W, Sviripa V, Chen X, Shi J, Yu T, Hamza A, Ward ND, Kril LM, Vander Kooi CW, Zhan CG, Evers BM, Watt DS, Liu C (2013) Fluorinated N,N-dialkylaminostilbenes repress colon cancer by targeting methionine S-adenosyltransferase 2A. ACS Chem Biol 8(4):796–803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Gorner H, Kuhn HJ (1995) Cis-trans photoisomerization of stilbenes and stilbene-like molecules, vol 19. John Wiley and Sons, Inc., New York, pp 1–117

    Google Scholar 

  111. Sviripa VM, Zhang W, Kril LM, Liu AX, Yuan Y, Zhan CG, Liu C, Watt DS (2014) Halogenated diarylacetylenes repress c-myc expression in cancer cells. Bioorg Med Chem Lett 24(15):3638–3640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Cheng C-C, Yan SJ (1982) The Friedlander synthesis of quinolines. Org React 28:37–201

    CAS  Google Scholar 

  113. Marco-Contelles J, Perez-Mayoral E, Samadi A, Carreiras Mdo C, Soriano E (2009) Recent advances in the Friedlander reaction. Chem Rev 109(6):2652–2671

    Article  CAS  PubMed  Google Scholar 

  114. Burikhanov R, Sviripa VM, Hebbar N, Zhang W, Layton WJ, Hamza A, Zhan CG, Watt DS, Liu C, Rangnekar VM (2014) Arylquins target vimentin to trigger Par-4 secretion for tumor cell apoptosis. Nat Chem Biol 10(11):924–926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Jones G (1967) The Knoevenagel condensation. Org React 15:204–599

    CAS  Google Scholar 

  116. Lecher HZ, Greenwood RA, Whitehouse KC, Chao TH (1956) The phosphonation of aromatic compounds with phosphorous pentasulfide. J Am Chem Soc 78:5018–5022

    Article  CAS  Google Scholar 

  117. Satelli A, Li S (2011) Vimentin in cancer and its potential as a molecular target for cancer therapy. Cell Mol Life Sci 68(18):3033–3046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Hudson LG, Cook LS, Grimes MM, Muller CY, Adams SF, Wandinger-Ness A (2019) Dual actions of Ketorolac in metastatic ovarian cancer. Cancers (Basel) 11(8):1049

    Article  CAS  Google Scholar 

  119. Forget P, Bentin C, Machiels JP, Berliere M, Coulie PG, De Kock M (2014) Intraoperative use of ketorolac or diclofenac is associated with improved disease-free survival and overall survival in conservative breast cancer surgery. Br J Anaesth 113(Suppl. 1):i82–i87

    Article  CAS  PubMed  Google Scholar 

  120. Retsky M, Rogers R, Demicheli R, Hrushesky WJ, Gukas I, Vaidya JS, Baum M, Forget P, Dekock M, Pachmann K (2012) NSAID analgesic ketorolac used perioperatively may suppress early breast cancer relapse: particular relevance to triple negative subgroup. Breast Cancer Res Treat 134(2):881–888

    Article  CAS  PubMed  Google Scholar 

  121. Ghosalkar JD, Raut SR, Thekkumpurath MC, Malhotra G, Joshi KS (2018) Abstract B141: repurposing of ketorolac for the treatment of renal cell carcinoma (RCC). Mol Cancer Ther 17(1):B141

    Article  Google Scholar 

  122. Malhotra, G.; Joshi, K.; Ghosalkar, J. Ketorolac for the treatment of cancer. US 2018/0021305 A1, Jan. 25, 2018

    Google Scholar 

  123. Eckes B, Colucci-Guyon E, Smola H, Nodder S, Babinet C, Krieg T, Martin P (2000) Impaired wound healing in embryonic and adult mice lacking vimentin. J Cell Sci 113(Pt 13):2455–2462

    Article  CAS  PubMed  Google Scholar 

  124. Gillard BK, Harrell RG, Marcus DM (1996) Pathways of glycosphingolipid biosynthesis in SW13 cells in the presence and absence of vimentin intermediate filaments. Glycobiology 6(1):33–42

    Article  CAS  PubMed  Google Scholar 

  125. Min K-J, Shahriyar SA, Kwon TK (2019) Arylquin 1, a potent Par-4 secretagogue induces lysosomal membrane permeabilization-mediated non-apoptotic cell death in cancer cells. Toxicol Res 36(2):167–173

    Article  PubMed  PubMed Central  Google Scholar 

  126. Sviripa VM, Burikhanov R, Obiero JM, Yuan Y, Nickell JR, Dwoskin LP, Zhan CG, Liu C, Tsodikov OV, Rangnekar VM, Watt DS (2016) Par-4 secretion: stoichiometry of 3-arylquinoline binding to vimentin. Org Biomol Chem 14(1):74–84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Herrmann H, Haner M, Brettel M, Muller SA, Goldie KN, Fedtke B, Lustig A, Franke WW, Aebi U (1996) Structure and assembly properties of the intermediate filament protein vimentin: the role of its head, rod and tail domains. J Mol Biol 264(5):933–953

    Article  CAS  PubMed  Google Scholar 

  128. Bargagna-Mohan P, Paranthan RR, Hamza A, Dimova N, Trucchi B, Srinivasan C, Elliott GI, Zhan CG, Lau DL, Zhu H, Kasahara K, Inagaki M, Cambi F, Mohan R (2010) Withaferin A targets intermediate filaments glial fibrillary acidic protein and vimentin in a model of retinal gliosis. J Biol Chem 285(10):7657–7669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Rah B, Rasool RU, Nayak D, Yousuf SK, Mukherjee D, Kumar LD, Goswami A (2015) PAWR-mediated suppression of BCL2 promotes switching of 3-azido withaferin A (3-AWA)-induced autophagy to apoptosis in prostate cancer cells. Autophagy 11(2):314–331

    Article  PubMed  PubMed Central  Google Scholar 

  130. Goldie KN, Wedig T, Mitra AK, Aebi U, Herrmann H, Hoenger A (2007) Dissecting the 3-D structure of vimentin intermediate filaments by cryo-electron tomography. J Struct Biol 158(3):378–385

    Article  CAS  PubMed  Google Scholar 

  131. Fuchs E, Hanukoglu I (1983) Unraveling the structure of the intermediate filaments. Cell 34(2):332–334

    Article  CAS  PubMed  Google Scholar 

  132. Burikhanov R, Hebbar N, Noothi SK, Shukla N, Sledziona J, Araujo N, Kudrimoti M, Wang QJ, Watt DS, Welch DR, Maranchie J, Harada A, Rangnekar VM (2017) Chloroquine-inducible par-4 secretion is essential for tumor cell apoptosis and inhibition of metastasis. Cell Rep 18(2):508–519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

CL and DSW were supported by NIH R01 CA172379 from the National Institutes of Health, the Lucille Parker Markey Cancer Center at the University of Kentucky, and by NIH UL1 TR000117 from the National Institutes of Health to the University of Kentucky’s Center for Clinical and Translational Science. DSW was also supported in part by the Office of the Dean of the College of Medicine, the Center for Pharmaceutical Research and Innovation in the College of Pharmacy, NIH P30 RR020171 from the National Institute of General Medical Sciences to L. Hersh; and NIH R01 CA60872 from the National Cancer Institute to Vivek M. Rangnekar. We thank Ms. Elise Wright in the Markey Cancer Center for her artistry in constructing Fig. 1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David S. Watt .

Editor information

Editors and Affiliations

Ethics declarations

David S. Watt and Chunming Liu hold an equity interest in a for-profit corporation, Epionc, Inc., founded for the purpose of advancing translational research involving antineoplastic agents. The co-inventors have complied with the University’s policies regarding intellectual property disclosure and conflict of interest issues. The University of Kentucky has filed patent applications for compounds for which these authors are co-inventors.

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sviripa, V.M., Burikhanov, R., Liu, C., Watt, D.S. (2021). Developing Quinoline-based Secretagogues for Prostate Apoptosis Response-4 Protein (Par-4) as Potential Antineoplastic Agents. In: Rangnekar, V.M. (eds) Tumor Suppressor Par-4. Springer, Cham. https://doi.org/10.1007/978-3-030-80558-6_11

Download citation

Publish with us

Policies and ethics